Systems Health for Precision Medicine

Kristel Van Steen, PhD² (*)

kristel.vansteen@ulg.ac.be

(*) WELBIO, GIGA-R, Medical Genomics, University of Liège, Belgium

Systems Medicine Lab, KU Leuven, Belgium

OUTLINE

- Systems health
- Precision medicine: practical implementation
- Precision medicine: analytical considerations

IPCAPS / gene-centric approaches

• Take-home message

Systems health

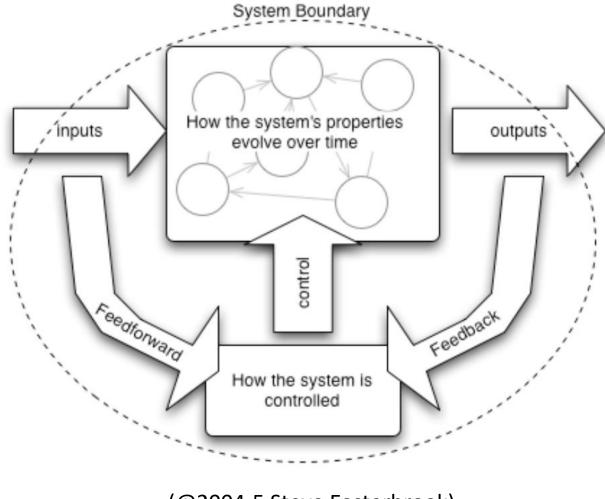
Systems

What is a system?

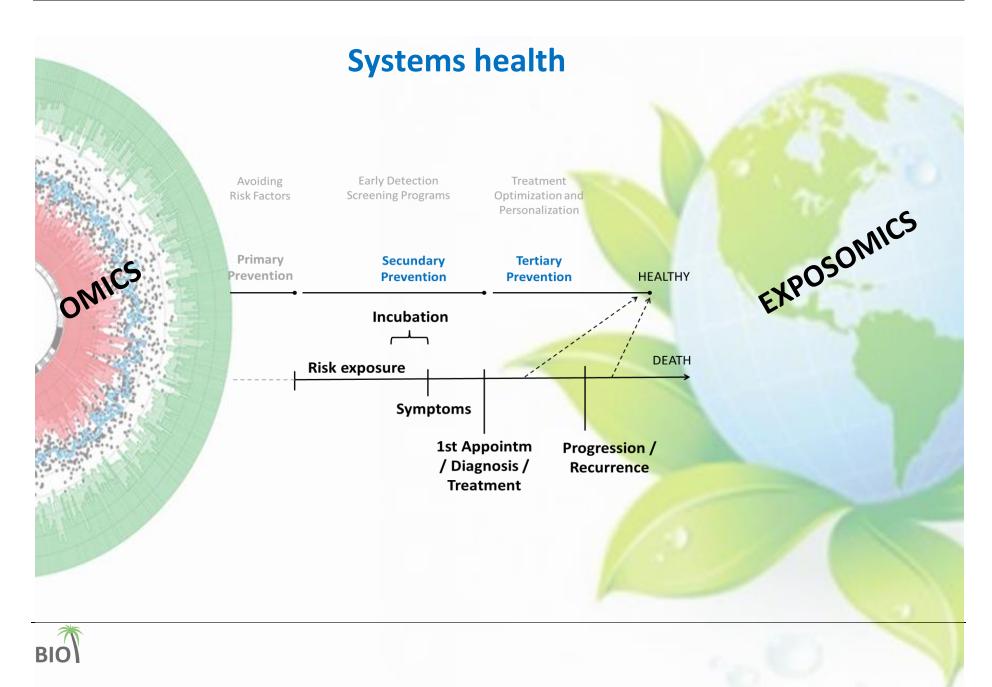
- A system is a set of two or more elements that satisfies the following conditions:
 - The behavior of each element has an effect on the behavior of the whole
 - The behavior of the elements and their effect on the whole are interdependent
 - Subgroups of elements can be formed, in which case each has an effect on the behavior on the whole and none has an independent effect on it.

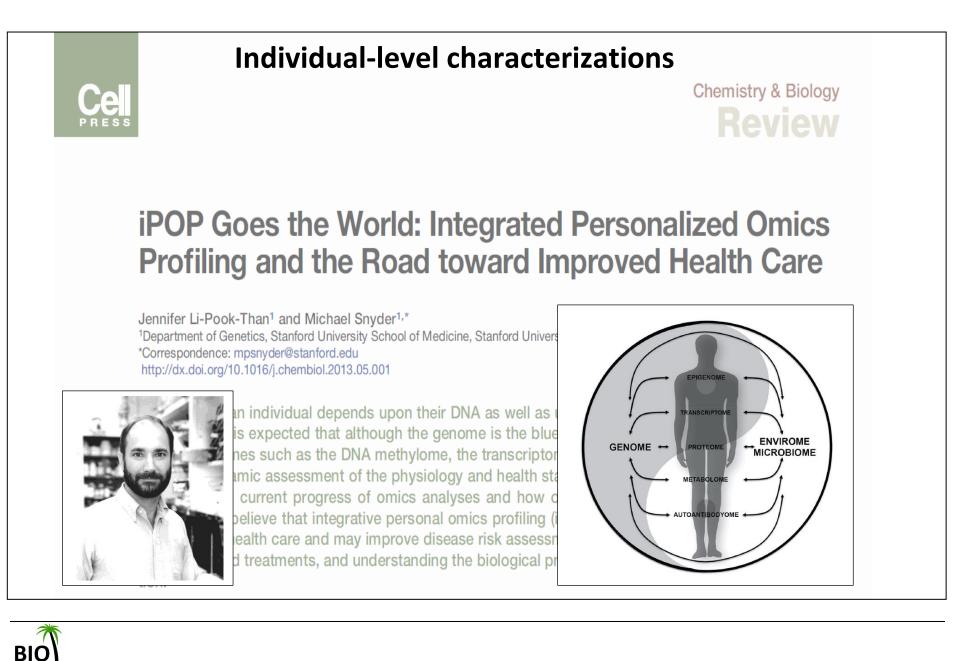
(Ackoff, 1970)

A System's Eco-system



(@2004-5 Steve Easterbrook)





Precision medicine

What is precision medicine?

"a medical model using the characterization of individual's phenotypes and genotypes (e.g., molecular profiling, medical imaging, lifestyle data) for tailoring the right therapeutic strategy for the right person at the right time, and/or to determine the predisposition to disease and/or to deliver timely and targeted prevention."

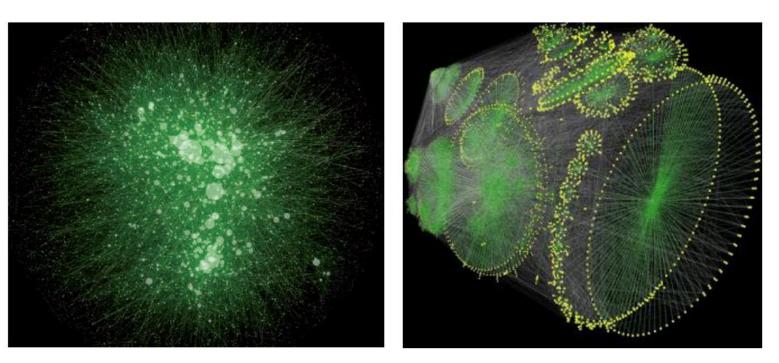
(HORIZON2020 Advisory Group)

Precision medicine: disease heterogeneity

	Observation in subgroups of patients	Disease	Refs
Genetic	Variants in autophagy genes (ATG16L1, IRGM)	CD	[14]
	NOD2 polymorphisms	CD	[15,16]
	HLA-DRA polymorphisms	UC	[20]
	IL10 polymorphisms	UC>>CD	[20]
	IL2/IL21 polymorphisms	UC>>CD	[14]
	Variants in Th1 genes (STAT1, STAT4, IL12B, IFN, IL18RAP)	CD, UC	[13,14]
	Variants in Th17 genes (IL23R, STAT3, RORC)	CD, UC	[14,23]
Immunological	Great inter- and intra-individual variability in mucosal proinflammatory cytokine production	CD, UC	[32,33]
	↑ IFN-γ production by lamina propria T cells	CD>UC	[34]
	↑ IL-5 production by lamina propria T cells	UC>CD	[34]
	↑ mucosal IL-12, STAT4, T-bet	CD>>UC	[35,36]
	↑ IL-13 production by lamina propria NK T cells	UC>CD	[37]
	↑ mucosal IL-17A, Th17 and Th1/Th17 cells compared to controls	CD, UC	[32,40]
	\uparrow IFN- γ production by lamina propria T cells in early but not late disease	CD	[46]
	↑ mucosal IL-17A, IL-6, IL-23 before endoscopic recurrence but not in established lesions	CD	[47]
	Transcriptional signatures in circulating CD8 ⁺ T cells associated with different prognosis	CD, UC	[57]
Clinical	Inflammatory/penetrating/fibrostenosing phenotype	CD	[48]
	Inter-individual variability in disease extension	CD, UC	[3,50]
	Great inter-individual variability in prognosis	CD, UC	[50]
	Young age at diagnosis, current smoking, presence of perianal and/or extensive disease, initial requirement for steroids: associated with worse prognosis	CD	[50,55]
	Young age at diagnosis, pancolitis, no appendectomy in childhood: associated with worse prognosis	UC	[50]
	Great inter-individual variability in need for surgical intervention	CD, UC	[50]

