

Research: genetics of transcription and splicing in DCM

Samples: Left ventricle

- 108 non-diseased donor hearts
- 97 dilated cardiomyopathy (DCM) hearts

Data:

- RNA-seq: 16,219 unique mRNA levels
- Genotyping: 2 million common variants (SNPs)

Adriaens, Koopmann et al. (2014)

Research: genetics of transcription and splicing in DCM

Samples: Left ventricle

- 108 non-diseased donor hearts
- 97 dilated cardiomyopathy (DCM) hearts

Data:

- RNA-seq: 16,219 unique mRNA levels
- Genotyping: 2 million common variants (SNPs)

Research questions:

- Which variants modulate gene expression? (eQTL)
- Which variants modulate splicing? (sQTL)
- Do these differ between DCM and controls?

Systolic Dysfunction

Normal

Aanaens, koopmann et al. (2014)

Research: DCM cohort in Maastricht

- Many clinical parameters available for more extensive subtyping:
 - Machine learning resulted in 4 distinct phenotypic clusters ("phenogroups")
- Questions:
 - Which genes show differences in eQTLs and sQTLs between phenogroups?
 - In which processes and pathways are the corresponding genes involved?
- Using RNA-seq of EMBs (n = 76)

Verdonschot et al. (2020

Severe versus mild systolic dysfunction

• 96 unique genes that are significantly differentially imbalanced between phenogroup 4 and 1 Gene Ontology enrichment analysis:

Term	P-value
cyclosporin A binding	6.00E-04
muscle structure development	9.60E-04
establishment of protein localization to membrane	1.15E-03
negative regulation of oxidative phosphorylation	1.44E-03
electron transport chain	9.35E-03
fat cell differentiation	1.05E-02
regulation of actin filament-based movement	1.50E-02
cellular response to stress	1.68E-02
response to calcium ion	1.70E-02
mitochondrial respiratory chain complex assembly	1.76E-02

33

Restoring metabolic flexibility?

- Clinical trials aimed at restoring metabolic flexibility have so far led to mixed results
- Patient-to-patient differences are currently poorly understood
 - → Targeted metabolic therapies have therefore not seen clinical implementation yet

Genome-scale metabolic model (GEM)

- Contains all know metabolic reactions including:
 - Transport reactions
 - Enzymatic reactions
- Derived from existing knowledge:
 - Pathway databases
 - Literature
- Creating and curating such a network is a lot of work:
 - Only a few dedicated groups world-wide

Genome-scale metabolic model (GEM) **Reaction: HEX1: hexokinase** D-glucose ATP proton ADP 6-phosphate D-glucose $atp[c] + glc_D[c] \rightarrow h[c] + adp[c] + g6p[c]$ i -1 -1 1 1 1 c = cytoplasm e = extracellular space g = Golgi apparatus I = lysosome m = mitochondrion n = nucleusr = endoplasmic reticulum x = peroxisome

The aim of a model is context specific

- GEMs are often organism-specific, but not tissue/cell type specific
- Tissue-specific models include only reactions that are active in the respective tissue
- Two "static" omics types can inform this modeling process:
 - Transcriptomics
 - Metabolomics
- Transcriptomics: reaction is inactive if catalyzing enzyme is not expressed
- Metabolomics: reaction is inactive if the product is not present

47

The aim of a model is context specific

- GEMs are often organism-specific, but not tissue/cell type specific
- Tissue-specific models include only reactions that are active in the respective tissue
- Two "static" omics types can inform this modeling process:
 - Transcriptomics
 - Metabolomics
- Transcriptomics: reaction is inactive if catalyzing enzyme is not expressed
- Metabolomics: reaction is inactive if the product is not present

The aim of a model is context specific

- GEMs are often organism-specific, but not tissue/cell type specific
- Tissue-specific models include only reactions that are active in the respective tissue
- Two "static" omics types can inform this modeling process:
 - Transcriptomics
 - Metabolomics
- Transcriptomics: reaction is inactive if catalyzing enzyme is not expressed
- Metabolomics: reaction is inactive if the product is not present
 - But we can only measure 0.1% of the metabolome
 - So mostly useful for validating excretion to the circulation

Advantages & limitations of GEMs

- + Relatively little information needed
- + Applicable to large networks
- + Quantitative flux estimations
- Only steady state estimation
- Often no unique solutions (large solution space)
- Optimization assumptions (FBA) critical

