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1. Genetic control of gene transcription in
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2.  Modeling the metabolism of the failing
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What is heart failure?

Less blood
fills the ventricles

Less blood pumped
out of ventricles

| Weakened L
heart muscle heart muscle

Systolic Dysfunction Normal Diastolic Dysfunction

Heart failure <> complications

Structural remodeling < Heart Failure Electrical remodeling
ﬁ % Arrhythmias — .

Sudden cardiac death
Metabolic impairments

Systolic Dysfunction Normal

4 ™ - Complications are patient specific
- What explains this difference?

! 1
_____

Genetics?
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Genetic association studies

* SNP (single nucleotide polymorphism):
— A variation in a single nucleotide that

occurs at a specific position in the genome A”Ce’e
* Example SNP:
— Base C may appear in most individuals
— Base T occurs in some individuals
— CanT are called the “alleles” of the SNP
Allele

T

* We all have two copies of every
chromosome (and every gene!)

Genotype = CT

Genetic association studies

 Variations in the DNA affect
— Disease development

Allele
. C
— Response to pathogens, chemicals,
drugs
* How to find these variations?
Allele

— Genotyping of individuals
— Comparing e.g. cases versus controls

Genotype = CT
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Genetic association studies

Example: E-cadherin gene SNP and prostate cancer

Cases Controls
TT or CT 61 84

» €——SNP

WM

ORTT/CT vs.cc= 3-6

OOW
POOW ~

cc 21 104 g
Total 82 188 §

VMW

Conclusion: the ‘T’ allele is associated with prostate
cancer (3.6-fold increased risk)

Source: Verhage et al. Int J Cancer 2002;100:683-5 (adapted)

9
Genome-wide association studies
* GWAS=
— Genotype thousands of variants in a population of
cases and controls
— Genetic association for each variant
*  GWAS have identified many genetic variants
associated with complex traits and diseases
— Example below: susceptibility to arrhythmias after Ml
80
10 4 152824293 D
® p-334x107° g
T 8- N 60 g.
§ o] s ot Genes?
* " Mechanism?
o 2 3 - 88 °, % :. E
04 e --\'- ]
CXADR BTG3 C21orf91
17.lt00 17.'700 18.2)00
Chromosome 21 position (kb)
10
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Genetic control of gene transcription

Transcription start site (TSS)

—-—:J;-
Yoy

enhancer promoter intron  exon

.

//gene/l

-
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Genetic control of gene transcription
Variant affecting
protein product
—-—|:|-l; R
enhancer promoter intron  exon
12
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Genetic variants in exons can influence protein structure

Wildtype KCNT2 Channels
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Genetic control of gene transcription

Variant affecting
regulatory region

{—L—I;-
Yoy

enhancer promoter intron  exon

-
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Genetic control of gene transcription

Variant affecting
regulatory region

—-—:I-I;-
Yoy

enhancer promoter intron  exon

-
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Genetic variant modulating expression levels

Variant X

(eQTL)

st prosmotes]
nnnnnn

Expression quantitative trait locus

in silico association between genotype and
gene expression level within a specific population

Expression gene Y

cc cT ™

Genotype of variant X

* cis (= local) effects focused (sample size)

* Method: Linear regression (GenABEL, MATRIXEQTL'R)

16
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What are cis & trans eQTLs

trans eQTL: SNP X with Gene Y Gercg
— SNP X not within 1 megabase of Gene Y

— SNP X and Gene Y on different chromosomes

Distant interactions

— SNP X could be in a distant regulatory element SNP X
(interactions between chromosomes)

— SNP X linked to a transcription factor

Expect small effect sizes - power issues in
all but the largest studies

[Eort] Bboxé] edar] [Pa3] [Enz ] [Pram] Erxos]

17

Linkage disequilibrium and eQTLs

Chromosome

Region of High Linkage
Disequilibrium
& [
Disease Risk Genotyped SNP

SNP

= LD = the non-random association of alleles at different loci (i.e. p,z # p,Pg)
= Often calculated as the square of correlation coefficient: r?
= Often visualized in GWAS Manhattan plots

= Indirect association due to LD structure: an eQTL SNP may or may not be the
causal SNP

18
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Genetic control of gene transcription