(Biancheri et al. 2013)

Interactions and differentiation



Human interactome (PPI)

(Bonetta 2010)

Fruit fly interactome

(www.molgen.mpg.de)

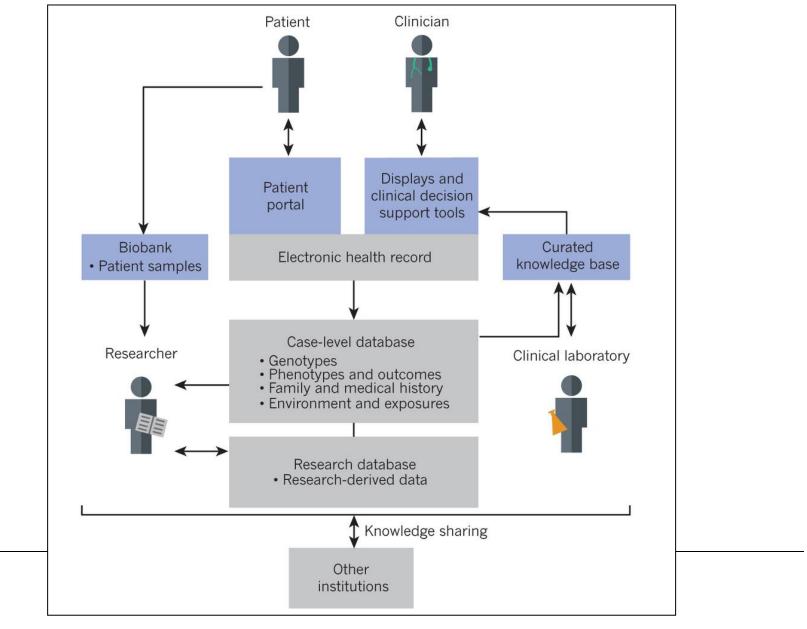
Reminder: "the" interactome

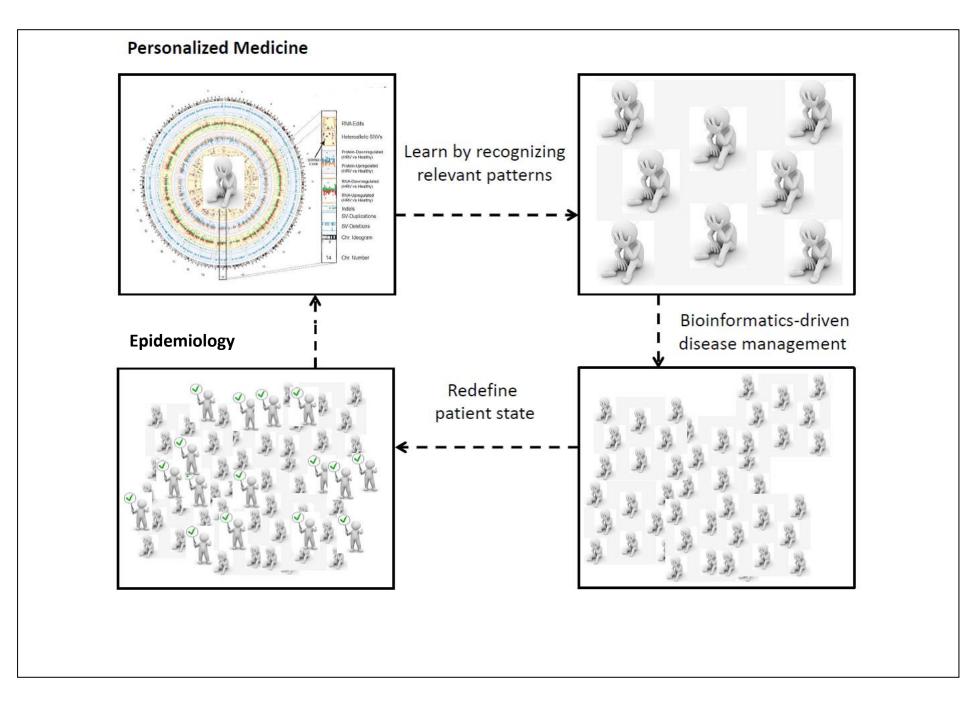
The **interactome** refers to the entire complement of interactions between DNA, RNA, proteins and metabolites within a cell. These interactions are influenced by genetic alterations and environmental stimuli. As a consequence, the interactome should be examined or considered in *particular contexts*.

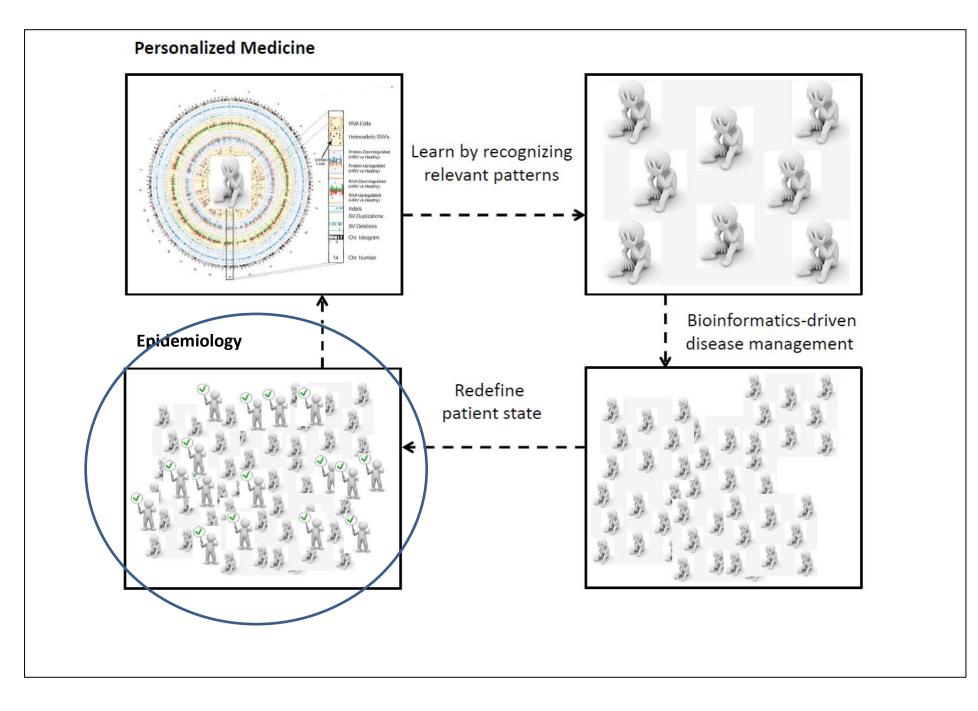
Precision medicine: practical implementation

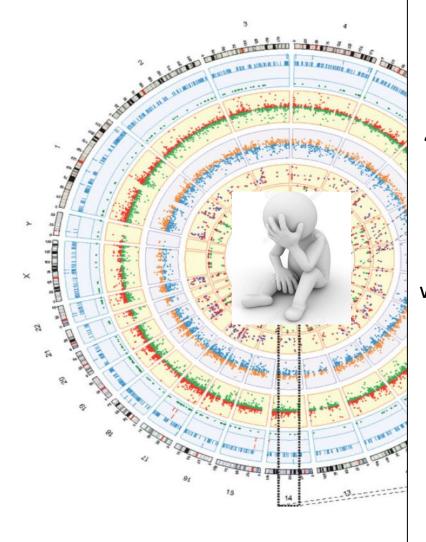
A Patient's Eco-System

(Aronson and Rehm 2015)







