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Modeling the genetics and
metabolism of heart failure

A multi-omics story in two parts
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Outline

1. Genetic control of gene transcription in
heart failure

2.  Modeling the metabolism of the failing
heart
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1. Genetic control of gene transcription in
heart failure
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What is heart failure?

Less blood
fills the ventricles

Less blood pumped
out of ventricles

| Weakened L
heart muscle heart muscle

Systolic Dysfunction Normal Diastolic Dysfunction

Heart failure <> complications

Structural remodeling < Heart Failure Electrical remodeling
ﬁ % Arrhythmias — .

Sudden cardiac death
Metabolic impairments

Systolic Dysfunction Normal

4 ™ - Complications are patient specific
- What explains this difference?

! 1
_____

Genetics?
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Genome-wide association studies

* GWAS have identified many genetic variants

associated with complex traits and diseases
— Example below: susceptibility to arrhythmias after Ml
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Genetic control of gene transcription

Transcription start site (TSS)
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Genetic control of gene transcription

Variant affecting
protein product
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enhancer promoter intron  exon

Genetic control of gene transcription

Variant affecting
regulatory region
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Genetic control of gene transcription

Variant affecting
regulatory region
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enhancer promoter intron  exon

-

11

Genetic variant modulating expression levels

Underlying mechanism Measurement

Variant X

distalpromater/
.......

mmmmmm

mRNA abundance

cc cT

GeneY

Genotype of individual
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Genetic variant modulating expression levels

Expression quantitative trait locus
(eQTL)

Variant X

in silico association between genotype and

'''''''' gene expression level within a specific population

> 5 ' __"".:
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Gene Y & o .
w cc cr ™

Genotype of variant X

* Method: Linear regression (GenABEL, MATRIXEQTL R’ )
* cis (= local) effects focused (sample size)
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What are cis & trans eQTLs

Genel

* trans eQTL: SNP X with Gene Y
— SNP X not within 1 megabase of Gene Y
— SNP X and Gene Y on different chromosomes

* Distant interactions

A. SNP X could be in a distant regulatory SNP X
element (interactions between
chromosomes)

B. SNP X linked to a transcription factor

* Expect small effect sizes > power issues in
all but the largest studies

14
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Genetic control of gene transcription

SNP in intronic
region

Yoo S

enhancer promoter intron  exon

-
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Genetic variants regulate exon usage
Variant in splice site
. 2
l splicing s
alternativel
N O N i
mRNASs
l translation l
* t protein
‘ ’ isoforms
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Genetic variants regulate exon usage

Measurement

Underlying mechanism

Genetic variant in intronic splice site
. = Isoform 1

‘ﬁz [ = 1soform 2

l /soform 2 [
’ t _Genotype A Genotype B

Abundance
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Genetic variants regulate exon usage

B - 1soform 1

iﬁ [ =1soform 2
-

Isoform 1 ‘ l [
' ﬁ Genotype A Genotype B

Splicing quantitative trait locus
(sQTL)
in silico association between genotype and
alternative splicing within a specific population

lsaform 2

Abundance

18



8-12-2022

Research: genetics of transcription and splicing in DCM

Samples: Left ventricle
* 108 non-diseased donor hearts
e 97 dilated cardiomyopathy (DCM) hearts

Data:
* RNA-seq: 16,219 unique mRNA levels
* Genotyping: 2 million common variants (SNPs)

Systolic Dysfunction Normal

19

Research: genetics of transcription and splicing in DCM

Samples: Left ventricle
* 108 non-diseased donor hearts
* 97 dilated cardiomyopathy (DCM) hearts

Data:
* RNA-seq: 16,219 uniqgue mRNA levels
* Genotyping: 2 million common variants (SNPs)

Research questions: Systolic Dysfunction Normal
*  Which variants modulate gene expression? (eQTL)

*  Which variants modulate splicing? (sQTL)

* Do these differ between DCM and controls?