SNP in intronic

Yoo S

enhancer promoter intron  exon

-

19
Genetic variants regulate exon usage
Variant in splice site
J
l splicing s
O e
mRNAs
l translation l
* * protein
’ isoforms
20

10
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Genetic variants regulate exon usage

Variant in splice site

I
| ==
-— —l—y‘—- pre-mRNA bn’ - .
g e
[ splicing s Q 7 N
alternatively qx)
S . i c
mRNAs
]
xX 6-
w ' ' '
cc CT T
Genotype SNP X

Splicing quantitative trait locus
(sQTL)
in silico association between genotype and
alternative splicing within a specific population

21

Research: genetics of transcription and splicing in DCM

Samples: Left ventricle
* 108 non-diseased donor hearts
* 97 dilated cardiomyopathy (DCM) hearts

Data:
* RNA-seq: 16,219 uniqgue mRNA levels
* Genotyping: 2 million common variants (SNPs)

Systolic Dysfunction Normal

22

11



Research: genetics of transcription and splicing in DCM

Samples: Left ventricle
* 108 non-diseased donor hearts
e 97 dilated cardiomyopathy (DCM) hearts

Data:
* RNA-seq: 16,219 unique mRNA levels
* Genotyping: 2 million common variants (SNPs)

Research questions: Systolic Dysfunction Normal
*  Which variants modulate gene expression? (eQTL)

*  Which variants modulate splicing? (sQTL)

* Do these differ between DCM and controls?

23
Research: genetics of transcription and splicing in DCM
Transcriptomics
Genomics
24

6-12-2021
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Research: genetics of transcription and splicing in DCM

. i

l splicing s
alternatively
B B N i

mRNAs
translation l

Rt ate * protein
’ isoforms
Transcriptomics
Genomics Differential splicing and expression contributes to

the DCM phenotype and is genetically controlled
for known and novel genes

25
Usage example: eQTLs for known GWAS loci
Locus 16 / PRKCA PRKCA
p-value: 1.16e-05
12 a0
§ 9 rs9912468 I o g: - %
% § ‘]I;
§ " 30 8 9.6-
0 o g 9.4-
: i
cc cG GG
rs9912468
rs9912468: associated with QRS prolongation (effect allele = G)
Protein kinase C alpha: regulator of cardiac contractility and Ca?*
handling in myocytes
26
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Individuals

DCM genetic risk prediction

SNPs
Training set Cades
Cases (90%: 2726)
Controls
Qontrols Covariates:
sQTLs eQTLs GWA sex + age
[ Lasso logistic regression ]
sQTLs eQTls GWA Ry nys nys
sQTL eQTL GWA
Test set risk model risk model risk model
10%: 303 = — a!
(10%: 303) ( Prediction )
AV A2 AV
Cases
Controls

27
DCM genetic risk prediction
Training set (90%) Test set (10%)
5 5 =
£ 54 £ 54 r”{';ﬁ
ié =+ " ié =+
B ‘J B
—— oqll 0.95 — eqll0.71
] o I i
LASSO (glmnet “R’)
28
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Test
With GWA SNP

Better 1.0
prediction

09-

0.8-

AUC

06-

Random

prediction 087

All-
eQTL
sQTL -

e

Combining
1. Co-variates (age, sex)

2. Genotype of DCM GWA SNP

(rs9262636)

3. Genotypes of SNPs modulating

DCM genetic risk prediction

expression (eQTLs)

In single predictive model leads

to better prediction

Only GWA -

4. Genotypes of SNPs modulating
splicing (sQTLs)

29

* Many clinical parameters available
for more extensive subtyping:
— Machine learning resulted in 4

distinct phenotypic clusters
(“phenogroups”)

* Questions:

— Which genes show differences in
eQTLs and sQTLs between
phenogroups?

— In which processes and pathways
are the corresponding genes
involved?

e Using RNA-seq of EMBs (n = 76)

Research: DCM cohort in Maastricht

a Ve

Mild systolic
dysfunction

Auto-immune

N

PHENOGROUP 3
Cardiac arrhythmias

@%
e ®

L

Modet .