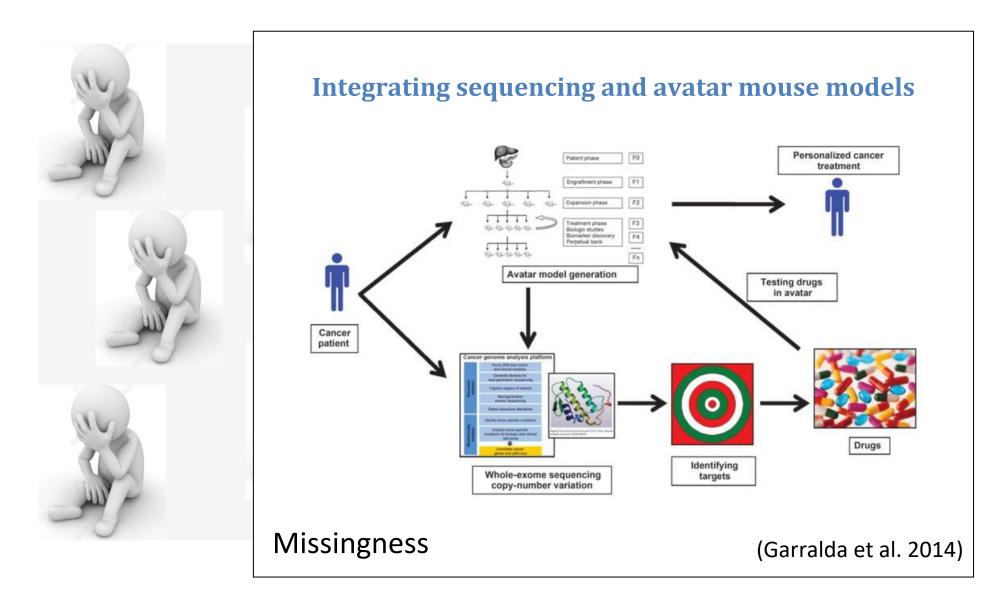


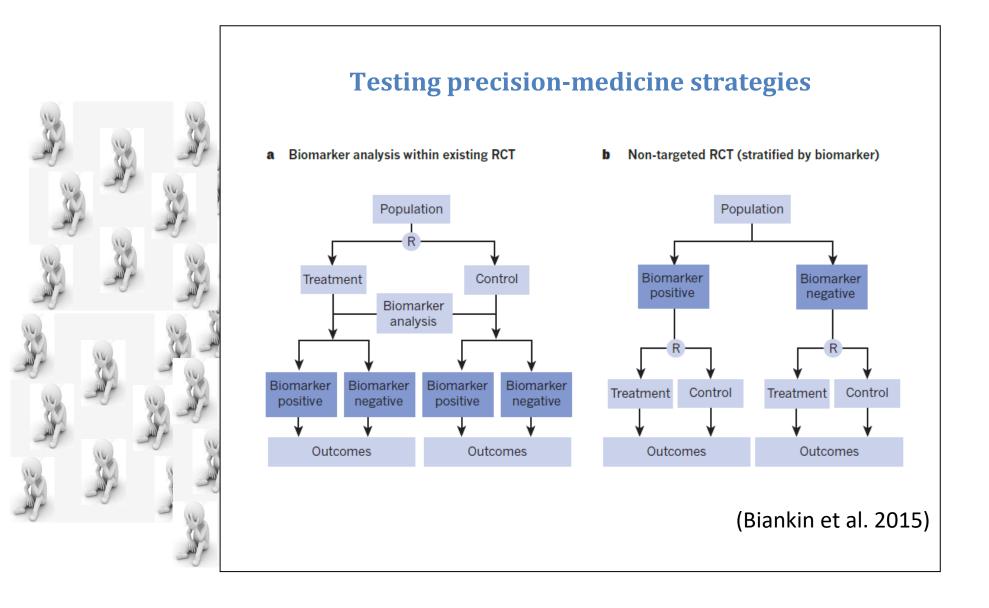
Do you think that omics profiling will be routinely used in the clinic in future?

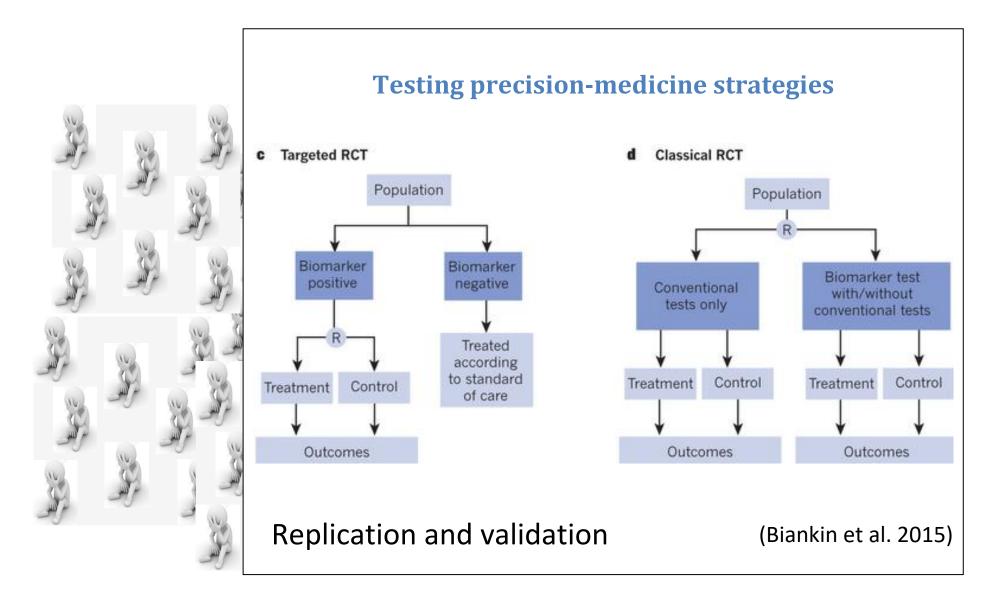
"Not in the form we are doing it. At the moment we have a very incomplete picture of what's going on, whereas if we were able to make thousands of measurements we would have a much better feeling. We just don't know, for the clinical tests, which thousand measurements are going to be most useful. We'll need certain measurements for diabetes, others for cancer, and specific tests will probably reveal themselves useful for different diseases."

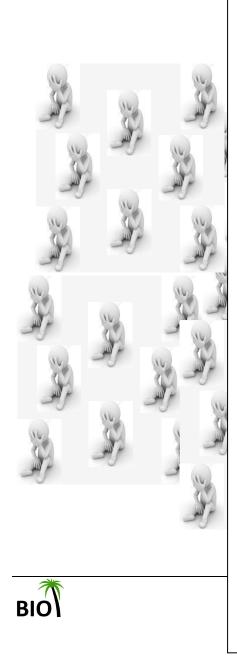
(Snyder 2014)

Redundancy - Informativity



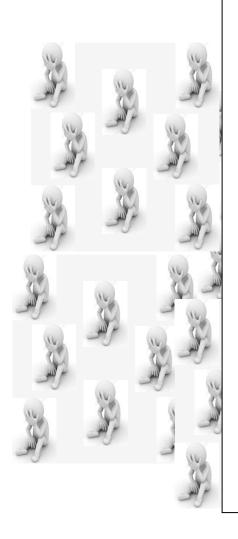






Testing precision-medicine strategies Patients with omics (DNA-seq, RNA-seq) Individual-specific Compare to ranked list molecular of characteristics gene-drug associations submit to analytic pipeline: prioritization via biological and clinical relevance Standard RCT In-silico driven therapy + therapy (alone) Drug 1 Drug 2 Drug 3

Outcomes



Testing precision-medicine strategies

- Umbrella CTs: 1 disease, different genetic mutations which define subcohorts, each receiving randomized treatment regimen
- Basket CTs: multiple diseases with the same genetic mutation, randomized treatment allocation (multi-dimensional mutational profile: assign treatment based on the mutation detected in the higher pct of cancer cells ...)

(Sumitrhra Mandrekar, INSERM atelier 248, Bordeaux, 2017)

Molecular profiling; What does it mean to be "Diseased"?

