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A multi-omics story in two parts
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Disease heterogeneity
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Disease heterogeneity: multi-factorial
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Disease heterogeneity: multi-scale
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Systems Biology to understand and
predict disease development
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Normal Heart Dilated Cardiomyopathy

o OUFD ol
;iIANMYIIES T "f;-'-@‘""‘
mwm§ n AT AS;[HLR M;[ ]z[

%\WA v i) e

DV - :

LD } A%[Mﬁ

Outline

Genetic control of gene transcription in -
heart failure -

Modeling the metabolism of the failing
heart
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1.

Outline

Genetic control of gene transcription in
heart failure

What is heart failure?

Less blood
fills the ventricles

Less blood pumped
out of ventricles

_stiff
heart muscle

| Weakened
heart muscle

Systolic Dysfunction Normal Diastolic Dysfunction

10
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Heart failure <> complications

Structural remodeling Heart Failure Electrical remodeling
P SRP P a oo
: Arrhythmias dhes -'

Sudden cardiac death
Metabolic impairments

Systolic Dysfunction Normal

B Complications are patient specific
- What explains this difference?

_____

Genetics?

11
Genetic association studies
* SNP (single nucleotide polymorphism):
— A variation in a single nucleotide that
occurs at a specific position in the genome A”Ce/e
* Example SNP:
— Base C may appear in most individuals
— Base T occurs in some individuals
— CanT are called the “alleles” of the SNP
Allele
T
* We all have two copies of every
chromosome (and every gene!)
Genotype = CT
12
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Genetic association studies

 Variations in the DNA affect
— Disease development

Allele
— Response to pathogens, chemicals, ¢
drugs
* How to find these variations?
Allele

— Genotyping of individuals T

— Comparing e.g. cases versus controls

Genotype = CT

13
Genetic association studies
Example: E-cadherin gene SNP and prostate cancer
Cases Controls
T
TT or CT 61 84 ?‘ =
cc 21 104 é & " o
Total 82 188 & f;% v
ORyr/crvs.cc= 36 P S X §
Conclusion: the ‘T’ allele is associated with prostate g §
cancer (3.6-fold increased risk) cc
Source: Verhage et al. Int J Cancer 2002;100:683-5 (adapted)
14
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Genome-wide association studies

* GWAS=

— Genotype thousands of variants in a population of
cases and controls

— Genetic association for each variant

*  GWAS have identified many genetic variants
associated with complex traits and diseases

— Example below: susceptibility to arrhythmias after Ml

80
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17,400 17,700 18,000
Chromosome 21 position (kb)

15
Genetic control of gene transcription
Transcription start site (TSS)
—-—|:|-l; -
enhancer promoter intron  exon
\ )
¥
“gene”
16
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Genetic control of gene transcription

Variant affecting
protein product

—-——-[;&-—
Yo Sy

enhancer promoter intron exon

17

Genetic variants in exons can influence protein structure

Wildtype KCNT2 Channels

18
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Genetic control of gene transcription

Variant affecting
regulatory region

—-—El-l;
Y

enhancer promoter intron  exon

.

1

19
Genetic control of gene transcription
Variant affecting
regulatory region
—-—:-l; A
enhancer promoter intron  exon
20
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Genetic variant modulating expression levels

Expression quantitative trait locus
(eQTL)

Variant X

in silico association between genotype and
gene expression level within a specific population

distat promacen
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Genotype of variant X

* Method: Linear regression (GenABEL, MATRIXEQTL R’ )
* cis (= local) effects focused (sample size)

21

What are cis & trans eQTLs

Genel

* trans eQTL: SNP X with Gene Y
— SNP X not within 1 megabase of Gene Y
— SNP X and Gene Y on different chromosomes

* Distant interactions

— SNP X could be in a distant regulatory element SNP X
(interactions between chromosomes)

— SNP X linked to a transcription factor

* Expect small effect sizes > power issues in
all but the largest studies

22
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Linkage disequilibrium and eQTLs

