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Modeling the genetics and 
metabolism of heart failure

A multi-omics story in two parts

Michiel Adriaens, PhD
Maastricht Centre for Systems Biology – MaCSBio
Maastricht University

1

2



6-12-2021

2

Outline

1. Genetic control of gene transcription in 
heart failure

2. Modeling the metabolism of the failing 
heart
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What is heart failure?

Heart failure ↔ complications

Heart Failure
Structural remodeling Electrical remodeling

Arrhythmias
Sudden cardiac death

Metabolic impairments

- Complications are patient specific
- What explains this difference?

Genetics?
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Genetic association studies

• SNP (single nucleotide polymorphism):
– A variation in a single nucleotide that 

occurs at a specific position in the genome

• Example SNP:
– Base C may appear in most individuals

– Base T occurs in some individuals

– C an T are called the “alleles” of the SNP

• We all have two copies of every 
chromosome (and every gene!)

Allele
C

Allele
T

Genotype = CT

Genetic association studies

Allele
C

Allele
T

Genotype = CT

• Variations in the DNA affect 

– Disease development

– Response to pathogens, chemicals, 
drugs 

• How to find these variations?

– Genotyping of individuals

– Comparing e.g. cases versus controls
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Conclusion: the ‘T’ allele  is associated with prostate 
cancer (3.6-fold increased risk)

Source: Verhage et al. Int J Cancer 2002;100:683-5 (adapted)

ORTT/CT vs. CC= 3.6

Cases Controls

TT or CT 61 84

CC 21 104

Total 82 188

Example: E-cadherin gene SNP and prostate cancer

Genetic association studies

Source: Verhage et al. (2002)

Genome-wide association studies

Genes? 
Mechanism?

• GWAS = 
– Genotype thousands of variants in a population of 

cases and controls
– Genetic association for each variant

• GWAS have identified many genetic variants 
associated with complex traits and diseases
– Example below: susceptibility to arrhythmias after MI

Bezzina, Pazoki, et al., Nat Gen (2010)
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Genetic control of gene transcription

intron exon

Transcription start site (TSS)

promoterenhancer

“gene”

Genetic control of gene transcription

intron exonpromoterenhancer

Variant affecting 
protein product
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Genetic variants in exons can influence protein structure

Gururaj et al. (2017)

Genetic control of gene transcription

intron exonpromoterenhancer

Variant affecting 
regulatory region
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Genetic control of gene transcription

intron exonpromoterenhancer

Variant affecting 
regulatory region

Genetic variant modulating expression levels

Expression quantitative trait locus 
(eQTL)

=
in silico association between genotype and 

gene expression level within a specific population

• Method: Linear regression (GenABEL, MATRIXEQTL        )
• cis (= local) effects focused (sample size)
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What are cis & trans eQTLs

• trans eQTL: SNP X with Gene Y
– SNP X not within 1 megabase of Gene Y
– SNP X and Gene Y on different chromosomes

• Distant interactions
– SNP X could be in a distant regulatory element 

(interactions between chromosomes)
– SNP X linked to a transcription factor

• Expect small effect sizes → power issues in 
all but the largest studies

Gene Y

SNP X 

Linkage disequilibrium and eQTLs

▪ LD = the non-random association of alleles at different loci (i.e. ρAB ≠ ρAρB)
▪ Often calculated as the square of correlation coefficient: r2

▪ Often visualized in GWAS Manhattan plots

▪ Indirect association due to LD structure: an eQTL SNP may or may not be the 
causal SNP

17

18



6-12-2021

10

Genetic control of gene transcription

intron exonpromoterenhancer

SNP in intronic
region

Genetic variants regulate exon usage

Variant in splice site 
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Genetic variants regulate exon usage

Splicing quantitative trait locus 
(sQTL)

=
in silico association between genotype and 

alternative splicing within a specific population

Adriaens, Koopmann et al. (2014)

Heinig, Adriaens, Schaefer et al. (2017)

Research: genetics of transcription and splicing in DCM

Samples: Left ventricle
• 108 non-diseased donor hearts 
• 97 dilated cardiomyopathy (DCM) hearts

Data: 
• RNA-seq: 16,219 unique mRNA levels
• Genotyping: 2 million common variants (SNPs)

Research questions:
• Which known and novel variants modulate gene 

expression?
• Which known and novel variants modulate 

splicing?
• Differences between DCM and controls?
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Research: genetics of transcription and splicing in DCM

Samples: Left ventricle
• 108 non-diseased donor hearts 
• 97 dilated cardiomyopathy (DCM) hearts

Data: 
• RNA-seq: 16,219 unique mRNA levels
• Genotyping: 2 million common variants (SNPs)

Research questions:
• Which variants modulate gene expression? (eQTL)
• Which variants modulate splicing? (sQTL)
• Do these differ between DCM and controls?