OPEN O ACCESS Freely available online

Molecular Reclassification of Crohn's Disease by Cluster Analysis of Genetic Variants

Isabelle Cleynen¹*, Jestinah M. Mahachie John^{2,3}, Liesbet Henckaerts⁴, Wouter Van Moerkercke¹, Paul Rutgeerts¹, Kristel Van Steen^{2,3}, Severine Vermeire¹

1 Department of Gastroenterology, KU Leuven, Leuven, Belgium, 2 Systems and Modeling Unit, Department of Electrical Engineering and Computer Science, University of Liège, Liège, Belgium, 3 Bioinformatics and Modeling, GIGA-R, University of Liège, Liège, Belgium, 4 Department of Medicine, UZ Leuven, Leuven, Belgium

(Cleynen et al. 2012)

Heterogeneity as a target

Molecular profiling; What does it mean to be "Diseased"?

OPEN CACCESS Freely available online

PLOS ONE

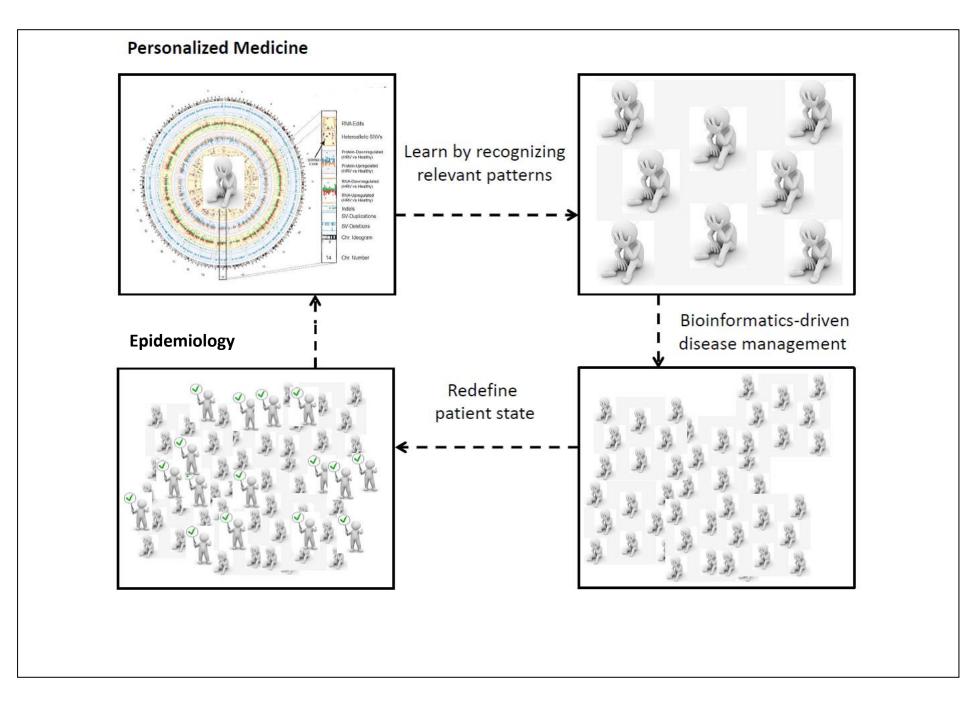
Molecular Reclassification of Crohn's Disease: A Cautionary Note on Population Stratification

Bärbel Maus^{1,2*}, Camille Jung^{3,4,5}, Jestinah M. Mahachie John^{1,2}, Jean-Pierre Hugot^{3,4,6}, Emmanuelle Génin^{7,8}, Kristel Van Steen^{1,2}

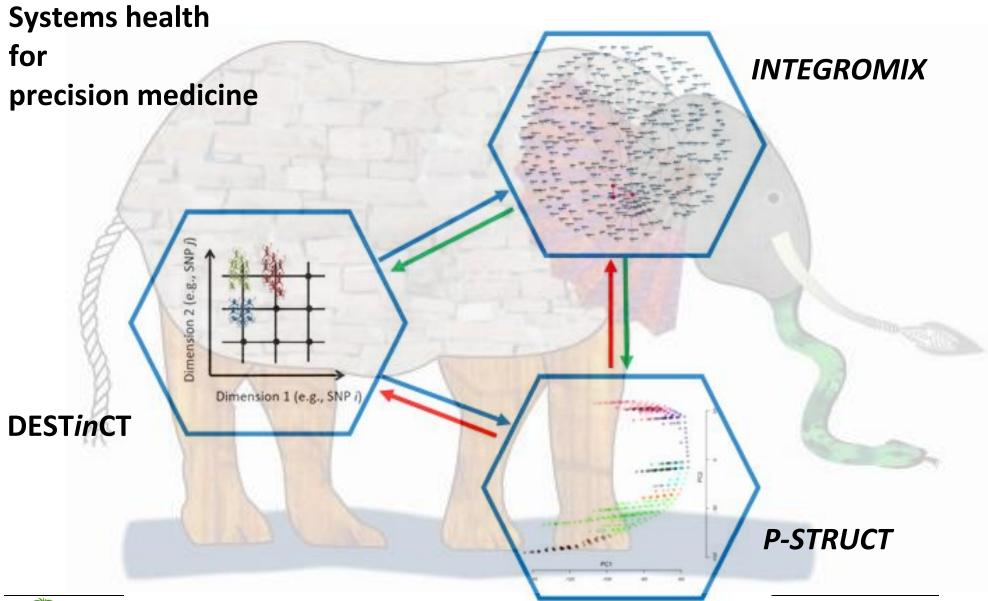
1 UMR843, INSERM, Paris, France, 2 Bioinformatics and Modeling, GIGA-R, University of Liège, Liège, Belgium, 3 UMR843, Institut National de la Sante et de la recherche Medicale, Paris, France, 4 Service de Gastroentérologie Pédiatrique, Hôpital Robert Debré, APHP, Paris, France, 5 CRC-CRB, CHI Creteil, Creteil, France, 6 Labex Inflamex, Université Paris Diderot, Paris, France, 7 UMR1078, Génétique, Génomique fonctionnelle et Biotechnologies, INSERM, Brest, France, 8 Centre Hospitalier Régional Universitaire de Brest, Brest, France

(Maus et al. 2013)

Heterogeneity as a target and a nuisance



Precision medicine: analytical considerations



Molecular profiling; What does it mean to be "Diseased"?

OPEN CACCESS Freely available online

PLOS ONE

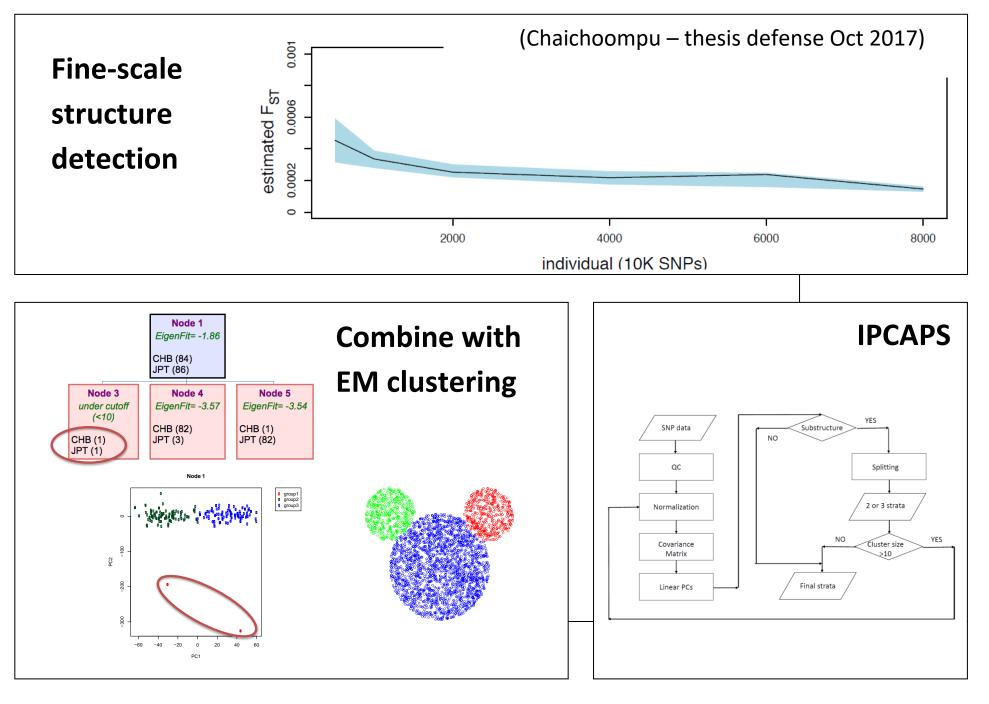
Molecular Reclassification of Crohn's Disease: A Cautionary Note on Population Stratification