Chromosome

Region of High Linkage
Disequilibrium

& &
Disease Risk Genotyped SNP
SNP

= LD = the non-random association of alleles at different loci (i.e. p,z # p,Pg)
= Often calculated as the square of correlation coefficient: r?
= Often visualized in GWAS Manhattan plots

= Indirect association due to LD structure: an eQTL SNP may or may not be the
causal SNP

23
Genetic control of gene transcription
SNP in intronic
region
—-—|:|-l; —
enhancer promoter intron  exon
24
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Genetic variants regulate exon usage

Variant in splice site

4

l splicing s
alternatively
B B N soice

‘ mRNAs
*l

translation

protein
isoforms

25
Genetic variants regulate exon usage
Variant in splice site Y
1 1 g 8- Bt .
- . e ‘@ q7 4
n .
] .. 3
' splicing s ............ §' 7 N .
- — t
H S .
CcC CcT TT
Genotype SNP X
Splicing quantitative trait locus
(sQTL)
in silico association between genotype and
alternative splicing within a specific population
26
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Research: genetics of transcription and splicing in DCM

Samples: Left ventricle
* 108 non-diseased donor hearts
e 97 dilated cardiomyopathy (DCM) hearts

Data:
* RNA-seq: 16,219 unique mRNA levels
* Genotyping: 2 million common variants (SNPs)

Systolic Dysfunction Normal

27

Research: genetics of transcription and splicing in DCM

Samples: Left ventricle
* 108 non-diseased donor hearts
* 97 dilated cardiomyopathy (DCM) hearts

Data:
* RNA-seq: 16,219 uniqgue mRNA levels
* Genotyping: 2 million common variants (SNPs)

Research questions: Systolic Dysfunction Normal
*  Which variants modulate gene expression? (eQTL)

*  Which variants modulate splicing? (sQTL)

* Do these differ between DCM and controls?

28

14
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Research: genetics of transcription and splicing in DCM

Transcriptomics
Genomics

Variant X

g !
—_—

Genotype of variant X

29

Research: genetics of transcription and splicing in DCM

-

Transcriptomics
Genomics

4
B .

l splicing ~
alternatively
S D o

mMRNAs
l translation ‘

protein
isoforms

Differential splicing and expression contributes to
the DCM phenotype and is genetically controlled
for known and novel genes

pre-mRNA

30
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Usage example: eQTLs for known GWAS loci

-
~n

= logyo of P-value

(=] w o o

Locus 16 / PRKCA

rs9912468

Gene expression (log2)

PRKCA
p-value: 1.16e-05

w

9.6-

9.4-

i

cc cG GG

rs9912468

rs9912468: associated with QRS prolongation (effect allele = G)
Protein kinase C alpha: regulator of cardiac contractility and Ca*
handling in myocytes

31

Question:
what would you do next?

32

16
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Individuals

DCM genetic risk prediction

SNPs
Training set Cades
Cases (90%: 2726)
Controls
Qontrols Covariates:
sQTLs eQTLs GWA sex + age
[ Lasso logistic regression ]
sQTLs eQTls GWA Ry nys nys
sQTL eQTL GWA
Test set risk model risk model risk model
10%: 303 = — a!
(10%: 303) ( Prediction )
AV A2 AV
Cases
Controls

33
DCM genetic risk prediction
Training set (90%) Test set (10%)
5 5 =
£ 54 £ 54 r”{';ﬁ
ié =+ " ié =+
B ‘J B
—— oqll 0.95 — eqll0.71
] o I i
LASSO (glmnet “R’)
34
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DCM genetic risk prediction

Test
With GWA SNP

Better 107
prediction

Combining
1. Co-variates (age, sex)
2. Genotype of DCM GWA SNP
(rs9262636)
054 3. Genotypes of SNPs modulating
expression (eQTLs)
4. Genotypes of SNPs modulating

07- % é ? T splicing (sQTLs)

