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Why unveiling interactions?
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Differences between human genomes
e Any two people plucked at
random off the street are on
average 99.9 percent the same,
DNA-wise (> 3 million positional

dlffe renCES) &7 X Base Pairs
L

Adenine Thymine

e Most genome variations are

relatively small and simple,

l

involving only a few bases—an
A substituted fora T here, a G
left out there, a short sequence

Guanine  Cytosine

Sugar phosphate
backbone

such as CG added somewhere (U.S. National Library of Medicine)
else
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Interactome differences between organisms

Human interactome (PPI) Fruit fly interactome

(Bonetta 2010) (owww.molgen.mpg.de)
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Human interactome differences and complex diseases

e Canalization is a form of stabilizing selection to explain the buffering

of phenotypes to genetic and environmental perturbations
(Waddington 1942)

- Evolution tends to keep our blood pressure and glucose levels within
healthy ranges (i.e., evolution of the “system” to a robust level),
resistant to most genetic and environmental stimuli

- Deviations from these healthy ranges are often categorized as

“disease”, such as hypertension and diabetes
(Moore and Williams 2009)

e The consequence is an underlying genetic architecture that is
comprised of networks of genes that are redundant and robust
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The “interactome”

The interactome refers to the entire
complement of interactions between DNA,
RNA, proteins and metabolites within a cell.

These interactions are influenced
by genetic alterations
and environmental stimuli.
As a consequence,
the interactome should be examined or
considered in particular contexts.
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How to identify interactions?
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DNA-DNA interactions: biological viewpoint

e Two or more DNA variations may interact either directly to change
transcription or translation levels, or indirectly by way of their
protein product (to alter disease risk separate from their
independent effects)

Phenotype

Biological
epistasis

L ] \\\ s
Proteins O Ve

Genes -I—I. —I— — —

Individual (Moore 2005)

Genetical
epistasis




Kristel Van Steen Complex Genetics Seminars 08 June 2017, Leuven

Common genetic variations

Single Nucleotide |Frequency in
Polymorphisms |general

= (SNPs) population
T \@ 95%
S A 5% > 1%

Guanine  Cytosine

Sugar phosphate
backbone
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Comparison between gene-gene and gene—environment issues

e Conceptually many similar issues in terms of definition and
mathematical modelling.
e |n practice, some clear differences emerge.
e For G x E:
- We generally have to decide which environments to measure /
test; these are typically only a few (often < 100)
- Measurement error (lifestyle) and unknown confounding
- Risk estimation, important for screening strategies and public
health interventions

(Heather Cordell -CSCDA2016)
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Comparison between gene-gene and gene—environment issues

e ForGxG
Assuming we have GWAS data, we have already measured the

genetic factors of interest

Adequate error rates (except for newer sequencing technologies)

(Hundred) thousands of variants

Higher-order interactions may reflect the complex biological
wiring of complex diseases (whereas G x E often restricts
attention to pairwise interactions)

(Heather Cordell -CSCDA2016)
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(Logistic) Regression

e Most general saturated (9 parameter) genotype model allows all 9
penetrances to take different values

e Log odds is modelled in terms of a baseline effect (8o), main effects
of locus G (81, 852), main effects of locus H (641, B42), 4 interaction
terms

e This corresponds in statistical analysis packages to encoding X1, X2
(0,1,2) as a “factor”

Locus H
LocusG |2 1 0
2 Bo+Be2 +PH2+[22 Bo+Bs2 B +521 Bo+Ls2
1 Bo+Bs1+PrH2+[12 Bo+Bs1+fm+L11 Bo+Ls1
0 Bot P2 Lot B Lo
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(Logistic) Regression
e Alternatively, we can assume additive effects of each allele at each
locus, leading to a single interaction term (instead of 4 before!)

Locus H
LocusG |2 1 0)
2 Lo+ 2Bs+ 2Bu+ A4S fo+ 2Bs+ P+ 20 Bo+ 206
1 Po+ B+ 2Pn+ 2f Po+ B+ Pr+ Po+ Be
0 Po+ 2k Po+ L Lo

e This corresponds in statistical analysis packages to the model

p
log (m) = o+ BeX1 + BuXz + [X1X
and dosage encoding for X1 and X2.
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Although there is growing appreciation that attempting to map genetic
interactions in humans may be a fruitful endeavor, there is no
consensus as to the best strategy for their detection, particularly in the
case of genome-wide association where the number of potential

comparisons is enormous.
(Evans et al. 2006)
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Model-Based
Multifactor Dimensionality Reduction
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Model-Based Multifactor Dimensionality Reduction (MB-MDR)