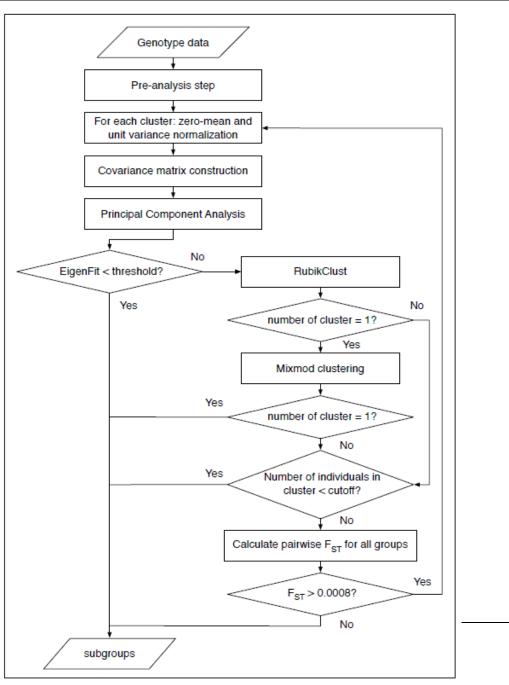
Bärbel Maus^{1,2*}, Camille Jung^{3,4,5}, Jestinah M. Mahachie John^{1,2}, Jean-Pierre Hugot^{3,4,6}, Emmanuelle Génin^{7,8}, Kristel Van Steen^{1,2}

1 UMR843, INSERM, Paris, France, 2 Bioinformatics and Modeling, GIGA-R, University of Liège, Liège, Belgium, 3 UMR843, Institut National de la Sante et de la recherche Medicale, Paris, France, 4 Service de Gastroentérologie Pédiatrique, Hôpital Robert Debré, APHP, Paris, France, 5 CRC-CRB, CHI Creteil, Creteil, France, 6 Labex Inflamex, Université Paris Diderot, Paris, France, 7 UMR1078, Génétique, Génomique fonctionnelle et Biotechnologies, INSERM, Brest, France, 8 Centre Hospitalier Régional Universitaire de Brest, Brest, France

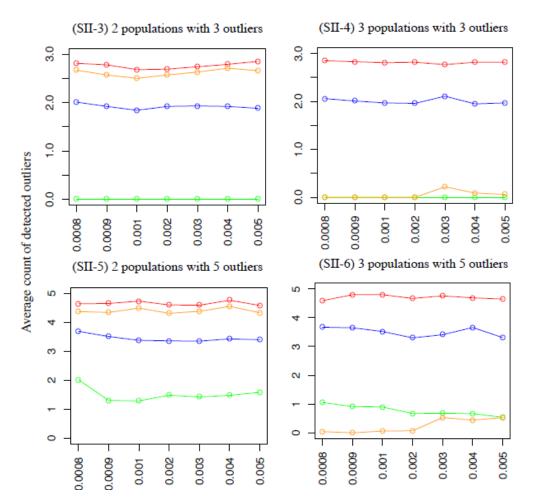
(Maus et al. 2013)

Heterogeneity as a target and a nuisance





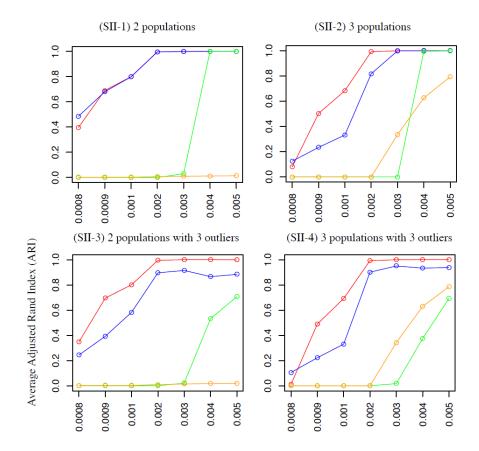
Performance of IPCAPS as outlier detection tool

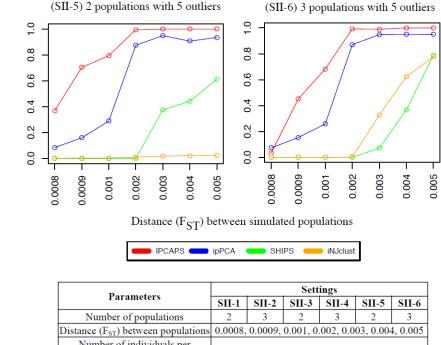


D emonstration	Settings								
Parameters	SII-1	SII-2	SII-3	SII-4	SII-5	SII-6			
Number of populations	2	3	2	3	2	3			
Distance (F _{ST}) between populations	0.0008, 0.0009, 0.001, 0.002, 0.003, 0.004, 0.005								
Number of individuals per population	500								
Number of SNPs	10,000								
Number of outliers	0	0	3	3	5	5			
Number of replicates			1(00					

Distance (F_{ST}) between simulated populations

Accuracy of IPCAPS as a clustering technique





	Number of individuals per population	500								
	Number of SNPs	10,000								
	Number of outliers	0	0	3	3	5	5			
Γ	Number of replicates			10)0					

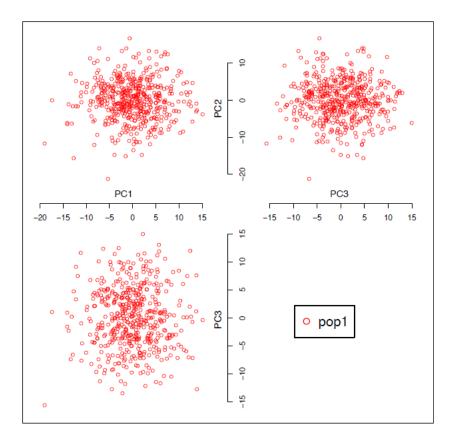
(Chaichoompu – thesis defense Oct 2017)

F_{ST} among populations – examples

	Sp	Fr	Be	UK	Sw	No	Ge	Ro	Cz	SI	Hu	Po	Ru	CEU	CHB	JPT
Fr	0.0008															
Be	0.0015	0.0002														
UK	0.0024	0.0006	0.0005													
Sw	0.0047	0.0023	0.0018	0.0013												
No	0.0047	0.0024	0.0019	0.0014	0.0010											
Ge	0.0025	0.0008	0.0005	0.0006	0.0011	0.0016										
Ro	0.0023	0.0017	0.0018	0.0028	0.0041	0.0044	0.0016									
Cz	0.0033	0.0016	0.0013	0.0014	0.0016	0.0024	0.0003	0.0016								
SI			0.0015													
Hu			0.0013								\frown					
Po			0.0028													
											0.0009					
											0.0016					
CHB											0.1058					
JPT	0.1118	0.1116	0.1114	0.1117	0.1095	0.1103	0.1107	0.1068	0.1102	0.1091	0.1079	0.1108	0.1057	0.1117	0.0069	
YRI	0.1460	0.1493	0.1496	0.1513	0.1524	0.1531	0.1502	0.1463	0.1503	0.1498	0.1490	0.1520	0.1504	0.1510	0.1901	0.191

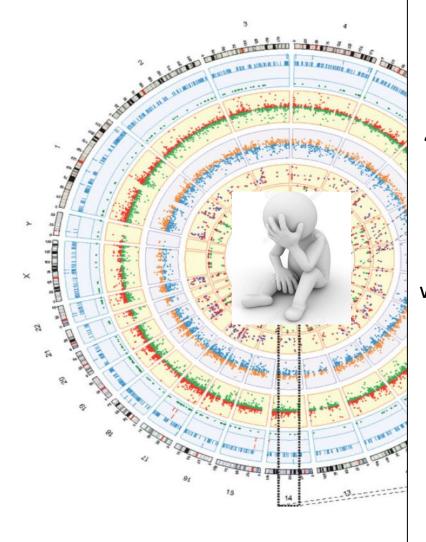
(Heath et al. 2008)

Type I error of IPCAPS



Method	Av. # clusters
IPCAPS	1
ipPCA	2
SHIPS	1
iNJclust	>150

(Kridsadakorn Chaichoompu 2017, PhD thesis – Chapter 2)



Do you think that omics profiling will be routinely used in the clinic in future?

"Not in the form we are doing it. At the moment we have a very incomplete picture of what's going on, whereas if we were able to make thousands of measurements we would have a much better feeling. We just don't know, for the clinical tests, which thousand measurements are going to be most useful. We'll need certain measurements for diabetes, others for cancer, and specific tests will probably reveal themselves useful for different diseases."