In single predictive model leads

09-

AUC

0.6+ to better prediction
Question:
what would you do next?
36
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Research: DCM cohort in Maastricht

* Many clinical parameters available Ve Ve
for more extensive subtyping: : ! PHENOGROUP 2 PHENOGROUP 3
. . . Mild systolic Auto-immune Cardiac arrhythmias
— Machine learning resulted in 4 dysfunction

distinct phenotypic clusters

(“phenogroups”) .a. 1
£ o

* Questions: Y
— Which genes show differences in

eQTLs and sQTLs between B - e | e
phenogroups? SRR - oot | -
. +  LowNT-proBNP +  LGE
— In which processes and pathways _ AL AL
are the corresponding genes
involved?

¢ Using RNA-seq of EMBs (n = 76)

37

47 clinical variables

\

Echocardiography

P 47 clinical variables 33 clinical variables 28 clinical variables

Magnetic Resonance Exclusion of variables Exclusion of redundant,
‘ - with »>25% missing in correlated variables

the unimputed raw data (r>0.6)

ECG/Holter

795

Physical
characteristics

DCM

tien
3 ts Laboratory

Demographics

Supervised conditional

Disease modifiers ;
interference tree

4 phenogroups method

17

Endomyocardial Biopsy

Application of modelin 4 clinical variables Unsupervised

hierarchical clustering

[

two independent
validation cohorts

of principal
components of mixed
LEIE]

I Deep-phenotyping index cohort ’ 27 clinical variables

- Data processing
Survival analysis

- Validation steps in two independent validation cohorts 4 phenogroups

38
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Height

0.8-

0.4-

0.0-

Sample phenogroup label color

I N .

1 2 3 4

39
Severe versus mild systolic dysfunction
* 96 unique genes that are significantly differentially
imbalanced between phenogroup 4 and 1
* Gene Ontology enrichment analysis:
Term P-value
cyclosporin A binding 6.00E-04
muscle structure development 9.60E-04
establishment of protein localization to membrane 1.15E-03
negative regulation of oxidative phosphorylation 1.44E-03
electron transport chain 9.35E-03
fat cell differentiation 1.05E-02
regulation of actin filament-based movement 1.50E-02
cellular response to stress 1.68E-02
response to calcium ion 1.70E-02
mitochondrial respiratory chain complex assembly 1.76E-02
40

20
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Outline

2.  Modeling the metabolism of the failing
heart

41
Recap: what is heart failure?
Less blood pumped Less blood
out of ventricles fills the ventricles
Weakened L
heart muscle heart muscle
Systolic Dysfunction Normal Diastolic Dysfunction
42

21
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Loss of metabolic flexibility

Healthy heart Failing heart

43

Restoring metabolic flexibility?

* Clinical trials aimed at restoring
metabolic flexibility have so far
led to mixed results

* Patient-to-patient differences are O
currently poorly understood ©

- Targeted metabolic therapies
have therefore not seen
clinical implementation yet

44

22
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Diagnosing loss of metabolic flexibility

To diagnose, we need to
determine metabolic fluxes

— Fluxomics: reaction fluxes of all
known metabolic reactions

— Identify which pathways differ
between patients

Ideally: in vivo tracer studies to

measure metabolic fluxes:

— Problem 1: expensive and low
sensitivity

— Problem 2: some impairments
only appear under stress

Extra-cellular

TCA cycle AT P

and ETC

|

Fatty acid
oxidation

Intra-cellular

Mitochondrion

45

Question:
what would you do next?