20
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Research: regulatory genomics of dilated cardiomyopathy

-

indance

Abu

Genotype A Genot

mRNA abundance

Genotvpe of individual

Conclusions:
Splicing and transcription is different in DCM
- Some of these differences are in-born

Transcriptomics
Genomics

21
Usage example: eQTLs for known GWAS loci
Locus 16 / PRKCA PRKCA
p-value: 1.16e-05
12 a0
§ 9 rs9912468 I o g: - %
% § ‘]I;
§ " 30 8 9.6-
0 o g 9.4-
: i
cc cG GG
rs9912468
rs9912468: associated with QRS prolongation (effect allele = G)
Protein kinase C alpha: regulator of cardiac contractility and Ca?*
handling in myocytes
22

11



8-12-2022

SNPs

Cases

Individuals

ontrols

sQTLs

eQTLs

GWA

Training set
(90%: 2726)

Test set
(10%: 303)

Usage example: genetic risk prediction

Cases

Controls

Covariates:

sQTLs eQTLs GWA sex + age

| m| m| @
[ Lasso logistic regression ]
A v

i

sQTL eQTL GWA
risk model risk model risk model

[1

(

[ [
Prediction ]

v

U U

Cases

Controls
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Better
prediction

Random
prediction

0.9-

0.8 -

AUC

0.7 -

0.6 -

0.5-

All -

Test

With GWA SNP

eQTL -

sQTL -

Only GWA -

Usage example: genetic risk prediction

Combining

1. Co-variates (age, sex)

2. Genotype of DCM GWA SNP
(rs9262636)

3. Genotypes of SNPs modulating
expression (eQTLs)

4. Genotypes of SNPs modulating
splicing (sQTLs)

All variants taken together predict
DCM status better

DCM: unfortunate combination of
small complex genetic effects

24
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Outline

2.  Modeling the metabolism of the failing
heart

25
Recap: what is heart failure?
Less blood pumped Less blood
out of ventricles fills the ventricles
Weakened L
heart muscle heart muscle
Systolic Dysfunction Normal Diastolic Dysfunction
26
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Loss of metabolic flexibility in DCM

Healthy heart muscle cell

‘ Oxidative TA
{ pathways

Ketones

Amino acids

Outside cell Inside cell Mitochondrion

Healthy heart

27

Restoring metabolic flexibility?

* Clinical trials aimed at restoring
metabolic flexibility have so far
led to mixed results

* Patient-to-patient differences are
currently poorly understood

- Targeted metabolic therapies
have therefore not seen
clinical implementation yet

28
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Diagnosing loss of metabolic flexibility

* To diagnose, we need to "

determine metabolic fluxes <>
— Fluxomics: reaction fluxes of all 1
known metabolic reactions 1 Vil

) e Oxidative
- :;Ientlfy WhIC.h pathways differ RN i,
etween patients Gmm(\ e
<
Fatty acids l;fF\L’I Fatty adds'
* |deally: in vivo tracer studies to 1
measure metabolic fluxes: N
. Amino acids H—
— Problem 1: expensive and low T
sensitivity o ,
utsi \ Insi /7 Mi ndrion Accumulation
_ Problem 2: some impairments Outside cell “Ins de cell /, Mitochondrio =
only appear under stress \ e
\ S
v ¥

How to quantify? How to place in context?
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Genome-scale metabolic model (GEM)

e Contains all know it i
metabolic reactions Hr e
including: e LT = | |

— Transport reactions gy Sl | = i ]
— Enzymatic reactions % = ;

* Derived from existing ST
knowledge: ==
— Pathway databases
— Literature

* Creating and curating such
a network is a lot of work:

— Only a few dedicated v st || AP .
groups world-wide o i = IR : K- )

30
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Genome-scale metabolic model (GEM)

Enzymes
(catalysing a reaction)

Gene-Protein-Reaction rules

Mass- and charge-balance
of reactions

Compartmentalisation

31
Genome-scale metabolic model (GEM)
Reaction: HEX1: hexokinase
D-glucose
Metabolites ATP D-glucose proton ADP 6-ph|osphate
Reactions atp[c] + glc_D[c] — h[c] + adp[c] + géplc]
Stoichiometry _]!_ _]!_ ]i i i
Reactions qi’? & &
&
12 eSS
Al
8 Bl 1 -1
Stoichiometric matrixS: 5 5|'~
g .
m
32
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Genome-scale metabolic model (GEM)