For all
i, J

Dimension 2 (e.g., SNP j)

Dimension 2

Dimension 1

Step 1: Data Organization

Step 2: Labeling and
Dimensionality Reduction;

test value Wmax (i,j)

Step 3:

uoilda|as |9POA
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MB-MDR and MDR are conceptually different (8103 team — 2010+)

e Computation time is invested in

- optimal association tests to label multi-locus genotype
combinations and
- in statistically valid permutation-based methods to assess joint
statistical significance of multiple SNP pairs
e Labels are related to substantially improve/worsen trait values (H/L).
In case there is no such evidence, the multi-locus label is not forced
to be H or L (but will be O).
e In the presence of main effects, MB in MB-MDR ensures false
positive control at 5%
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Performance
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
False Positives (%)

MB MDR |MB MDR |MB MDR [MB MDR |MB MDR MB MDR
6 9 4 5 6 17 5 13 5 21 5 23
Power (%)

MB MDR |MB MDR |MB MDR |MB MDR |MB MDR MB MDR
100 99 100 | 100 | 100 95 100 93 93 62 97 73

MB-MDR (MB): p.=0.1, T=H vs L test; MDR: default options, screening over 1-5 order models

Model 1 p = 05 Model 3, p = 0.2 Model 5, p = 0.1
B8 Bb bb 88 Bb bb BB 8o (4] 4
AA 0 ) 0 AA 0.08 17 0.05 AA 007 005 002
Aa 01 U 0.1 A3 0.1 . 0.1 A3 005 AR 0.01
3a | O 01 | O aa 003 0.1 | 0.04 a3 002 0.01 0.03
Maodel 2, p =05 Node p=1 Maodel 6, p = 0.1
Ba Bb bb 8B Bb bb B8 Bb B
AA 0 0 0.1 AA 0 oM 0.09 AA 008 0.001 0.02
(Cattaert et al. 2011) " Aa | 0 (005|] 0 | | A | 004 1 | 0.08 Aa | 008 | 0.07 | 0.005 |
aa 01 0 0 aa 007 009 003 a2 0.003  0.007 0.02
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Challenges
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DNA-DNA interactions: BIOLOGICAL VS STATISTICAL VIEWPOINT

e The original definition (driven by biology) refers to a variant or allele
at one locus preventing the variant at another locus from manifesting
its effect (william Bateson 1861-1926).

e A later definition of epistasis (driven by statistics) is expressed in

terms of deviations from a model of additive multiple effects (Ronald
Fisher 1890-1962).

Phenotype A\* o ~* 4 \* A\*
: Som Pm Stm Sim
. e —_———— A —— 4 ———
Proteins Oj/

Biological
epistasis

T Y
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ATT ATT AN 4|58
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e +—t - — i e e e e ho

©.L
%g .A * .‘\‘* /7‘ ‘»7//1? .“\*
c.® > | 8 | g g
Genes + — — 8% 4—0-\—— .,_4,..\;__\- _.._\.__\_ ._.._\’__
Individual Population

(Moore 2005)
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Lack of obvious correspondence

e From the literature:

Siemiatycki and Thomas (1981) Int J Epidemiol 10:383-387

Moore and Williams (2005) BioEssays 27:637—646
Phillips (2008) Nat Rev Genet 9:855-867

Clayton DG (2009) PLoS Genet 5(7): e1000540
Wang, Elston and Zhu (2010) Hum Hered 70:269-277

Van Steen et al (2012) Brief Bioinform. 13(1):1-19
Aschard et al (2012) Hum Genet 131(10):1591-1613
Gusareva and Van Steen (2014) Hum Genet 133(11):1343-58

e Statistical interactions DO imply joint involvement
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REMEDY: Towards a consensus GWAIs protocol

0. Data collecting and genotyping
I
1. Samples and markers quality control

Exhaustive epistasis screening (a) ‘ Selective epistasis screening (b)
& £ z l =
Marker selection based on | | Marker selection based Selection of markers basing on their
2a ; 2 2b
LD pruning (r* threshold 0.75) biochemical networks and | | on available knowledge function and their location in the genome
l complex biological about marker- or gene- (e.g., non-synonymous variants of coding

Adjustment for confounders architectures based association signals | | exons) genome-wide or in candidates genes
(optional): family structure and

population stratification W

| LD pruning (r? threshold 0.75)
Exhaustive genome-wide screening for I

pair-wise SNP interactions

Adjustment for confounders (optional):

family structure and population stratification
I

(Genome-wide) screening for pair-wise SNP

interactions on reduced/prioritized data set

L

|, 3. Replication and validation in independent data,
meta-analysis

L
4. Biological and functional validation

(Gusareva et al. 2014)
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Confounding: SHARED GENETIC ANCESTRY