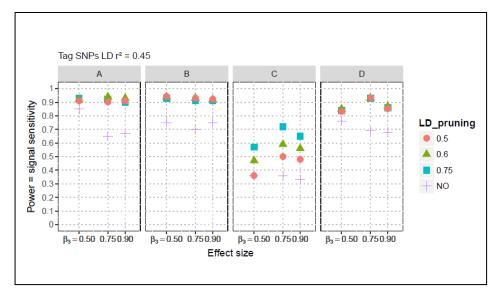
(Snyder 2014)

Redundancy - Informativity

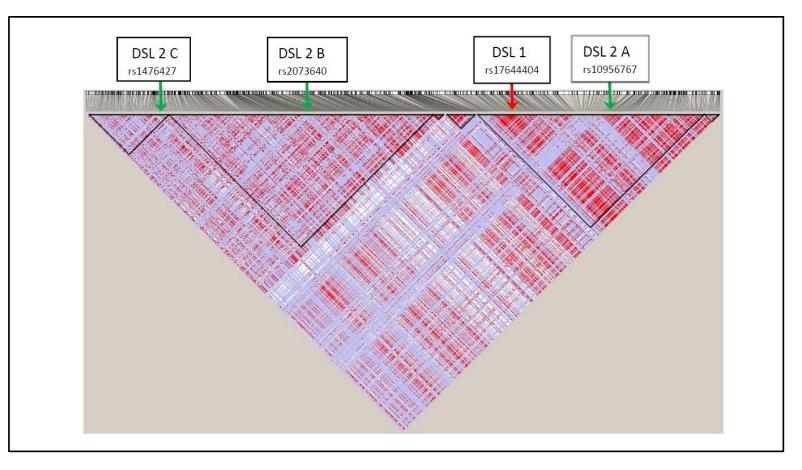
Highly correlated features

- Statistics and Linkage Disequilibrium (LD) pruning
- Results (Marc Joiret 2017 intern BIO3):
 - Exact signal sensitivity may be low when actual actors were pruned out
 - No pruning gives the lowest signal sensitivity
 - Sufficient pruning gives acceptable signal sensitivity

Lowest power when DSLs
reside at the boundaries of
LD regions (scenario C)



Highly correlated features



(Marc Joiret – 2017 BIO3 intern)

Molecular profiling; What does it mean to be "Diseased"?

OPEN CACCESS Freely available online

PLOS ONE

Molecular Reclassification of Crohn's Disease: A Cautionary Note on Population Stratification

Bärbel Maus^{1,2*}, Camille Jung^{3,4,5}, Jestinah M. Mahachie John^{1,2}, Jean-Pierre Hugot^{3,4,6}, Emmanuelle Génin^{7,8}, Kristel Van Steen^{1,2}

1 UMR843, INSERM, Paris, France, 2 Bioinformatics and Modeling, GIGA-R, University of Liège, Liège, Belgium, 3 UMR843, Institut National de la Sante et de la recherche Medicale, Paris, France, 4 Service de Gastroentérologie Pédiatrique, Hôpital Robert Debré, APHP, Paris, France, 5 CRC-CRB, CHI Creteil, Creteil, France, 6 Labex Inflamex, Université Paris Diderot, Paris, France, 7 UMR1078, Génétique, Génomique fonctionnelle et Biotechnologies, INSERM, Brest, France, 8 Centre Hospitalier Régional Universitaire de Brest, Brest, France

(Maus et al. 2013)

Heterogeneity as a target and a nuisance

What does it mean to be "Diseased"?

Highlighting nonlinear patterns in **OPEN** population genetics datasets

SUBJECT AREAS: MACHINE LEARNING POPULATION GENETICS

Gregorio Alanis-Lobato^{1,2*}, Carlo Vittorio Cannistraci^{3*}, Anders Eriksson^{1,4}, Andrea Manica⁴ & Timothy Ravasi^{1,2}

Received 30 September 2014 Accepted 8 January 2015

S 1 10 1 1

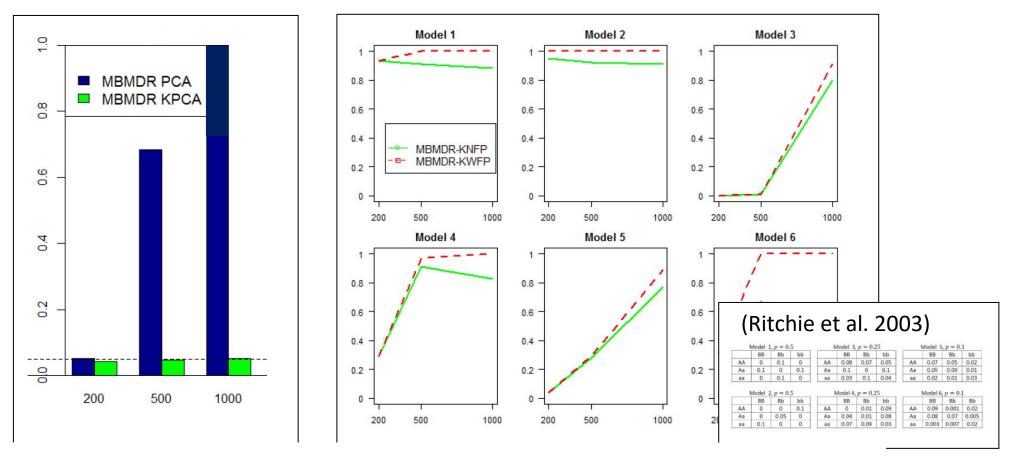
¹Integrative Systems Biology Laboratory, Biological and Environmental Sciences and Engineering Division, Computer, Electrical and Mathematical Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Ibn Al Haytham Bldg. 2, Level 4, Thuwal 23955-6900, Kingdom of Saudi Arabia, ²Division of Medical Genetics, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA, ³Biomedical Cybernetics Group, Biotechnology Center (BIOTEC), Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany, ⁴Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, England.

Non-linearity

(Alanis-Lobato et al. 2015)

(Non-linear) confounders

(Fouladi et al. 2016+; Abegaz et al. 2016+)

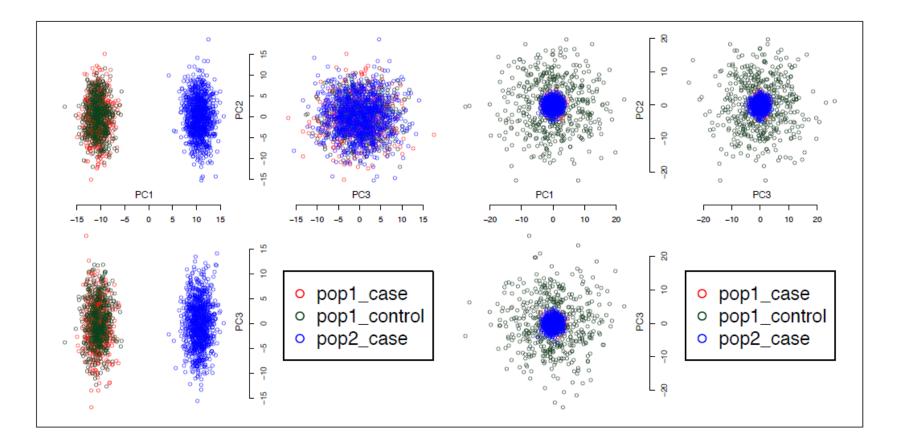


Above : 60/40 CC ratio, structural epistasis according to corresponding full penetrance Rtichie epistasis model ; Below : 50/50 (200+200)

		Model 1		. Model 2		Model 3		Model 4		Model 5		Model 6		
	Noise	MB	MDR	MB	MDR	MB	MDR	MB	MDR	MB	MDR	MB	MDR	
-	None	100	99	100	100	100	95	100	93	93	62	97	73	
B	101													

(Cattaert et al. 2011)

Linear population structure correction (Chaichoompu 2017+)



Pooled case/control PCs (left) vs Case-Projected PCs (right)