Adriaens, Koopmann et al. (2014)

Heinig, Adriaens, Schaefer et al. (2017)

Research: genetics of transcription and splicing in DCM

Heinig, Adriaens, Schaefer et al. (2017)

Transcriptomics

Genomics
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Differential splicing and expression contributes to 
the DCM phenotype and is genetically controlled 

for known and novel genes

Research: genetics of transcription and splicing in DCM

Heinig, Adriaens, Schaefer et al. (2017)

Transcriptomics

Genomics

Usage example: eQTLs for known GWAS loci

 rs9912468:  associated with QRS prolongation (effect allele = G)
 Protein kinase C alpha: regulator of cardiac contractility and  Ca2+

handling in myocytes

rs9912468

CEP112 PRKCA
APOH

Adriaens, Koopmann et al. (2014)

GWAS result from Sotoodehnia et al. (2010)
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Cases

Controls

SNPs

In
d

iv
id

u
al

s

Cases

Controls

Cases

Controls

sQTLs eQTLs GWA

Lasso logistic regression

sQTL
risk model

eQTL
risk model

GWA
risk model

sQTLs eQTLs GWA

Prediction

Training set
(90%: 2726)

Test set
(10%: 303)

Covariates:
sex + age

GWAS data from:
Meder et al. Eur Heart J 2014

DCM genetic risk prediction

Training set (90%) Test set (10%)

LASSO (glmnet )

DCM genetic risk prediction

Heinig, Adriaens, Schaefer et al. (2017)
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DCM genetic risk prediction

Combining 
1. Co-variates (age, sex)
2. Genotype of DCM GWA SNP 

(rs9262636)
3. Genotypes of SNPs modulating 

expression (eQTLs)
4. Genotypes of SNPs modulating 

splicing (sQTLs)

In single predictive model leads 
to better prediction

Better 
prediction

Random
prediction

Heinig, Adriaens, Schaefer et al. (2017)

Research: DCM cohort in Maastricht

• Many clinical parameters available 
for more extensive subtyping:
– Machine learning resulted in 4 

distinct phenotypic clusters 
(“phenogroups”)

• Questions:
– Which genes show differences in 

eQTLs and sQTLs between 
phenogroups?

– In which processes and pathways 
are the corresponding genes 
involved?

• Using RNA-seq of EMBs (n = 76)

Verdonschot et al. (2020)
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Severe versus mild systolic dysfunction

• 96 unique genes that are significantly differentially 
imbalanced between phenogroup 4 and 1

• Gene Ontology enrichment analysis:

Term P-value
cyclosporin A binding 6.00E-04
muscle structure development 9.60E-04
establishment of protein localization to membrane 1.15E-03
negative regulation of oxidative phosphorylation 1.44E-03
electron transport chain 9.35E-03
fat cell differentiation 1.05E-02
regulation of actin filament-based movement 1.50E-02
cellular response to stress 1.68E-02
response to calcium ion 1.70E-02
mitochondrial respiratory chain complex assembly 1.76E-02

Outline

1. Genetic control of gene transcription in 
heart failure

2. Modeling the metabolism of the failing 
heart
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Recap: what is heart failure?

Loss of metabolic flexibility in DCM

Healthy heart Failing heart
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Restoring metabolic flexibility?