46

23
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Modeling loss of metabolic flexibility

¢ Genome-scale metabolic
models

47

Genome-scale metabolic model (GEM)

Metabolites

Reactions

Stoichiometry

Directionality of reactions
(thermodynamic considerations)

Enzymes
(catalysing a reaction)

Gene-Protein-Reaction rules

Mass- and charge-balance
of reactions

Compartmentalisation

48

24
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Genome-scale metabolic model (GEM)

Reaction: HEX1: hexokinase

D-glucose
Metabolites ATP D-glycose proton ADP 6-ph|osphate
Reactions atpl[c] + gIc_ID[c] — h[lc] + adp[c] + g6p[c]
Stoichiometry -i -j_ 1 1 1
Reactions FL o
SEE
12 n Yo
Al=
¢ Bl1 -1 r
Stoichiometric matrixS: 5 5| '~
z E,
m L 2

49
Genome-scale metabolic model (GEM)
Reaction: HEX1: hexokinase
D-glucose
Metabolites ATP D-glucose proton ADP 6-phlosphate
Reactions atp[c] + glc_D[c] — h[c] + adp[c] + g6plc]
Stoichiometry _i _i 1 1 1
¢ = cytoplasm e = extracellular space
g = Golgi apparatus | = lysosome
m = mitochondrion n = nucleus
r = endoplasmic reticulum X = peroxisome
50

25
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Genome-scale metabolic model (GEM)

Reaction: HEX1: hexokinase

D-glucose
Metabolites ATP D-glucose proton ADP 6-ph|osphate
Reactions atpl[c] + gIc_ID[c] — h[lc] + adp[c] + g6p[c]
Stoichiometry -i -j_ 1 1 1
| >
Flux of reaction

* has upper and lower bound
* often expressed in mmol/gDW/s
* gDW =gram dry weight

51
Genome-scale metabolic model (GEM)
Reaction: HEX1: hexokinase
D-glucose
Metabolites ATP D-glucose proton ADP 6-phlosphate
Reactions atp[c] + glc_D[c] — h[c] + adp[c] + géplc]
Stoichiometry _i _i 1 1 1
l Positive flux >
Flux of reaction
* has upper and lower bound
* often expressed in mmol/gDW/s
* gDW =gram dry weight
52

26
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Genome-scale metabolic model (GEM)

Metabolites

Reactions

Stoichiometry

Reaction: HEX1: hexokinase
D-glucose

ATP D-glucose  proton ADP 6-phosphate

atpi[c] + glc !D[c] — h[:c] + ad[;[c] + g6p[c]
1

1 1

[

B i

< Negative flux

Flux of reaction

* has upper and lower bound

* often expressed in mmol/gDW/s
* gDW =gram dry weight

53

Metabolites
Reactions

Stoichiometry

Directionality of reactions
(thermodynamic considerations)

Enzymes
(catalysing a reaction)

Gene-Protein-Reaction rules

Mass- and ch
of reactions

Compartmentalisation

Genome-scale metabolic model (GEM)

Reaction: HEX1: hexokinase
D-glucose
ADP 6-phosphate

ATP D-glycose proton !
atp[c] + glc_D[c] — h[c] + adp[c] + g6p[c]
-1 -1 1 1 1

- vs. &, irreversible vs. reversible

Hexokinase 1, 2, 3, or 4 (glucokinase) catalyze the reaction

(30?8) or (3099) or (3101) or (2645)...

Gene number for hexokinase 1

glc_D[e] <=> glc_DI[c]

Glucose transport from extracellular space to cytosol

54

27
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The aim of a model is context specific

* GEMs are often organism-specific, but
not tissue/cell type specific

* Tissue-specific models include only
reactions that are active in the respective ) ;
tissue ® L &

* Rationale: Reaction is inactive if

. . Hepat
catalyzing enzyme is not expressed Spatocysse
Myocytes
55
Model extraction methods (MEMs)
» Many algorithms have been proposed for discrete continuous
building tissue-specific models based on
generic models © || Akesson-04 iMAT GIMME E-Flux
. = TEAM
* Simplest approach: delete genes that are not 2 EXAMO oo Lee-12
expressed ® RELATCH
— Typically based on tissue-specific
transcriptomics data
o Moxley-09
* Problems: % MADE  rma oxiey GX-FBA
— Cutoff for being not expressed © AdaM oo Fang-12
— Orphan reactions & dead-ends
— Need to check metabolic functions [ flux prediction [l model building [ both
56

