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Genome-wide Association Studies

1 Setting the pace

Relevant questions and concepts

2 The rise of GWAs

3 Study Design Elements

3.a Marker level

3.b Subject level

3.c Gender level (not considered in this course)
4 Pre-analysis Steps

4.a Quality-Control
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4.b Linkage disequilibrium

4.c Confounding by shared genetic ancestry
5 Analysis Steps

5.a Association / Regression

5.b Replication and Validation

5.c Causation &

5.d Interpretation
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1 Setting the pace

Play the following video on “molecular information”, and learn how
information can be retrieved at different levels and scales

http://www.youtube.com/watch?v=00vBqYDBW5s

Van Steen K
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Types of genetic markers: single nucleotide polymorphisms
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Types of genetic markers: single nucleotide polymorphisms or SNPs

e Variations in single base, i.e., one base substituted by another base
e |In theory: four different nucleotides possible at base

e |In practice: generally only two different nucleotides observed

e Definition strict and loose:

o Strict: minor allele frequency 2 1%
o Loose: 2 2 nucleotides observed in two individuals at position
e Nomenclature:

o ss-number (submitted SNP number)
o rs-number: searchable in dbSNP, mapped to external resources, unique
o rs-numbers do not provide information about possible function of SNP

o Alternative: nomenclature of Human Genome Variation Society

(Ziegler and Van Steen, Brazil 2010)
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Types of genetic markers: single nucleotide polymorphisms

*Submissions received after reclustering of current build will appear as new rs# clusters in the next build.

BUILD STATISTICS:

Number of Number of

. dbSNP Genome Num_ber_ o] LT P O] IO (ss#'s) (ss#'s) Number of Number of
Organism . N Submissions RefSNP Clusters (rs#'s) . . _ ;
Build Build . \ _ . with with weight 1 SNPs weight 2+ SNPs
(ss#'s) (rs#'s) ( # validated) in gene
genotype frequency
Homo sapiens 150 38.3 907,237,763 325,658,303 (135,967,291) 191,585,061 73,917,935 129,875,536
Bos taurus 150 1.2 332,061,559 104,286,568 (12,102,319) 46,308,631 10,202 968
O ass  DIV:80165
Mus musculus 150 38.5 189,214,027 84,152,707 (6,466,270) 40,278,667 24,843,897 77 : MNV:2259
Named:6779  g\\/.1647286
SNV:67883617 |
Sus scrofa 150 51 195,656,177 67,116,509 (8,107,358) 36,126,981 52 184
Ovis aries 150 21 147,584,937 63,745,118 (3,570,277) 30,029,327 65 173
DIV:9 ]
Macaca mulatta 150 21 95,808,453 53,929,680 (2,760,325) 23,087,008 29 8,072 SNV:32708877 SNV:38416
Zea mays 150 11 86,608,237 58,915,360 (14,672,946) 13,436,128 90
Gallus gallus 150 4.1 73244003 24,277,657 (15,305,602) 14,926,051 3,624,831 203
Bos indicus 150 11 30,533,959 17,758,946 (621) 5,131,669 223
DIV:4 MNV-1
Arabidopsis thaliana 150 9.2 15,307,574 13,412,809 (5,947) 9,174,636 299 MNV:5 SNV'3I§8
SNV:1069121 )
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Genes

e The gene is the basic physical unit
of inheritance.

e Genes are passed from parents to
offspring and contain the
information needed to specify
traits.

e They are arranged, one after
another, on structures called
chromosomes.

e A chromosome contains a single,
long DNA molecule, only a portion

of which corresponds to a single

gene.
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(Figure : Human chromosomes)
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Gene Annotation

e An annotation (irrespective of the context) is a note added by way of
explanation or commentary.

e Genome annotation is the process of identifying the locations of genes and
all of the coding regions in a genome and determining what those genes do.
e Once a genome is sequenced, it needs to be annotated to make sense of it

- links to giving an “interpretation”
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Alleles

e Allele: one of several alternative forms of DNA sequence at specific
chromosomal location

e Polymorphism: often used to indicate the existence of at least 2 alleles at a
single “locus”

e Homozygosity (homozygous): both alleles identical at locus
e Heterozygosity (heterozygous): different alleles at locus

e Genetic marker (in this course): polymorphic DNA sequence at single locus

[Mutations ~polymorphisms (see later)]

Van Steen K
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How to generate a genetic map?

e To produce a genetic map, researchers collect blood or tissue samples from
family members where a certain disease or trait is prevalent.

e Using various laboratory techniques, the scientists isolate DNA from these
samples and examine it for the unique patterns of bases seen only in family
members who have the disease or trait. These characteristic molecular
patterns are referred to as polymorphisms, or markers.

e Before researchers identify the gene responsible for the disease or trait,
DNA markers can tell them roughly where the gene is on the chromosome.

How is this possible?

Van Steen K
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How to generate a genetic map? (continued)

e This is possible because of a genetic process known as recombination.