+  Lewecreatining”

*  Noadverse remodelling
*  NYHAclasslorll

*  LowNT-preBNP

- AN

A
+  High creatinine®

* Female

*  Lowbody mass index

AN

= Arrial fibrillation®
= Mon-sustained VT
= Genelic variants
*  Males

= LGE

30

15



6-12-2021

47 clinical variables

Echocardiography

Cardiovascular
Magnetic Resonance

ECG/Holter
795 Physi
DCM racteristics

tien
Demographics

Disease modifiers

Endomyaocardial Biopsy

-

- Deep-phenotyping index cohort
- Data processing
Survival analysis
- Validation steps in two independent validation cohorts

47 clinical variables

4 phenogroups

Application of modelin

two independent
validation cohorts

= DN -

-~

33 clinical variables

Exclusion of variables

with >25% missing in
the unimputed raw data

Supervised conditional

interference tree
method

4 clinical variables

4 phenogroups

28 clinical variables

Exclusion of redundant.
correlated variables
(r>0.6)

Unsupervised
hierarchical clustering

of principal
components of mixed
data

27 clinical variables

!

31
1.2-
08-
E
o
7]
I
0.4-
0.0-
Sample phenogroup label color
I I S
1 2 3
32

16
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Severe versus mild systolic dysfunction

* 96 unique genes that are significantly differentially
imbalanced between phenogroup 4 and 1

* Gene Ontology enrichment analysis:

Term

cyclosporin A binding

muscle structure development

establishment of protein localization to membrane
negative regulation of oxidative phosphorylation
electron transport chain

fat cell differentiation

regulation of actin filament-based movement
cellular response to stress

response to calcium ion

mitochondrial respiratory chain complex assembly

P-value
6.00E-04
9.60E-04
1.15E-03
1.44E-03
9.35E-03
1.05E-02
1.50E-02
1.68E-02
1.70E-02
1.76E-02

33

2.

Outline

Modeling the metabolism of the failing
heart

34
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Recap: what is heart failure?

Less blood
fills the ventricles

Less blood pumped
out of ventricles

| stiff
heart muscle

Weakened
heart muscle
Diastolic Dysfunction

Systolic Dysfunction Normal

35

Loss of metabolic flexibility in DCM

Healthy heart muscle cell

"
"

Lactate =l Lactate
"
"

Mitochondrion

Inside cell

Healthy heart

36
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Restoring metabolic flexibility?

* Clinical trials aimed at restoring
metabolic flexibility have so far
led to mixed results

* Patient-to-patient differences are O
currently poorly understood ©

- Targeted metabolic therapies
have therefore not seen
clinical implementation yet

37
* To diagnose, we need to "
determine metabolic fluxes )
— Fluxomics: reaction fluxes of all 1
known metabolic reactions 1 R
. . . o Oxidative \
— ldentify whlc_h pathways differ Rt N S ,n
between patients Gmn(\ .
1" 4
[ Fatty acids T—:-ﬁr‘;bl Fattvaclds]
* |deally: in vivo tracer studies to —— ,
measure metabolic fluxes: A
. Aminoacids |, ,
— Problem 1: expensive and low TR ,/
sensitivity = L G
_ Problem 2: some impairments Outside cell \“Inslde(ell ,,, Mitochondrion —1
only appear under stress \ /
v
How to quantify? How to place in context?
38

19
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Genome-scale metabolic model (GEM)

* Contains all know
metabolic reactions
including:

— Transport reactions
— Enzymatic reactions

* Derived from existing
knowledge:

— Pathway databases
— Literature

* Creating and curating such
a network is a lot of work:

— Only a few dedicated
groups world-wide

39

Genome-scale metabolic model (GEM)

Enzymes
(catalysing a reaction)

Gene-Protein-Reaction rules

Mass- and charge-balance
of reactions

Compartmentalisation

40
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Genome-scale metabolic model (GEM)

Reaction: HEX1: hexokinase

D-glucose
Metabolites ATP D-glycose proton ADP 6-ph|osphate
Reactions atpl[c] + gIc_ID[c] — h[lc] + adp[c] + g6p[c]
Stoichiometry -i -j_ 1 1 1
Reactions FL o
SEE
12 n Yo
Al=
¢ Bl1 -1 r
Stoichiometric matrixS: 5 5| '~
z E,
m L 2