Reaction: HEX1: hexokinase
D-glucose

Metabolites ATP D-glycose proton ADP 6-ph|osphate
Reactions atpl[c] + gIc_ID[c] — h[lc] + adp[c] + g6p[c]
Stoichiometry -i -i 1 ]_ 1
¢ = cytoplasm e = extracellular space
g = Golgi apparatus | = lysosome
m = mitochondrion n = nucleus
r = endoplasmic reticulum X = peroxisome

33
Genome-scale metabolic model (GEM)
Reaction: HEX1: hexokinase
D-glucose
Metabolites ATP D-glucose proton ADP 6-ph|osphate
Reactions atp[c] + glc_D[c] — h[c] + adp[c] + géplc]
Stoichiometry _i _i 1 1 1
| )
Flux of reaction
* has upper and lower bound
* often expressed in mmol/gDW/s
* gDW =gram dry weight
34

17



8-12-2022

Genome-scale metabolic model (GEM)

Reaction: HEX1: hexokinase

D-glucose
Metabolites ATP D-glucose proton ADP 6-ph|osphate
Reactions atpl[c] + gIc_ID[c] — h[lc] + adp[c] + g6p[c]
Stoichiometry -i -j_ 1 1 1
l Positive flux >
Flux of reaction

* has upper and lower bound
* often expressed in mmol/gDW/s
* gDW =gram dry weight

35
Genome-scale metabolic model (GEM)
Reaction: HEX1: hexokinase
D-glucose
Metabolites ATP D-glucose proton ADP 6-phlosphate
Reactions atp[c] + glc_D[c] — h[c] + adp[c] + géplc]
Stoichiometry _i _i 1 1 1
< Negative flux
Flux of reaction
* has upper and lower bound
* often expressed in mmol/gDW/s
* gDW =gram dry weight
36
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Metabolites
Reactions

Stoichiometry

Directionality of reactions
(thermodynamic considerations)

Enzymes
(catalysing a reaction)

Gene-Protein-Reaction rules

Mass- and charge-balance
of reactions

Compartmentalisation

Genome-scale metabolic model (GEM)

Reaction: HEX1: hexokinase
D-glucose

ATP D-glucose  proton ADP 6-phosphate

atpi[c] + glc !D[c] — h[:c] + adé[c] + g6p[c]
1

1 1

[

-1 -
- vs. &, irreversible vs. reversible
Hexokinase 1, 2, 3, or 4 (glucokinase) catalyze the reaction

(3098) or (3099) or (3101) or (2645)...

Gene number for hexokinase 1

glc_D[e] <=> glc_DI[c]

Glucose transport from extracellular space to cytosol

37

The aim of a model is context specific

* GEMs are often organism-specific, but not
tissue/cell type specific
» Tissue-specific models include only reactions
that are active in the respective tissue
* Two “static” omics types can inform this
modeling process:
— Transcriptomics
— Metabolomics

* Transcriptomics: reaction is inactive if
catalyzing enzyme is not expressed

* Metabolomics: reaction is inactive if the
product is not present

W
,«}\\

Hepaiocytes

Myocytes
yooytes

38
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product is not present

e Metabolomics: reaction is inactive if the

The aim of a model is context specific

Hepatocytes

Myocytes

39

« NMR is an abbreviation for
Nuclear Magnetic
Resonance:

— allows the molecular structure
of a sample to be analyzed by
observing and measuring the
interaction of nuclear spins
when placed in a powerful
magnetic field

NMR metabolomics

[ Computer

Instrument control and
data processing

Spectrometer

Transmits and receives the
radio-frequency waves used to
make the NMR measurements. |

Super-conducting magnet

Generates a powerful magnetic
field that is tens of thousands
of times stronger than the
earth’s magnetic field.

Samples are placed within this
magnetic field and exposed to

radio waves.