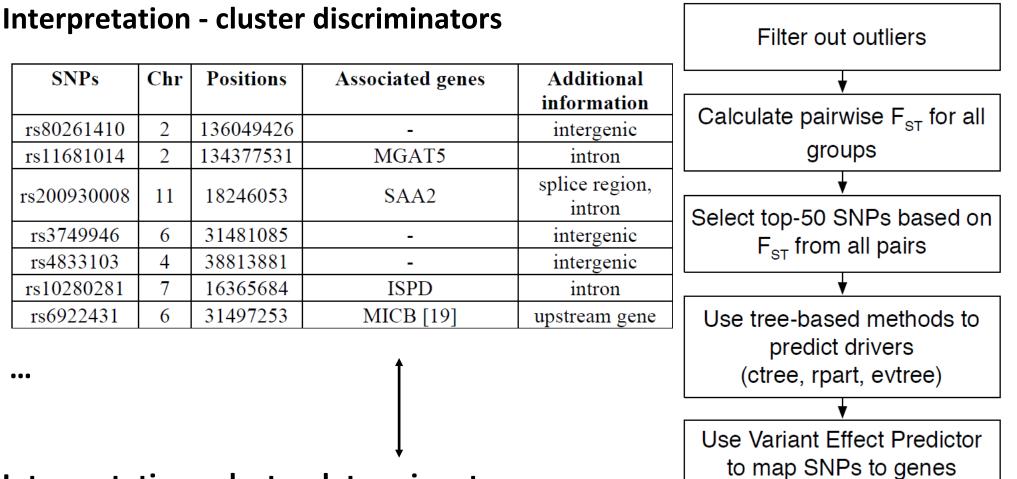
Pooled PCs but on which SNPs? (Chaichoompu 2017+)

	Uncor	rected /	Corrected with PCs from					Corrected with PCs from				cted
	SNPs	(our curated SNPs				the IIBDGC SNPs				with	
	(I) Dis. Rep.		(II)				(III)				clusters	
											obtained by IPCAPS	
L.												
Dataset											(IV)	
ata			5PCs		101	10PCs		Cs	10	PCs	Dis.	Rep.
D			Dis.	Rep.	Dis.	Rep.	Dis.	Rep.	Dis.	Rep.		
CON	5	4	3	7	1	1	3	9	3	7	4	8
CD	8	4	5	8	3	8	6	3	8	3		
UC	6	7	7	7	3	3	1	5	1	5		
IBD	5	6	1	4	1	1	1	7	1	1		
				-			-				-	

Pooled PCs but on which SNPs? (Chaichoompu 2017+)

Set	Uncorrected CON		CON		CD		UC	
	Dis.	Rep.	Dis.	Rep.	Dis.	Rep.	Dis.	Rep.
1	5	4	1	1	3	8	3	3
2	3	5	1	1	3	5	3	3
3	5	5	1	1	3	3	3	5
4	5	5	1	1	3	3	3	3
5	5	5	1	1	3	5	3	3
6	5	4	1	1	3	3	3	3
7	6	5	1	1	3	3	3	3
8	6	4	1	1	6	3	3	3
9	4	4	1	1 /	3	8	3	5
10	4	5	1	1	6	5	3	3
Average	4.8	4.6	1.0	1.0	3.6	4.6	3.0	3.4

(cluster sizes less than 20 are considered to be outlying and are removed)



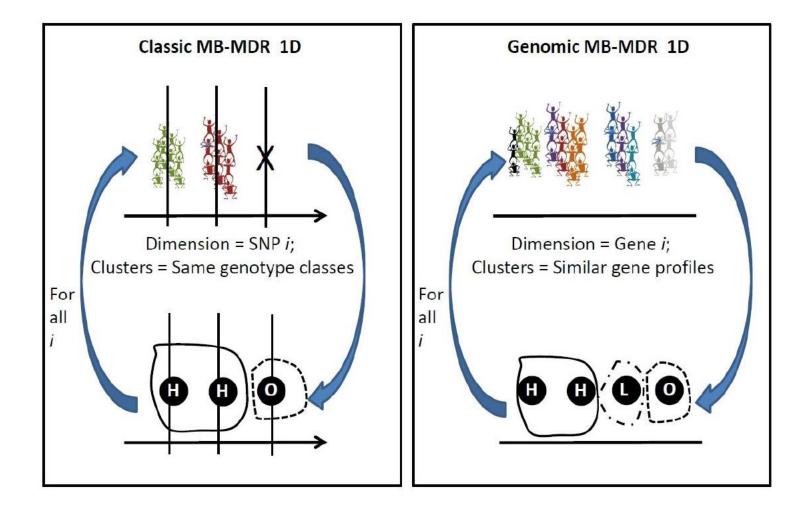
Interpretation - cluster determinants

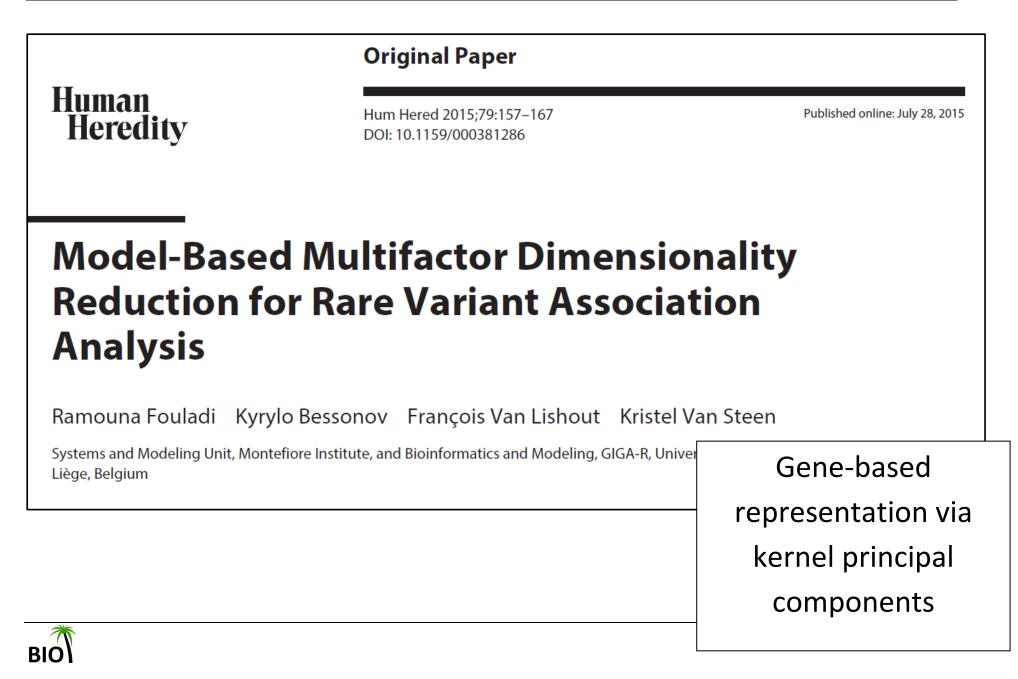
Go gene-centric - GWAS

Gene representative statistics	Related method
$T = -2\sum_{i=1}^{m} \ln P_i$	COMBASSOC (Curtis et al., 2008)
$T = -2\sum_{i=1}^{m} \ln(1 - P_i)$	Pearson's method (Pearson, 1938)
$T = \sum_{i=1}^{m} X_i$; where $X_i = Q_{\chi_1^2}(P_i)$ is the upper quintile of the χ_1^2 distribution	VEGAS (Liu et al., 2010), VEGAS2 (Mishra et al., 2015), PASCAL
$\sum_{i=1}^{n}$	(Lamparter et al., 2016), fastBAT (Bakshi et al., 2016), MAGMA (Leeuw et
evaluated at P_i	al., 2015)
$T = \max_{i \le m} X_i$, or equivalently, $T = \min_{i \le m} P_i$	VEGAS, VEGAS2, PASCAL, MAGMA
$T = \max_{i \le m} Z_i$; where $Z_i = Q_{N(0,1)}(P_i)$ is the upper quintile of the standard	
normal distribution evaluated at P_i	MAGENTA
$T = -2 \times Q_1 \left(\ln P_1, \ln P_2, \cdots, \ln P_m \right); Q_1: \text{ the first quartile}$	TopQ (Lehne et al., 2011)
$T(k) = \prod_{i=1}^{k} P_{(i)}$; $1 \le k \le N$ is a truncation point chosen a priori by user	Rank Truncated Product (Dudbridge et al., 2003)
$T = \prod_{i=1}^{N} P_i^{I(P_i \le \tau)}$; τ is a truncating parameter, typically set as $\tau=0.05$	Truncated Product (Zaykin et al., 2002)

(Yuanlong Liu 2017, PhD thesis – chapter 1)

Go gene-centric - GWAIS





Error control - conservativeness

Human Heredity **Original Paper**

Hum Hered 2015;79:157–167 DOI: 10.1159/000381286 Published online: July 28, 2015

Model-Based Multifactor Dimensionality Reduction for Rare Variant Association Analysis