AA, BB |AA, Bb|AA bb| Yo b o us o s

Aa, BB [Aa, Bb A3, bb { ’

aa, BB |aa, Bb |Aa, bb )b »

Multilocus Genotype Exposure Disease Outcome
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P-STRUCT

Dimension 2 (e.g., SNP )

Dimension 1 (e.g., SNP /)

/
MB-MDR for l/ :
structured // i
populations /. -
\ el e e o
- 1 1 BB
e Continuous axes of \\ sssssss g
confounding '
_________ /

e IPCAPS
e Hypothesis-specific
genomic control

(Chaichoompu et al. 2016+ ;
Abegaz et al., 2016+)
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Remedy: Kernels (Fouladi et al. 2016+ ; Abegaz et al. 2016+)
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=1 0.4 V4 0.4
Model 1, p =05 Model 3, p = 0.25 Model 5, p = 0.
I / 88 Bb bb B8
I A | 0 31 | 0 0.07
= 0.2 P 0.2 Aa [ 01 | 0 | o1 0.05
/ aa 0 4] oo
s ode tode
. 0 _ 0 . M«da\ - = =
T T T T T 2A 0 01 AA | 009
200 500 1000 200 500 1000 2 CRE) M 008

Above : 60/40 CC ratio, structural epistasis according to corresponding full penetrance Rtichie epistasis model ; Below : 50/50 (200+200)

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
Noise| MB | MDR | MB | MDR | MB | MDR | MB | MDR | MB | MDR | MB | MDR
None | 100 | 99 100 | 100 | 100 | 95 100 | 93 93 62 97 73

(Cattaert et al. 2011)
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Testing hypothesis: GLOBAL VERSUS INTERACTION SPECIFIC

e [VIDR (Ritchie et al. 2001+)

MDR alike tools (Gola et al. 2015)

58 60 62

Pred
56

48

first order

second

order |

third order

1

&)
2
?{fj

%
“,
ch'j.

/}/;\
iy

EMDR (*05)

MDR-PDT (‘06)

pMDR (*06)

OR-MDR (*07)

LM-MDR (*07)

OMDR (*10)

Fig. 1. Average Balanced Training accuracy (Acc) versus Average Balanced
Predictive accuracy (Pred) for the 100 models with higher balanced training
accuracy for the whole sample. First, second, third and forth order
interactions are considered.

SDR (‘10)

RMDR (*11)

MDR-SP (*11)

Gene-MDR (*12)

MDR

2014
L

-

GMDR (*07)

MB-MDR (“08)

PWDR (‘10) (@,
| \
Surv-MDR (*11)

Filter-based MDR (*12)
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REMEDY: Encoding lower order effects — “MB” in MB-MDR

* ch1
* ch2
® ch3
ch4
® ch§
® ché
ch7
ch8
® ch9
* ch10
® ch11
® ch12
® ch13
* ch14
® ch15
* ch16
® ch17
® ch18
ch19
® ch20
® ch21
® ch22

Interaction - - — —_ —
P-Value 0.5 0.1 0.05 0.01 0.005 0.001

protocol #1 (226) . protocol #2 (2,165) . protocol #3 (129) . protocol #4 (84) MOGPLOT:

Manhattan plot (main effects) over
. protocol #5 (77) . protocol #6 (47) D protocol #7 (84,975)- protocol #8 (57,032)

GRAIL plot (interactions)

. protocol #9 (6,589) . protocol #10 (2,340)

(extended from Bessonov et al. 2016) (Van Lishout et al. 2016)
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Stability of results: REPLICATION

exhaustive of markers
marker € 376;813 viaBiofilter 2.0
screening ( . ) {Implication Idx = 3)

(44,018)

Yes

Yes

LD pruning at
ri>0.75

LD pruning at
r’=0.75

. #8 additive |( #6& co-dominant = T
- B AR #7 additive #5 co-dominant
s o Tl

y

(Bessonov et al. 2016)
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What should GWAI replication mean?

Even for so-called replicated genetic interactions it is unclear to what
extent a false positive has been replicated or to what extent main
effects are responsible for the epistasis signal.