40
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https://www.jeol.co.jp/en/products/nmr/basics.html
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NMR metabolomics

NMR is an abbreviation for
Nuclear Magnetic
Resonance:

— allows the molecular structure
of a sample to be analyzed by
observing and measuring the
interaction of nuclear spins
when placed in a powerful
magnetic field

When a nucleus that
possesses a magnetic
moment is placed in a
strong magnetic field, it will
begin to precess, like a
spinning top

Precession

If the sample placed in this magnetic field is
irradiated with radio waves at the same
frequency as the precession frequency,

an NMR spectrum can be obrained

Hydrogen nucleus

[ Magnetic moment

(CH,CH,0H)

CH,

OH

NMR spectrum of the hydrogen nuclei of ethanol

CH,

A

alo i 10 ppm

Known “spectral fingerprint” -> identify molecule(s)

41

NMR metabolomics

* Nightingale’s technology
utilizes NMR and
proprietary software to
provide metabolome
profiles
— Consists of 231 metabolites

— Quite low compared to total
number of known
metabolites: 220945

* We measure only 0.1%!

Fluid balance
Creatinine (mmol/l)
®  Alburnin (signal ares)

Ketone bodies (mmol/l)
. Acetate

+  Aceloacetate

*  3-hydroxybutyrate

Glycolysis related
metabolites (mmol/1)
»  Gluose
o ladate
* Pywate
o (itrate
. Glycerol*

* et avalable o EDTA plasma samples)

Glycoprotein acetyls,
mainly a1-acid glycoprotein

Vi (mmol/1)
* VLDL cholesterol
®  LDL cholesterol
®  HOL chalesterol

Fatty acids and saturation * HDLy cholesterol
o Total fattyacids « HDL3 chalesterol
2 (imated degree o ursatuation * Cholesteral

+ Estimated description of o Free cholesterol
El"';;fla;‘mﬂ"‘ length . ;ikrlhrd(hn‘lﬂleml\
{mmol/land %of total FAs) * Remnant cholsters
*0 Omega-3 faty acids .

Amino acids (mmol/T)
» Manine
* Glutamine

« Histidine

Branched-chain amina adds
* Ispleudne

* Leudne

o Valine

Aromatic amino acids

* Phenylalanine

* Tyrosine

Glycerides &
phospholipids (mmol)

» VLD triglycerides
» LDLtriglycerides
+ HOL triglycerides
 Tiglycerides
» Phosphaglycerides
o Ratio of triglycerides to phosphoglycerides
» Phasghatidykholine and other cholines
» Sphingompelins
* Total cholines
» Diacylglycerol
AG/TG

. y “ DAG/TG

o Polyunsaturated fatty acids

w0 Moncunsaturated fatty acids; 16:1, 181 . . o .
0 Saturated fatty acds Apolipop Lipop P (nm)
0 Docosshexaenoic acd; 226 . Apodl * Meandiameter of VLDL particles
o Linoleic acd; 18:2 * ApoB « Mean diameter of LDL partices

« ° Conjugated linoleic acid o ApoBiApoh-! » Mean diameter of HDL particies

14 LIPOPROTEIN SUBCLASSES )

12 lipid measures for each subclass g i

@ Esterified cholesterol {mmol/l and % of totallpids) Total cholesterol (mmol/land % oftotal lipids) "+ 32 5o
Free cholesterol (mmol1 and % of total ipds) @ Total lipids {mmal/) LN

® Triglycerides (mmolA and % of totallpids)

Phospholipids {mmol/ and % of totallipids)

@  Particle concentration (mol/T)

IV ISNI VNV V999

42
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The aim of a model is context specific

* Metabolomics: reaction is inactive if the product is
not present
— But we can only measure 0.1% of the metabolome

— So mostly useful for validating excretion to the
circulation

43
The aim of a model is context specific
» Transcriptomics: reaction is inactive if catalyzing
enzyme is not expressed
44
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The aim of a model is context specific

Many algorithms have been proposed for
building tissue-specific models based on
generic models
Simplest approach: delete reactions of genes
that are not expressed