Ramouna Fouladi Kyrylo Bessonov François Van Lishout Kristel Van Steen

Systems and Modeling Unit, Montefiore Institute, and Bioinformatics and Liège, Belgium

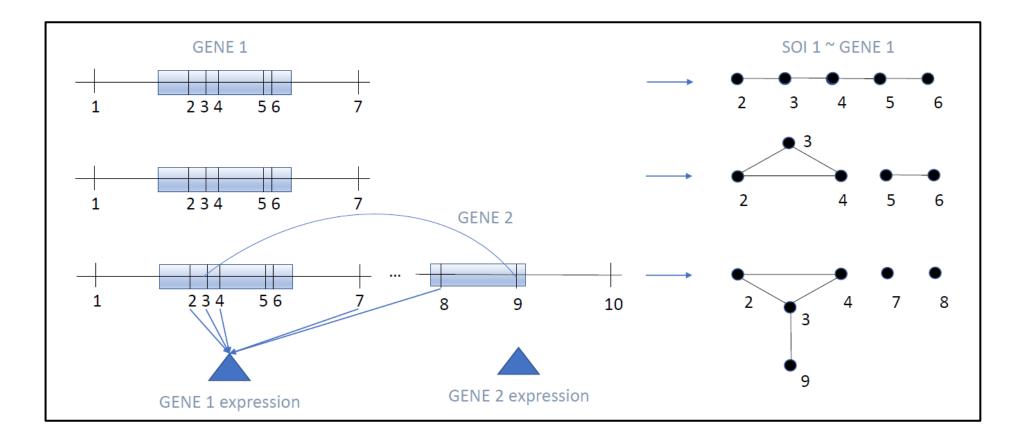
Gene-based representation via

kernel principal components

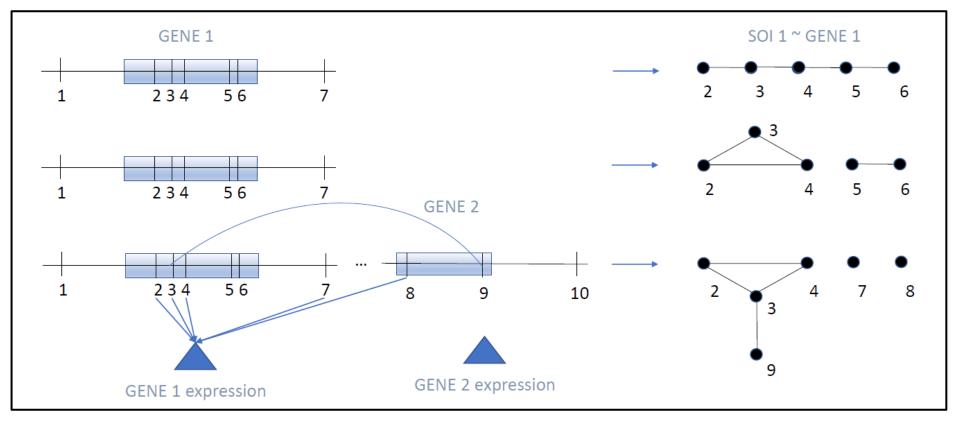
and

Diffusion kernels over graphs

Alternative gene representations – precision medicine



Alternative gene representations – precision medicine

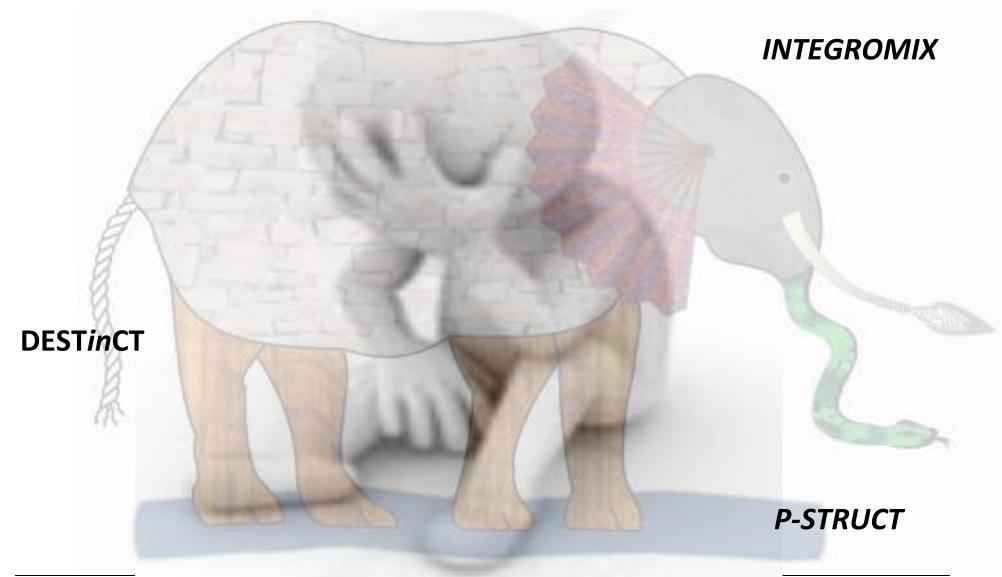


or having it trained from the data?

Take-home messages

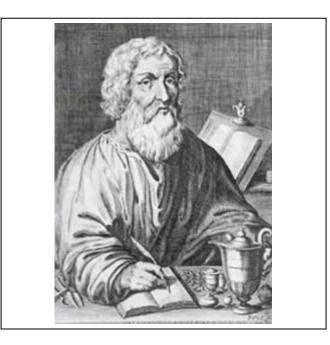
Challenges and opportunities

- Continuum range of disease presentations (dozens of IBD? what are outliers?)
- Informativity versus redundancy not all data are relevant for a particular data problem (definition of relevance)
- Multiple data sources in a system not available to all patients (missing data)
- Heterogeneity a target and a nuisance (corrections for confounding)
- Replication and validation translation to the clinic (finding "similar" independent data)



Hippocrates (460-370 BC):

"It's far more important to know what person the disease has than what disease the person has."



Acknowledgements

Supplements

Integration of inferred haplotypes in ipPCA

Information	SNPs (r ² <1) (I)	SNPs (r ² <0.8) (II)	SNPs (r ² <0.2) (III)	SNPs & LD blocks (IV)	Only LD blocks (V)
Number of SNPs (base pairs)	552K	359K	125K	97K	-
Number of LD- based haplotype blocks (blocks)	-	-	-	87K	87K
Number of clusters	4	4	4	4	4
Cluster overlap [total = 992] (individuals)	870	926	827	943	949

Reference clustering via ipPCA on Thai population

as reported by Wangkumhang et al. 2013

Performance in synthetic and real-life data

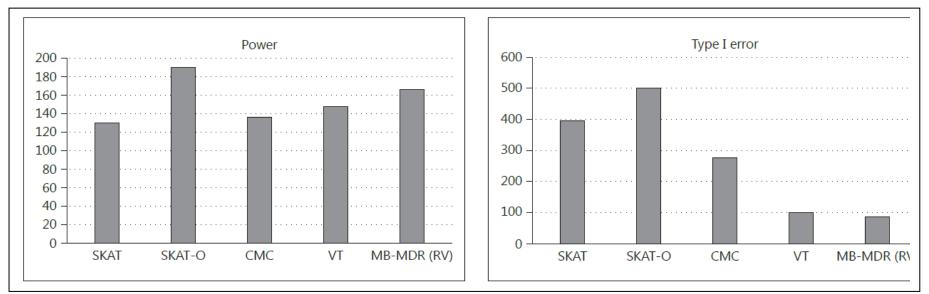
- Several methods applied to synthetic data are hampered by inflated type I error rates, including SKAT, SKAT-O and CMC (Derkach et al. 2014)
- VT seems to exhibit consistently controllable type I error rates in several scenarios (Dering et al. 2014)

	Type I	Av Power
aSum	0.12	(0.15)
C-a	0.06	0.10
CAST	0.06	0.09
CMAT	0.12	(0.16)
CMC	0.11	(0.20)
FPCA	0.05	0.07
KBAC	0.04	0.06
PWST	0.65	(0.85)
RC	0.08	(0.13)
RVT1	0.06	0.10
RVT2	0.05	0.11
SKAT	0.08	(0.11)
SKAT-O	0.10	(0.14)
VT	0.06	0.04
WSS	0.12	(0.17)

(Dering et al. 2014)

Performance in synthetic and real-life data

• Our results show similar trends, yet type I errors are smaller (restricting attention to a single chromosome -4- only)



Power : count/200 ; Type I error : count/(80*200)