41
Genome-scale metabolic model (GEM)
Reaction: HEX1: hexokinase
D-glucose
Metabolites ATP D-glucose proton ADP 6-phlosphate
Reactions atp[c] + glc_D[c] — h[c] + adp[c] + g6plc]
Stoichiometry _i _i 1 1 1
¢ = cytoplasm e = extracellular space
g = Golgi apparatus | = lysosome
m = mitochondrion n = nucleus
r = endoplasmic reticulum X = peroxisome
42

21
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Genome-scale metabolic model (GEM)

Reaction: HEX1: hexokinase

D-glucose
Metabolites ATP D-glucose proton ADP 6-ph|osphate
Reactions atpl[c] + gIc_ID[c] — h[lc] + adp[c] + g6p[c]
Stoichiometry -i -j_ 1 1 1
| >
Flux of reaction

* has upper and lower bound
* often expressed in mmol/gDW/s
* gDW =gram dry weight

43
Genome-scale metabolic model (GEM)
Reaction: HEX1: hexokinase
D-glucose
Metabolites ATP D-glucose proton ADP 6-phlosphate
Reactions atp[c] + glc_D[c] — h[c] + adp[c] + géplc]
Stoichiometry _i _i 1 1 1
l Positive flux >
Flux of reaction
* has upper and lower bound
* often expressed in mmol/gDW/s
* gDW =gram dry weight
44
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Metabolites

Reactions

Stoichiometry

Genome-scale metabolic model (GEM)

Reaction: HEX1: hexokinase
D-glucose

ATP D-glucose  proton ADP 6-phosphate

atpi[c] + glc !D[c] — h[:c] + ad[;[c] + g6p[c]
1

1 1

[

B i

< Negative flux

Flux of reaction

* has upper and lower bound

* often expressed in mmol/gDW/s
* gDW =gram dry weight

45

Metabolites
Reactions

Stoichiometry

Directionality of reactions
(thermodynamic considerations)

Enzymes
(catalysing a reaction)

Gene-Protein-Reaction rules

Mass- and ch
of reactions

Compartmentalisation

Genome-scale metabolic model (GEM)

Reaction: HEX1: hexokinase
D-glucose
ADP 6-phosphate

ATP D-glycose proton !
atp[c] + glc_D[c] — h[c] + adp[c] + g6p[c]
-1 -1 1 1 1

- vs. &, irreversible vs. reversible

Hexokinase 1, 2, 3, or 4 (glucokinase) catalyze the reaction

(30?8) or (3099) or (3101) or (2645)...

Gene number for hexokinase 1

glc_D[e] <=> glc_DI[c]

Glucose transport from extracellular space to cytosol

46

23
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The aim of a model is context specific

GEMs are often organism-specific, but not
tissue/cell type specific

Tissue-specific models include only reactions
that are active in the respective tissue

Two “static” omics types can inform this

modeling process: [

— Transcriptomics

— Metabolomics Hepatocytes
Transcriptomics: reaction is inactive if Myocytes

catalyzing enzyme is not expressed

Metabolomics: reaction is inactive if the : " f
product is not present 2

47
The aim of a model is context specific
“
Hepatocytes
Myocytes
* Metabolomics: reaction is inactive if the f
product is not present
48

24
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« NMR is an abbreviation for
Nuclear Magnetic
Resonance:

— allows the molecular structure
of a sample to be analyzed by
observing and measuring the
interaction of nuclear spins
when placed in a powerful
magnetic field

NMR metabolomics

| Computer

Spectrometer

Instrument control and Transmits and receives the

. : |
Super-conducting magnet

Generates a powerful magnetic

data processing radio-frequency waves used to || field that is tens of thousands
make the NMR measurements. || of times stronger than the
carth’s magnetic field.

Samples are placed within this
magnetic field and exposed to

radio waves.

]

RESONANCE

JEoL

49

« NMR is an abbreviation for
Nuclear Magnetic
Resonance:

— allows the molecular structure
of a sample to be analyzed by
observing and measuring the
interaction of nuclear spins
when placed in a powerful
magnetic field

* When a nucleus that
possesses a magnetic
moment is placed in a
strong magnetic field, it will
begin to precess, like a
spinning top

NMR metabolomics

Hhvonsdo Bl Precession If the sample placed in ¢his m:

irradiated with radio waves at

an NMR spectrum can be obtained.