— Typically based on tissue-specific

transcriptomics data
Problems:
— Cutoff for being not expressed

— Orphan reactions & dead-ends
— Need to check metabolic functions

absolute

relative

[ flux prediction

AdaM

discrete

Akesson-04 AT
EXAMO

PROM

mCADRE INIT

MADE

tFBA

FCGs

continuous

GIMME
TEAM

E-Flux

Lee-12

RELATCH

Moxley-09

GX-FBA

Fang-12

[ model building

[ both
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Flux balance analysis
* Used to calculate flow of etk monarcion e e
metabolites through i
metabolic network e e
* Predict growth rate of i
organism or rate of production P
Massbalavncedelinesia Vi— v+..=0
Of glven metabollte system of linear equations m_z:z::g
etc.
* Assumes steady state v _
Define objective function To predict growth, Z = Viiomass
(Z=¢ v, +¢ v, ..)
* Optimizes a given objective
function
46
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Flux balance analysis

Mass balance defines a V- ¥%+..=0
system of linear equations -
Y q vV, -2v,+..=0

Define objective function To predict growth, Z= vyiomase
(Z=¢"v,+ 6"y, -

* Optimizes a given objective
function

that maximize Z

47
Objective function - Examples
The objective function = the aim of the model
— Biomass reaction (e.g. plants for consumption)
— ATP production (ATP demand reaction)
— Maximize a product of interest (e.g. lysine production)
48

24



8-12-2022

Flux balance analysis

Used to calculate flow of e memmspocen BE D T
metabolites through L
meta bOlIC netWO rk Ms:::z:gﬁ:‘z:i;;e::m s ﬁ*},z =
Predict growth rate of L B
organism or rate of production e om0
Mass balance defines a V,— ¥+..=0
of given metabolite e vz 0
ete.
Assumes Steady State Define objective function T dict growth, Z
(Z=¢"v,+ 6"V . €7 Voiomass
Optimizes a given objective )
function
49
Flux balance analysis
12 e n Q;\?&S:?‘:;*g
=V + ...=0

* Assumes steady state

Mass balance defines a
system of linear equations

Define objective function
@Z=c" v+ v,

Calculate fluxes
that maximize Z

Vi— wt..=0
Vv, -2v,+..=0
v,+..=0

etc.

To predict growth, Z = Vyomacs

L

optimal v

Solution space
dafinad by,
constraints

50
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Steady-state assumption

Assumption to reduce model complexity:

Metabolite concentrations and reaction rates stay constant over time
(steady-state)

Benefit:

1. We have to estimate only one value (reaction rate/flux) per
reaction instead of a function over time

2. We do not have to care about different metabolite concentrations

3. Introduces a direct dependence between reactions: Production
and consumption of each metabolite cancel out

51

Steady-state assumption visualized

52
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Steady-state assumption visualized

Possible flux distribution under the steady-state assumption ‘

53

Steady-state assumption visualized

Possible flux distribution under the steady-state assumption ‘

54
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Steady-state assumption visualized

Possible flux distribution under the steady-state assumption ‘

55
Steady-state assumption visualized
56
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Steady-state assumption visualized

Flux distribution not possible under the steady-state assumption ‘

57
Steady-state assumption visualized
Like a water supply network!
- Some places might use more than others
- But what goes in, must come out —
= I
I 4
Z
58
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Validity of the steady state assumption

* Cyclic behavior (e.g. limit cycles/periodic fixed points)
* No steady state for single cells
* Consider average of many cells (no synchronization) -> steady state reasonable

400 cells - no synchronization Dynamics of a singel cell 5 Average dynamics of 400 cells

5 -
c

2F = T
S Ss s
© © E

8 8 S 2
% %,z l g
= g £

02 ° x 1.5
s =) ‘ ' ‘ 2
x x 1 o

21 2 l )\ { J | 2 1
u ) g

0 0 <os

0 1 2 3 4 0 60 0 20 40 60
Flux through reaction 1 Time Time
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Recap: modeling loss of metabolic flexibility

60
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Metabolic model and patient data