(Ritchie and Van Steen, 2017 — under review)
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REMEDY: Gene-based omics integration - INTEGROMIX

P -
- /
- MB-MDR in ;=
. . . ;5
@ integrative P
- context / =
0 \ o
z Y-
£ V€
a > \ B

Dimension 1 (e.g., SNP i) o Component-based \\

e Kernel-based
e Network-based

(Fouladi et al. 2015 ; 2016+)
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Practical feasibility: SPEED
Multiple testing correction via “MAXT” in MBMDR-3.0.3:

Sequential version Sequential version Parallel workflow Parallel workflow
SNPs Binary trait Continuous trait Binary trait Continuous trait
102 45 sec 1 min 35 sec < 1sec <1sec
103 1 hour 16 min 2 hours 39 min 38 sec 1 min 17 sec
104 5 days 13 hours 11 davs 19 hours 1 hour 3 min 2 hours 14 min
10° ~ 1.5 year ~ 3 years 4 days 9 hours ~ 9 days

The parallel workflow was tested on a cluster composed of 10 blades, containing each four
Quad-Core AMD Opteron(tm) Processor 2352 2.1 GHz. The sequential executions were performed

on a single core of this cluster. The results prefixed by the symbol “a" are extrapolated.

(Van Lishout et al. 2013)
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REMEDY: approximation
Multiple testing correction via “gammaMAXT” in MBMDR-4.2.2:

Sequential version Parallel workflow Sequential version Parallel workflow
SNPs Binary trait Binary trait Continuous trait  Continuous trait
103 13 min 33 sec 20 sec 13 min 18 sec 18 sec
104 52 min 15 sec 1 min 05 sec 56 min 14 sec 53 sec
105 64 hours 35 min 22 min 15 sec 70 hours 03 min 20 min 28 sec
106 ~ 270 days 25 hours 12 min ~ 290 days 24 hours 06 min

The parallel workflow was tested on a 256-core computer cluster (Intel L5420 2.5 GHz 1333 MHz
FSB). The sequential executions were performed on a single core of this cluster. The results prefixed

by the symbol “a" are extrapolated.

(Van Lishout et al. 2015)
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Computational challenge ... not for long!

e Graphics processing units (GPUs),

as alternative powerful and cost-effective parallel processing units
(Putz et al. 2013)

e Cloud computing infrastructures,
although these do not offer unlimited possibilities (wang et al. 2011)
e Hardware oriented solutions,
such as those based on field-programmable gate array (FPGA)
architecture (Gundlach et al. 2016)
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Take-Home Messages
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Learning from data

Calle, M. L., Urrea, V., Vellalta, G., Malats, N. & Van Steen, K. (2008a) Model-Based
Multifactor Dimensionality Reduction for detecting interactions in high-dimensional genomic
data. Technical Report No. 24, Department of Systems Biology, Universitat de Vic,
http://www.recercat.net/handle/2072/5001 [technical report, first mentioning MB-MDR]
Calle M, Urrea V, Malats N, Van Steen K. (2008) Improving strategies for detecting genetic
patterns of disease susceptibility in association studies — Statistics in Medicine 27 (30): 6532-
6546 [MB-MDR with Wald tests and MAF dependent empirical test distributions]

Calle ML, Urrea V, Van Steen K (2010) mbmdr: an R package for exploring gene-gene
interactions associated with binary or quantitative traits. Bioinformatics Applications Note
26 (17): 2198-2199 [first MB-MDR software tool, in R]

Cattaert T, Urrea V, Naj AC, De Lobel L, De Wit V, Fu M, Mahachie John JM, Shen H, Calle ML,
Ritchie MD, Edwards T, Van Steen K. (2010) FAM-MDR: a flexible family-based multifactor
dimensionality reduction technique to detect epistasis using related individuals, PLoS One 5
(4). [first implementation of MB-MDR in C++, with improved features on multiple testing
correction and improved association tests + recommendations on handling family-based
designs]
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Cattaert T, Calle ML, Dudek SM, Mahachie John JM, Van Lishout F, Urrea V, Ritchie MD, Van
Steen K (2010) Model-Based Multifactor Dimensionality Reduction for detecting epistasis in
case-control data in the presence of noise (invited paper). Ann Hum Genet. 2011
Jan;75(1):78-89 [detailed study of C++ MB-MDR performance with binary traits]
Mahachie John JM, Cattaert T, De Lobel L, Van Lishout F, Empain A, Van Steen K (2011)
Comparison of genetic association strategies in the presence of rare alleles. BMC
Proceedings, 5(Suppl 9):S32 [first explorations on C++ MB-MDR applied to rare variants]
Mahachie John JM, Cattaert T, Van Lishout F, Van Steen K (2011) Model-Based Multifactor
Dimensionality Reduction to detect epistasis for quantitative traits in the presence of error-
free and noisy data. European Journal of Human Genetics 19, 696-703. [detailed study of
C++ MB-MDR performance with quantitative traits]