[ Hydrogen nucleus

[ Magnetic moment

NMR spectrum of the hydrogen nuclei of ethanol
(Cr I-‘CI IZOII) CH,
CH,
OH

o alo o 2o 10 ppm

Known “spectral fingerprint” - identify molecule(s)

50

25


https://www.jeol.co.jp/en/products/nmr/basics.html
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NMR metabolomics

* Nightingale’s technology
utilizes NMR and
proprietary software to
provide metabolome
profiles
— Consists of 231 metabolites

— Quite low compared to total
number of known
metabolites: 220945

* We measure only 0.1%!

Ketone bodies (mmol/l) Amino acids (mmol/T)
o heetate o Mlanine

»  hcetoacetate * Glutamine

o 3-hydroxybutyrate

Glycolysis related * Histidine

Iycolysis relat . .
metabolites (mmol/l) Erarl\::cd-(hamlmlnn adds
" o o
: h“‘";t o Valine

Fluid balance o D Aromaticamino acids

® Geatinine (mmol/) . Gyt « Phenylalanine

@ Albumin (signal area) i * Tywsine
{+ ot EOA pasma sl

" (mmol) Glycerides &
& Glycoprotein acetyls, ® LDL cholesterl phosphelipids (mmol/)

mainly a1-3d glycoprotein : :E;LL::I:EI:,:I\ o VDL tighcerides
Fatty acids and saturation * DLy cholesterol M H:)LL':!L,M:::Z
o Totlfatyacds * HOL3 hoesteol © Thgpetes
o _Estimated degree of unsaturation * Cholesteral )
+ Estimatec description of o Free chalesterol * Phosphoglycerides .
fatty acid chain length el ‘& Ratio oftrglycerides to phosphoglycerides
Fatty acids by P » Phasphatidylcholine and ather cholines
(mmol/land % of total FAs) * femnart dolsterd * Sphingompelns

 Total cholines

*0 Omega-3 fatty adds . = Diacylglycerol
» * DAG/TG
o Polyunsaturated fatty acids
o Monounsaturated fatty acids; 16:1, 18:1 ’ o )
o Saturated fatty adds Apolipop Lipop P (nm)
#o Docosahexaencic acid; 226 * Apokl * Mean diameter of VLDL partides
o Linoleicacid; 18:2 . Apok ‘o Mean diameter o LDL partiles
« ° Conjugated linoleic acid o ApoBiApod = Mean diameter of HDL particles
14 LIPOPROTEIN SUBCLASSES
12 lipid measures for each subclass £
@ Esterfied cholesterol (mmol and % of totallpids) Total cholesterol (mmol and % of total lipds)

Free cholesterol (mmol/1 and % of total ipds) ® Totallpids (mmolf)
@ Triglycerides (mmol/ and % oftotl lpids) @ Partide concentration (umel)

Phospholipids {mmol/] and % of totallipids)

DIV Ie NIV VIV o000

51

The aim of a model

* Metabolomics: reaction is inactive if the product is
not present
— But we can only measure 0.1% of the metabolome

— So mostly useful for validating excretion to the
circulation

is context specific

-

Hepatocytes

Myocytes

(

52
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Model extraction methods (MEMs)

Many algorithms have been proposed for
building tissue-specific models based on
generic models
Simplest approach: delete reactions of genes
that are not expressed

— Typically based on tissue-specific

transcriptomics data
Problems:
— Cutoff for being not expressed

— Orphan reactions & dead-ends
— Need to check metabolic functions

absolute

relative

[ flux prediction

AdaM

discrete

Akesson-04 AT
EXAMO

PROM

mCADRE INIT

MADE

tFBA

FCGs

continuous

GIMME
TEAM

E-Flux

Lee-12

RELATCH

Moxley-09

GX-FBA

Fang-12

[ model building

[ both

53
Flux balance analysis
* Used to calculate flow of etk monarcion e e
metabolites through i
metabolic network e e
* Predict growth rate of i
organism or rate of production P
Massbalavncedelinesia Vi— v+..=0
Of glven metabollte system of linear equations m_z:z::g
etc.
* Assumes steady state v _
Define objective function To predict growth, Z = Viiomass
(Z=¢ v, +¢ v, ..)
* Optimizes a given objective
function
54
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Flux balance analysis