28
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Flux balance analysis

A=<>» B+C Reaction 1
G -scalt B+2C D Reaction 2
e Used to calculate flow of s TE0eD Rescten

Reaction n

metabolites through »
metabolic network e e |

* Predict growth rate of B

3
i

organism or rate of production e om0
Mass balance defines a V,— ¥+..=0

Of given metabolite system of linear equations V‘_ztlzg

etc.
) ASS Hmes Stea dy State Define objective function To predict arowth. Z
(@=c" v+ 6 v, ) Z= Viiomass
° Optlmlzes a given ObjeCtIVE V
i = o
fu n Ct I O n optimal v

Calculate fluxes
that maximize Z

Solution spacs P
defined by
constraints

57

Flux balance analysis

A<> B+C Reaction1
Genome-scale B+2C—D Reaction 2
metabolic reconstruction

Reaction n

o
Reactions FESE
&
12 n FFF
Mathematically represent . é -
metabolic reactions R
and constraints 8§D * =0
R - o
' foet
m =
Stoichiometric matrix, S Fluxes, v
=V, + ..=0
Mass balance defines a vi— »+..=0
system of linear equations V,—2v,4..=0
o
v,+..=0
etc.
Define objective function To predict growth, Z = Vionoce
(Z=c v+ ¢V, .
* Optim bject
Imizes a given opjective )
2 z
L

optimal v

function

Calculate fluxes

that maximize Z Solution space
dafinad by,

constraints

58
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Objective function - Examples

The objective function = the aim of the model

— Biomass reaction (e.g. plants for consumption)

— ATP production (ATP demand reaction)

— Maximize a product of interest (e.g. lysine production)

59
Flux balance analysis
e Used to calculate flow of metanoms meonamcon Brocml Recin
metabolites through
metabolic network B e |
 Predict growth rate of . =
organism or rate of production P
Mass ba\qnoedei\nesa Vi— v+..=0
Of glven meta bOI Ite system of linear equations v, _22::8
etc.
* Assumes steady state ,
Define objective function To predict growth, Z = Vionoce
(Z=c v+ v, ..)
* Optimizes a given objective
function
60
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Flux balance analysis

A<> B+GC Reaction 1
B+2C—D  Reaction2

Reaction n

mmmmmmmmmmmmmmmmm

Mass balance defines a Vi— V+..=0
system of linear equations -
4 q vV, -2v,+..=0

* Assumes steady state

Define objective function To predict growth, Z= vyiomase
(Z=¢"v,+ 6 v, ..)

Calculate fluxes
that maximize Z

61

Steady-state assumption

Assumption to reduce model complexity:

Metabolite concentrations and reaction rates stay constant over time
(steady-state)

Benefit:

1. We have to estimate only one value (reaction rate/flux) per
reaction instead of a function over time

2. We do not have to care about different metabolite concentrations

3. Introduces a direct dependence between reactions: Production
and consumption of each metabolite cancel out

62
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Steady-state assumption visualized

63

Possible flux distribution under the steady-state assumption @

64
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Steady-state assumption visualized

Possible flux distribution under the steady-state assumption ‘

65

Steady-state assumption visualized

Possible flux distribution under the steady-state assumption ‘

66
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Flux distribution not possible under the steady-state assumption

Steady-state assumption visualized

67
Steady-state assumption visualized
AN
&
Flux distribution not possible under the steady-state assumption
68
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Possible problem of steady state assump.