• Clinical trials aimed at restoring 
metabolic flexibility have so far 
led to mixed results

• Patient-to-patient differences are 
currently poorly understood

→ Targeted metabolic therapies 
have therefore not seen 
clinical implementation yet 

Diagnosing loss of metabolic flexibility

• To diagnose, we need to 
determine metabolic fluxes
– Fluxomics: reaction fluxes of all 

known metabolic reactions

– Identify which pathways differ 
between patients

• Ideally: in vivo tracer studies to 
measure metabolic fluxes:
– Problem 1: expensive and low 

sensitivity

– Problem 2: some impairments 
only appear under stress

How to quantify? How to place in context?
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Genome-scale metabolic model (GEM)

• Contains all know 
metabolic reactions 
including:
– Transport reactions

– Enzymatic reactions

• Derived from existing 
knowledge:
– Pathway databases

– Literature

• Creating and curating such 
a network is a lot of work:
– Only a few dedicated 

groups world-wide

Genome-scale metabolic model (GEM)

Metabolites

Reactions

Stoichiometry

Directionality of reactions
(thermodynamic considerations)

Enzymes
(catalysing a reaction)

Mass- and charge-balance
of reactions

Gene-Protein-Reaction rules

Compartmentalisation
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Genome-scale metabolic model (GEM)

Metabolites

Reactions

Stoichiometry

atp[c] + glc_D[c] → h[c] + adp[c] + g6p[c]

ATP D-glucose proton ADP

D-glucose 
6-phosphate

-1           -1            1          1            1

Reaction: HEX1: hexokinase

Stoichiometric matrix S:

Genome-scale metabolic model (GEM)

Metabolites

Reactions

Stoichiometry

atp[c] + glc_D[c] → h[c] + adp[c] + g6p[c]

ATP D-glucose proton ADP

D-glucose 
6-phosphate

-1           -1            1          1            1

Reaction: HEX1: hexokinase

c = cytoplasm e = extracellular space 
g = Golgi apparatus l = lysosome 
m = mitochondrion  n = nucleus 
r = endoplasmic reticulum x = peroxisome
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Genome-scale metabolic model (GEM)

Metabolites

Reactions

Stoichiometry

atp[c] + glc_D[c] → h[c] + adp[c] + g6p[c]

ATP D-glucose proton ADP

D-glucose 
6-phosphate

-1           -1            1          1            1

Reaction: HEX1: hexokinase

Flux of reaction 
• has upper and lower bound
• often expressed in mmol/gDW/s
• gDW = gram dry weight

Positive flux

Genome-scale metabolic model (GEM)

Metabolites

Reactions

Stoichiometry

atp[c] + glc_D[c] → h[c] + adp[c] + g6p[c]

ATP D-glucose proton ADP

D-glucose 
6-phosphate

-1           -1            1          1            1

Reaction: HEX1: hexokinase

Flux of reaction 
• has upper and lower bound
• often expressed in mmol/gDW/s
• gDW = gram dry weight
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Genome-scale metabolic model (GEM)

Metabolites

Reactions

Stoichiometry

atp[c] + glc_D[c] → h[c] + adp[c] + g6p[c]

ATP D-glucose proton ADP

D-glucose 
6-phosphate

-1           -1            1          1            1

Reaction: HEX1: hexokinase

Flux of reaction 
• has upper and lower bound
• often expressed in mmol/gDW/s
• gDW = gram dry weight

Negative flux

Genome-scale metabolic model (GEM)

Metabolites

Reactions

Stoichiometry

Directionality of reactions
(thermodynamic considerations)

Enzymes
(catalysing a reaction)

Mass- and charge-balance
of reactions

Gene-Protein-Reaction rules

Compartmentalisation

atp[c] + glc_D[c] → h[c] + adp[c] + g6p[c]

ATP D-glucose proton ADP

D-glucose 
6-phosphate

-1           -1            1          1            1

Reaction: HEX1: hexokinase

→ vs. ↔, irreversible vs. reversible

Hexokinase 1, 2, 3, or 4 (glucokinase) catalyze the reaction

(3098) or (3099) or (3101) or (2645)…

Gene number for hexokinase 1

glc_D[e] <=> glc_D[c]

Glucose transport from extracellular space to cytosol
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The aim of a model is context specific

• GEMs are often organism-specific, but not
tissue/cell type specific

• Tissue-specific models include only reactions 
that are active in the respective tissue

• Two “static” omics types can inform this
modeling process:
– Transcriptomics

– Metabolomics

• Transcriptomics: reaction is inactive if
catalyzing enzyme is not expressed

• Metabolomics: reaction is inactive if the
product is not present

Uhlen, M et al. Mol Sys Bio, 12:862 (2016)

The aim of a model is context specific

• GEMs are often organism-specific, but not
tissue/cell type specific

• Tissue-specific models include only reactions 
that are active in the respective tissue