Mass balance defines a V- ¥%+..=0
system of linear equations -
Y q vV, -2v,+..=0

Define objective function To predict growth, Z= vyiomase
(Z=¢"v,+ 6"y, -

* Optimizes a given objective
function

that maximize Z

55
Objective function - Examples
The objective function = the aim of the model
— Biomass reaction (e.g. plants for consumption)
— ATP production (ATP demand reaction)
— Maximize a product of interest (e.g. lysine production)
56
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Flux balance analysis

Used to calculate flow of e memmspocen BE D T
metabolites through L
meta bOlIC netWO rk Ms:::z:gﬁ:‘z:i;;e::m s ﬁ*},z =
Predict growth rate of L B
organism or rate of production e om0
Mass balance defines a V,— ¥+..=0
of given metabolite e vz 0
ete.
Assumes Steady State Define objective function T dict growth, Z
(Z=¢"v,+ 6"V . €7 Voiomass
Optimizes a given objective )
function
57
Flux balance analysis
12 e n Q;\?&S:?‘:;*g
=V + ...=0

* Assumes steady state

Mass balance defines a
system of linear equations

Define objective function
@Z=c" v+ v,

Calculate fluxes
that maximize Z

Vi— wt..=0
Vv, -2v,+..=0
v,+..=0

etc.

To predict growth, Z = Vyomacs

L

optimal v

Solution space
dafinad by,
constraints

58
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Steady-state assumption

Assumption to reduce model complexity:

Metabolite concentrations and reaction rates stay constant over time
(steady-state)

Benefit:

1. We have to estimate only one value (reaction rate/flux) per
reaction instead of a function over time

2. We do not have to care about different metabolite concentrations

3. Introduces a direct dependence between reactions: Production
and consumption of each metabolite cancel out

59

Steady-state assumption visualized

60
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Steady-state assumption visualized

Possible flux distribution under the steady-state assumption ‘

61

Steady-state assumption visualized

Possible flux distribution under the steady-state assumption ‘

62
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Steady-state assumption visualized

Possible flux distribution under the steady-state assumption ‘

63
Steady-state assumption visualized
64

32
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Steady-state assumption visualized

E b
Flux distribution not possible under the steady-state assumption ‘

65
Steady-state assumption visualized
Like a water supply network!
- Some places might use more than others
- But what goes in, must come out T
i I
I 4
Z
66
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Validity of the steady state assumption

* Cyclic behavior (e.g. limit cycles/periodic fixed points)
* No steady state for single cells

* Consider average of many cells (no synchronization) - steady state reasonable

s 400 cells - no synchronization Dynamics of a singel cell 5 Average dynamics of 400 cells

5

2 = T 25
S Sy | ‘ ‘ s
3 3 2

AR R
i s2f | | I . | | Il €

gz ? | | . ‘ ! a5
£ ELLN NN 2
x = 1] “ ‘. | | ‘ | @

24 G i ‘\\U\H}\! g 1
VUUUVUVUV| §

0 0 <os

) 1 2 3 4 o 20 40 60 ) 20 40 60
Flux through reaction 1 Time Time

67

Modeling loss of metabolic flexibility

¢ Genome-scale metabolic
models

68
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Metabolic model and patient data

* Model: heart model from Harvey and

Harvetta EE'E:‘"""“" @

— Sex specific whole-body metabolic P Qlir=
reconstructions Ig;‘::;;m_“m ® l

— 26 organs and 6 blood cell types e ) ey

— Organ resolved = isolated organ models *oleldo
available as well .@. oote

. ® o\
* Data: left ventricular RNA-seq data from
MAGNet consortium

— DCM, HCM, PPCM and healthy controls

* Constrain influx of substrates:
— “Fed” a standard western-European diet

69
Methodological setup
/T
Ty — "
High :z:lrtthv :;j STE all pathways utilized
& G =L
(\ > |:> > .
metabolic output |
I:> Failin R
B "§ —
o e L.n c n
Gene expression  Reaction bounds GEM = 5 metabolic pathway X |
70
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https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE141910
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Modeling loss of metabolic flexibility