* Cyclic behavior (e.g. limit cycles/periodic fixed points)
* No steady state for single cells

* Consider average of many cells (no synchronization) - steady state reasonable

s 400 cells - no synchronization Dynamics of a singel cell 5 Average dynamics of 400 cells

5
2 = T 25
s 3 8
© © &
8 8 > 2
% 52| \ l g
= = £
22 2 \ ‘ ‘ x 15
] &
£ s =
5 5 “ g
i ! c \ | \j g
>
<
0 0 0.5
0 1 2 3 4 0 60 0 20 40 60
Flux through reaction 1 Time Time

69

Modeling loss of metabolic flexibility

¢ Genome-scale metabolic
models

70
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Modeling loss of metabolic flexibility

Like a water supply network!
- Some places might use more than others
- But what goes in, must come out

=L _Il
]

71

Modeling loss of metabolic flexibility

Measure gene activity
as proxy for metabolic
enzyme activity

e Activate and deactivate
reactions based on gene

. . Active gene = )
activity

Personalized
model

e Y
:’.§n =

:_ =
=

J

Inactive gene = )

72
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Modeling loss of metabolic flexibility

Healthy
—— ]—.
= ——)
‘ ‘ m———)
INPUT - g — OUTPUT
(fatty acids, glucose, = (ATP, membrane lipids,
amino acids, ...) ‘ structural proteins, ...)
* Simulate metabolism for —) _,[;
individual == 3

— Choose objective

— Find optimal combination of
fluxes to maximize objective

— High flux pathway = active
— Low flux pathway = less active

73

Modeling loss of metabolic flexibility

Patient A
—— ]—p
R
=
(fatty alc?c:’sl,glucose, - g

—) ouTPUT
: (ATP, membrane lipids,
structural proteins, ...)

amino acids, ...) -
* Simulate metabolism for —) »
individual » = 3 Decreased
— Choose objective metabolic
— Find optimal combination of output

fluxes to maximize objective
— High flux pathway = active
— Low flux pathway = less active

Inactive metabolic pathway |

74
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Modeling loss of metabolic flexibility

Patient B
e —
- = iy
= ST
(fatty alt:l\i'l:slzj;lucnse, - § =
amino acids, ...) -

* Simulate metabolism for —»‘;
individual = 3
— Choose objective

— Find optimal combination of
fluxes to maximize objective

— High flux pathway = active
— Low flux pathway = less active

Inactive metabolic pathway |

Decreased
metabolic
output

75

Software & tools

* Matlab

— Python can be an alternative
open-source solution for GEM
analysis

* CobraToolbox
— https://opencobra.github.io/co
bratoolbox/stable/
— Model extraction methods

* Transcriptomics data
integration

— Flux balance analysis

76
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Software & tools

sallge Map~ Model- Data~ Edit~ View- ? g
m
¥ gruu
——
© Low L1508 e
LB oo @ |
O (T ionomo o

Cyt050] Letirim 104

£ PyRizm 17.7 Mitochondria
%" pom 2 0317 484 -
P .o onass 'z-.- =)
* Escher maps: Y =T o
— Demo: Fut

https://sbrg.github.io/escher-fba e

Male DCM cardiomyocyte metabolism simulation

77

Question:
what would you do next?

78
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https://sbrg.github.io/escher-fba

30-11-2020

Example: test the effect of different diets

79

Advantages & limitations of GEMs

+ Relatively little information needed
+ Applicable to large networks
+ Quantitative flux estimations

- Only steady state estimation
- Often no unique solutions (large solution space)
- Optimization assumptions (FBA) critical

80
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Model databases

-’/;'e BioModels Database

https://www.ebi.ac.uk/biomodels-main/

QirTuaL @ETABOLIC PUMAN)
https://vmh.uni.lu/
mmman Metabolic Atlas

http://www.metabolicatlas.org/

BiGG Models

http://bigg.ucsd.edu/

81

Take-home messages [

* Systems Medicine involves:

— Large datasets w
— Multivariate modeling .:
— Data-driven aspects complemented

Non-diseased

IncRNA Z!

Diseased

mIRNA M! :‘
| SNPS!

by prior knowledge

* To understand and predict disease
progression, to support clinical
deC|S|On maklng Molecular markers

Subjects

Clinical traits

82


https://www.ebi.ac.uk/biomodels-main/
https://vmh.uni.lu/
http://www.metabolicatlas.org/
http://bigg.ucsd.edu/
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michiel.adriaens@maastrichtuniversity.nl
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