Van Steen K (2011) Travelling the world of gene-gene interactions (invited paper). Brief
Bioinform 2012, Jan; 13(1):1-19. [positioning of MB-MDR in general epistasis context]
Mahachie John JM, Cattaert T, Van Lishout F, Gusareva ES, Van Steen K (2012) Lower-
Order Effects Adjustment in Quantitative Traits Model-Based Multifactor Dimensionality
Reduction. PLoS ONE 7(1): e29594. doi:10.1371/journal.pone.0029594 [recommendations
on lower-order effects adjustments]
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Mahachie John JM, Van Lishout F, Gusareva ES, Van Steen K (2013) A Robustness Study of
Parametric and Non-parametric Tests in Model-Based Multifactor Dimensionality Reduction
for Epistasis Detection. BioData Min. 2013 Apr 25;6(1):9[recommendations on QT analysis]
Van Lishout F, Mahachie John JM, Gusareva ES, Urrea V, Cleynen |, Theatre E, Charloteaux B,
Calle ML, Wehenkel L, Van Steen K (2012) An efficient algorithm to perform multiple testing
in epistasis screening. BMC Bioinformatics. 2013 Apr 24;14:138 [C++ MB-MDR made faster!]
Gusareva ES, Van Steen K (2014) Practical aspects of genome-wide association interaction
analysis. Hum Genet 133(11):1343-58 [GWAI analysis protocol]

Bessonov K, Gusareva ES, Van Steen K (2015) A cautionary note on the impact of protocol
changes for Genome-Wide Association SNP x SNP Interaction studies: an example on
ankylosing spondylitis. Hum Genet - accepted [non-robustness of GWAI analysis protocols]
Van Lishout F, Gadaleta F, Moore JH, Wehenkel L, Van Steen K (2015) gammaMAXT: a fast
multiple-testing correction algorithm — Nov 20;8:36. doi: 10.1186/s13040-015-0069-x.
eCollection 2015. [C++ MB-MDR made SUPER-fast]

Fouladi R, Bessonov K, Van Lishout F, Van Steen K (2015) Model-Based Multifactor
Dimensionality Reduction for Rare Variant Association Analysis. Hum Hered 79(3-4):157-67
[aggregating based on similarity measures to deal with DNA-seq data]
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The only source of knowledge is experience — A. Einstein
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Genome-wide association interaction analysis for Alzheimer's
disease
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The only source of knowledge is experience — A. Einstein
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France_AD cohort (2259 cases / 6017 controls)

rs6455128 rs7989332

Position : 6g11.1, 62 755 705 p=0.006 Position : 13q12.11, 19 948 575
Gene: KHDRBSZ2, intron - + Gene: CRYL1, intron
MAF:0.181 MAF: 0.286

Main effect p-value: 0.228 Main effect p-value: 0.660
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REMEMBER
“'.
TURN OFF

LIOHMTS

-

Sex-specific
interactions
for AD

ANALYTICAL BLOCK

Discovery cohort EADI1: 3150 males (788 cases), 5110 females (1455 cases)
582,982 SNPs

1. Samples and markers quality control: HWE test in controls (P > 1*10%), call
rate > 98%, marker allele frequency (MAF > 0.05)

|

474,020 SNPs

[ 2. LD pruning: Window size 50 bp, window increment 1 bp, LD r? threshold 0.75 ]

312,064 SNPs

-
3. Exhaustive genome-wide screening for pair-wise SNP interactions in males
and females: BOOST, MB-MDR and regression modelingin R

r

Replication cohorts: GERAD1 3929 males (988 cases), RS 2376 males (264 cases),
ADGC 6149 males (2584 cases)
68 SNPs - WW(C1, 98 SNPs - TLN2

[4. “Gene-based” replication analysis and meta-analysis ]
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r5. Biological validation of statistical epistasis (series of functional analysis):
Transcriptome analysis to assess co-expression of WW(C1 and TLNZ2 in brain
tissues of AD and non-AD subjects
Experiments in model organisms (i.e., Tau toxicity in the Drosophila eye) to test
whether WW(C1 and TLN2 can modulate AD physiopathology
Immunofluorescence and confocal microscopy to confirm presence of WWC1
and TLN2 in human brain cells and to assess their co-localization in common
cellular compartments
Immunoprecipitation analysis to confirm physical interaction between WWC(C1
and TLN2 in a real biological system
Protein docking and molecular dynamics analysis to get more inside into

\mechanisms of the physical interaction between WWC1 and TLN2

(Gusareva et al. 2017 — submitted)
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