Measure gene activity
as proxy for metabolic
enzyme activity

e Activate and deactivate

reactions based on gene Active gene = )

activity '
PerSOnCC;Illzed Inactive gene =  E—)
moae
——
- 3T g
af, 3
. == =
- =
—)
= —»r:
-
= J

71

Modeling loss of metabolic flexibility

Healthy

INPUT OUTPUT
(fatty acids, glucose, (ATP, membrane lipids,

amino acids, ...) structural proteins, ...)
* Simulate metabolism for
individual
— Choose objective

— Find optimal combination of
fluxes to maximize objective

— High flux pathway = active
— Low flux pathway = less active

72
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Modeling loss of metabolic flexibility

Diseased
e —
= |
g )
- 4mmm——)
INPUT g — ouTPUT
(fatty acids, glucose, - = 'i:ﬁﬂ"u‘fa'.“,’,’&??: r:ispids),
amino acids, ...) -
Simulate metabolism for —) _.l.
individual == _’ Decreased
— Choose objective metabolic
— Find optimal combination of output

fluxes to maximize objective
— High flux pathway = active
— Low flux pathway = less active

Inactive metabolic pathway |

73
Pilot results: models capture broad trends
Branched chain amino-acids contribute less The fatty acid oxidation pathways have
to mitochondrial energy production in DCM many inactive reactions in DCM
Phenotype
W o _healthy
©_DCM
Eflux I healthy s
¢_DCM
87 400
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Control & DCM Control DCM

~~~~

° w - >
S
N
I "\
7
/
I
t# reactions
v w
- s 8

1 l ' '
“._ BCAA 7 carbs FA

--------

Status
Active
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Pilot results: models capture sex differences

* Higher activity of fatty Pty s e
acid oxidation pathways
in female heart
compared to male heart
— Also in DCM:

cardioprotective? ) H % H H H H H H

Fiux range DS, Iog2 sca
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Work in progress: test the effect of different diets
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Software & tools

i .

* Matlab

— Python can be an alternative
open-source solution for GEM
analysis

* CobraToolbox
— https://opencobra.github.io/co T
bratoolbox/stable/

— Model extraction methods

* Transcriptomics data
integration

— Flux balance analysis

Aerobic glycolysis in cancer

Map~ Model» Data~ Edit~ View~

2

-

SUCOASM 7.5

Male DCM cardiomyocyte metabolism simulation
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Software & tools ‘
PP v ¢
o
¢ Escher maps: N
— Demo: 'l e
https://sbrg.github.io/escher-fba f
M'.‘. .-t_u~.
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Advantages & limitations of GEMs

+ Relatively little information needed
+ Applicable to large networks
+ Quantitative flux estimations

- Only steady state estimation
- Often no unique solutions (large solution space)
- Optimization assumptions (FBA) critical

79

Model databases

#2s BioModels Database

https://www.ebi.ac.uk/biomodels-main/

QirruaL @eTasoLic QPUMAN)
mmman Metabolic Atlas

http://www.metabolicatlas.org/

BiGG Models

http://bigg.ucsd.edu/
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What’s next?

— Model effect of eQTLs

— Genetic association to EFM / Principal
components

1T TA AA
SNP genotype (rs131758)

Healthy Subtype A
* Patient subtypin /T p——Y
— Metabolic tasks (Dr. Marian Breuer) 2= ‘_’5. 2 g;:";;_‘ =
* Knowledge driven: which known —' ‘ —>H ”_Lr
metabolic tasks are active/inactive _’—_,' -ﬁ Q{f\_” L
(qualitative & quantitative) — —
— COMMIET pipeline (Chaitra Sarathy)
* Data-driven: which paths / reactions
differ between individuals in entire
network (quantitative)
* Integration of genetic regulation into ¢ o) |
models -y \ -
Q
O

Subtype B

—

/T
=» )
=» lq—p
=»

O

3
=

—)
—)
» 3

81
ho T T
1 ) ©
¢ 9 o
r‘%) T 7
o o . .Q
michiel.adriaens@maastrichtuniversity.nl
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