• Two “static” omics types can inform this
modeling process:
– Transcriptomics

– Metabolomics

• Transcriptomics: reaction is inactive if
catalyzing enzyme is not expressed

• Metabolomics: reaction is inactive if the
product is not present

Uhlen, M et al. Mol Sys Bio, 12:862 (2016)
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NMR metabolomics

• NMR is an abbreviation for 
Nuclear Magnetic 
Resonance:
– allows the molecular structure 

of a sample to be analyzed by 
observing and measuring the 
interaction of nuclear spins 
when placed in a powerful 
magnetic field

• When a nucleus that 
possesses a magnetic 
moment is placed in a 
strong magnetic field, it will 
begin to precess, like a 
spinning top

https://www.jeol.co.jp/en/products/nmr/basics.html

NMR metabolomics

• NMR is an abbreviation for 
Nuclear Magnetic 
Resonance:
– allows the molecular structure 

of a sample to be analyzed by 
observing and measuring the 
interaction of nuclear spins 
when placed in a powerful 
magnetic field

• When a nucleus that 
possesses a magnetic 
moment is placed in a 
strong magnetic field, it will 
begin to precess, like a 
spinning top

Known “spectral fingerprint” → identify molecule(s)
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• Nightingale’s technology 
utilizes NMR and 
proprietary software to 
provide metabolome 
profiles
– Consists of 231 metabolites

– Quite low compared to total 
number of known 
metabolites: 220945 
• We measure only 0.1%!

NMR metabolomics

The aim of a model is context specific

• GEMs are often organism-specific, but not
tissue/cell type specific

• Tissue-specific models include only reactions that 
are active in the respective tissue

• Two “static” omics types can inform this modeling
process:
– Transcriptomics
– Metabolomics

• Transcriptomics: reaction is inactive if catalyzing
enzyme is not expressed

• Metabolomics: reaction is inactive if the product is 
not present
– But we can only measure 0.1% of the metabolome
– So mostly useful for validating excretion to the

circulation

Uhlen, M et al. Mol Sys Bio, 12:862 (2016)
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Model extraction methods (MEMs)

• Many algorithms have been proposed for
building tissue-specific models based on 
generic models

• Simplest approach: delete reactions of genes 
that are not expressed

– Typically based on tissue-specific
transcriptomics data

• Problems: 

– Cutoff for being not expressed

– Orphan reactions & dead-ends

– Need to check metabolic functions

Machado, D et al. PLoS Comp Bio, 10(4):e1003580 (2014)

Flux balance analysis

• Used to calculate flow of 
metabolites through
metabolic network

• Predict growth rate of 
organism or rate of production
of given metabolite

• Assumes steady state

• Optimizes a given objective
function

Orth JD, et al. Nat Biotech, 28(3):245-8 (2010)
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Flux balance analysis

• Used to calculate flow of 
metabolites through
metabolic network

• Predict growth rate of 
organism or rate of production
of given metabolite

• Assumes steady state

• Optimizes a given objective
function

Orth JD, et al. Nat Biotech, 28(3):245-8 (2010)

Objective function - Examples

The objective function ≈ the aim of the model

– Biomass reaction (e.g. plants for consumption)

– ATP production (ATP demand reaction)

– Maximize a product of interest (e.g. lysine production)

– …
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Flux balance analysis

• Used to calculate flow of 
metabolites through
metabolic network

• Predict growth rate of 
organism or rate of production
of given metabolite

• Assumes steady state

• Optimizes a given objective
function

Orth JD, et al. Nat Biotech, 28(3):245-8 (2010)

Flux balance analysis

• Used to calculate flow of 
metabolites through
metabolic network

• Predict growth rate of 
organism or rate of production
of given metabolite

• Assumes steady state

• Optimizes a given objective
function

Orth JD, et al. Nat Biotech, 28(3):245-8 (2010)
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Steady-state assumption

Assumption to reduce model complexity:
Metabolite concentrations and reaction rates stay constant over time 
(steady-state)

Benefit:
1. We have to estimate only one value (reaction rate/flux) per 

reaction instead of a function over time
2. We do not have to care about different metabolite concentrations
3. Introduces a direct dependence between reactions: Production

and consumption of each metabolite cancel out

Steady-state assumption visualized
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Steady-state assumption visualized

Possible flux distribution under the steady-state assumption

Steady-state assumption visualized

Possible flux distribution under the steady-state assumption
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Steady-state assumption visualized

Possible flux distribution under the steady-state assumption

Steady-state assumption visualized

Dead-end!