* Model: heart model from Harvey and

Harvetta A O

— Sex specific whole-body metabolic poratvein Qlir=
reconstructions Mt '® |

— 26 organs and 6 blood cell types gfﬁ}}}'""“"‘”“"‘" ool

— Organ resolved > isolated organ models wikiotshow) | (O oeto

available as well @.;(D e

: ORCL@

* Data: left ventricular RNA-seq data from |G ‘

MAGNet consortium ;

— DCM, HCM, PPCM and healthy controls

* Constrain influx of substrates:
— “Fed” a standard western-European diet

61

Modeling loss of metabolic flexibility: setup

High [I:> Healthy m m all pathways utilized
Heart

|

1
»

ll:j
EalH

&
€N > m) > =
E\ 9 I]:> metabolic output | |
AN | ) — i
-0 = e
ear —
— [ | :
Gene expression Reaction bounds "=L7 o | metabo,mpathway X |

!.

Dr. Marian Breuer
|
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https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE141910
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Modeling loss of metabolic flexibility

Measure gene activity
as proxy for metabolic
enzyme activity

e Activate and deactivate

reactions based on gene Active gene = )

activity '
PerSOnCC;Illzed Inactive gene =  E—)
moae
——
- 3T g
af, 3
. == =
- =
—)
= —»r:
-
= J

63

Modeling loss of metabolic flexibility

Healthy

INPUT OUTPUT
(fatty acids, glucose, (ATP, membrane lipids,

amino acids, ...) structural proteins, ...)
* Simulate metabolism for
individual
— Choose objective

— Find optimal combination of
fluxes to maximize objective

— High flux pathway = active
— Low flux pathway = less active

64
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Modeling loss of metabolic flexibility

Diseased
e —
= |
g )
- 4mmm——)
INPUT g — ouTPUT
(fatty acids, glucose, - = 'i:ﬁﬂ"u‘fa'.“,’,’&??: r:ispids),
amino acids, ...) -
Simulate metabolism for —) _.l.
individual == _’ Decreased
— Choose objective metabolic
— Find optimal combination of output

fluxes to maximize objective
— High flux pathway = active
— Low flux pathway = less active

Inactive metabolic pathway |

65
Pilot results: models capture broad trends
Branched chain amino-acids contribute less The fatty acid oxidation pathways have
to mitochondrial energy production in DCM many inactive reactions in DCM
Phenotype
W o _healthy
©_DCM
Eflux I healthy s
¢_DCM
87 400

100

Control & DCM Control DCM

~~~~

° w - >
S
N
I "\
7
/
I
t# reactions
v w
- s 8

1 l ' '
“._ BCAA 7 carbs FA

--------

Status
Active

|| nactive

66
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Software & tools

i .

* Matlab

— Python can be an alternative
open-source solution for GEM
analysis

* CobraToolbox
— https://opencobra.github.io/co T
bratoolbox/stable/

— Model extraction methods

* Transcriptomics data
integration

— Flux balance analysis

Aerobic glycolysis in cancer

Map~ Model» Data~ Edit~ View~

2

-

SUCOASM 7.5

Male DCM cardiomyocyte metabolism simulation

67
Software & tools ‘
PP v ¢
o
¢ Escher maps: N
— Demo: 'l e
https://sbrg.github.io/escher-fba f
M'.‘. .-t_u~.
68
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https://opencobra.github.io/cobratoolbox/stable/
https://sbrg.github.io/escher-fba
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Model databases

95/} BioModels Database

https://www.ebi.ac.uk/biomodels-main/

QirTuaL @ETABOLIC PUMAN)
https://vmh.uni.lu/
mmman Metabolic Atlas

http://www.metabolicatlas.org/

BiGG Models

http://bigg.ucsd.edu/

69

Advantages & limitations of GEMs

+ Relatively little information needed
+ Applicable to large networks
+ Quantitative flux estimations

- Only steady state estimation
- Often no unique solutions (large solution space)
- Optimization assumptions (FBA) critical

70
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https://www.ebi.ac.uk/biomodels-main/
https://vmh.uni.lu/
http://www.metabolicatlas.org/
http://bigg.ucsd.edu/
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michiel.adriaens@maastrichtuniversity.nl
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