Flux distribution not possible under the steady-state assumption
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Steady-state assumption visualized

Flux distribution not possible under the steady-state assumption

Mass imbalance!

Steady-state assumption visualized

Like a water supply network!
- Some places might use more than others
- But what goes in, must come out
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Validity of the steady state assumption

• Cyclic behavior (e.g. limit cycles/periodic fixed points)

• No steady state for single cells

• Consider average of many cells (no synchronization)        → steady state reasonable

Modeling loss of metabolic flexibility

• Genome-scale metabolic 
models

• Computed fluxomics:
– Ask the model to generate 

an output flux (objective 
function)

– Assume steady state: 
output = input

– Let the model decide the 
optimal combination of 
fluxes to maximize objective 
function

– High flux pathway = active
– Low flux pathway = less 

active
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Metabolic model and patient data

• Model: heart model from Harvey and 
Harvetta
– Sex specific whole-body metabolic 

reconstructions
– 26 organs and 6 blood cell types
– Organ resolved → isolated organ models 

available as well

• Data: left ventricular RNA-seq data from 
MAGNet consortium
– DCM, HCM, PPCM and healthy controls

• Constrain influx of substrates:
– “Fed” a standard western-European diet

Figure 1B, Thiele et al. 2020

Transcriptomics: MAGNet (GSE141910)

Methodological setup

69
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• Genome-scale metabolic 
models

• Activate and deactivate 
reactions based on gene 
activity

• Simulate metabolism for 
individual
– Choose objective
– Find optimal combination of 

fluxes to maximize objective
– High flux pathway = active
– Low flux pathway = less active

Modeling loss of metabolic flexibility

Active gene    =

Inactive gene =

Measure gene activity 
as proxy for metabolic 
enzyme activity 

Personalized 
model

Modeling loss of metabolic flexibility

Healthy
• Genome-scale metabolic 

models

• Activate and deactivate 
reactions based on gene 
activity

• Simulate metabolism for 
individual
– Choose objective
– Find optimal combination of 

fluxes to maximize objective
– High flux pathway = active
– Low flux pathway = less active
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Modeling loss of metabolic flexibility

Diseased

Inactive metabolic pathway

Decreased 
metabolic 

output

• Genome-scale metabolic 
models

• Activate and deactivate 
reactions based on gene 
activity

• Simulate metabolism for 
individual
– Choose objective
– Find optimal combination of 

fluxes to maximize objective
– High flux pathway = active
– Low flux pathway = less active

Pilot results: models capture broad trends

Branched chain amino-acids contribute less 
to mitochondrial energy production in DCM

# 
re

ac
ti

o
n

s

The fatty acid oxidation pathways have 
many inactive reactions in DCM
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Pilot results: models capture sex differences

• Higher activity of fatty 
acid oxidation pathways 
in female heart 
compared to male heart

– Also in DCM: 
cardioprotective?

Work in progress: test the effect of different diets
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Software & tools

• Matlab
– Python can be an alternative 

open-source solution for GEM 
analysis

• CobraToolbox
– https://opencobra.github.io/co

bratoolbox/stable/

– Model extraction methods

• Transcriptomics data 
integration

– Flux balance analysis

Aerobic glycolysis in cancer

Software & tools

• Escher maps:
– Demo:

https://sbrg.github.io/escher-fba

Male DCM cardiomyocyte metabolism simulation
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Advantages & limitations of GEMs

+  Relatively little information needed

+  Applicable to large networks

+  Quantitative flux estimations

- Only steady state estimation

- Often no unique solutions (large solution space)

- Optimization assumptions (FBA) critical

Model databases

https://www.ebi.ac.uk/biomodels-main/

https://vmh.uni.lu/

http://www.metabolicatlas.org/

http://bigg.ucsd.edu/
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What’s next?

• Patient subtyping
– Metabolic tasks (Dr. Marian Breuer)

• Knowledge driven: which known 
metabolic tasks are active/inactive 
(qualitative & quantitative)

– COMMET pipeline (Chaitra Sarathy)
• Data-driven: which paths / reactions 

differ between individuals in entire 
network (quantitative)

• Integration of genetic regulation into 
models
– Model effect of eQTLs
– Genetic association to EFM / Principal 

components

Subtype BSubtype AHealthy

michiel.adriaens@maastrichtuniversity.nl
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