As eggs or sperm develop within a person's body, the 23 pairs of
chromosomes within those cells exchange - or recombine - genetic
material. If a particular gene is close to a DNA marker, the gene and
marker will likely stay together during the recombination process, and
be passed on together from parent to child. So, if each family member
with a particular disease or trait also inherits a particular DNA

marker, chances are high that the gene responsible for the disease lies
near that marker.

Van Steen K
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How to generate a genetic map? (continued)

Linkage Within A Family Linkage Disequilibrium Within A Population
Recombination Point
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(Bush et al. 2012)
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How to generate a genetic map? (continued)

e The more DNA markers there are on a genetic map, the more likely it is that
one will be closely linked to a disease gene - and the easier it will be for
researchers to zero-in on that gene.

e One of the first major achievements of the HGP was to develop dense
maps of markers spaced evenly across the entire collection of human
DNA.

(http://www.genome.gov/10000715#al-3)

Van Steen K
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“The Human Genome Project”

ional Human Genome Research Institute

National Institutes of Health

iy, 9°"ome9ov R
%WW Nat

- ' -
h Funding ; h at HHGRI; Health BRI Issues in Genetics { Newsroom : Careers & Training ‘ About | For You ‘ ﬁ D ('ﬂ

Home > Education > All About The Human Genome Project (HGP)

) All About The Human Genome Project (HGP)

All About The Human
Senome Eroject (Hak) The Human Genome Project (HGP) was one of the great feats of | gee Also:
et 5 Sl N d
Education Archive exploration in history anvlnward voyage of discovery rather Youfll) White House
Fact Sheets than an outward exploration of the planet or the cosmos; an Annohncement

international research effort to sequence and map all of the
Genetic Education Resources for  » ! P June 26, 2000

Teachers genes - together known as the genome - of members of our
species, Homo sapiens. Completed in April 2003, the HGP gave Extramural Research
NHGRI Webinar Series » b vt o Program
us the ability, for the first time, to read nature's complete
National DNA Day % genetic blueprint for building a human being. Other Federal Agencies
Online Genetics Education Resources . X X i . i Involved in Genomics
In this section, you will find access to a wealth of information on the history of the HGP, ——
Smithsonian NHGRI Genome » & OnOther Sites:
Exhibition its progress, cast of characters and future. e St
Taking Glos Access to the full human
alkin SSar .
2 y © Educational Resources sequence
Understanding the Human » .
Genome Project @ General Information

@ Research
© Model Organisms

Educational Resources

* An Interactive Timeline of the Human Genome [unlockinglifescode.org]
An interactive, hyper-linked timeline of genetics that takes the reader from Mendel (1865) to the completion of
the mapping of the human genome (2003).

* The Human Genome: A Decade of Discovery, Creating a Healthy Future
A workshop for science reporters about the 10th anniversary of the completion of the draft sequence of the
human genome and to look at the future of genomic research.

« Understanding the Human Genome Project
NHGRI's Online Education Kit

* An Overview of the Human Genome Project
A brief overview of the HGP.

* 50 Years of DNA: From Double Helix to Health

Van Steen K
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Historical overview: GWAs as a tool to “map” diseases

2008 third

RABSB, SUOX
IKZF$, ERBB3
CDK2, ERBB3
Type 1 Diabetes

KIFSA-PIP4K2C
Rheumatoid athritis.

OPG, TNFRSF118
Bone Density

TRAF1-C5
Rheumatoid athritis
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Historical overview: 210 traits — multiple loci (sites, locations)
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Historical overview: trait categories

Published Genome-Wide Associations through 12/2013

Published GWA at ps5X10°< for 17 trait categories Digestive system disease

Cardiovascular disease

Metabolic disease

Immune system disease

Nervous system disease

Liver enzyme measurement

Lipid or lipoprotein measurement
Inflammatory marker measurement
Hematological measurement
Body measurement
Cardiovascular measurment
Other measurement

Response to drug

Biological process

Cancer

Other disease

Other trait

000000000000 0C0O0OO®

e e
NHGRI GWA Catalog B

" eeesmes Www.genome.gov/GWAStudies
S = www.ebi.ac.uk/fgpt/gwas/
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Historical overview: inter-relationships (networks)

. Type 1 diabetes (36)

. Multiple sclerosis (36)

. ADHD and conduct disorder (33)
. Crohn’s disease (27)

. Type 2 diabetes (22)

. Celiac disease (19)

. Ulcerative colitis(17)

. Systemic lupus erythematosus (17)
. Prostate cancer (17)

10. Rheumatoid arthritis (13)

11. Breast cancer (12)

12. Lung cancer (11)

OCONOOPLWN =

(Barrenas et al 2009: complex disease network — nodes are diseases)

m Cardiovascular diseases (Cv)

~= Digestive system diseases

= Endocrine system diseases

I Eye diseases

== Immune system diseases (Is)

® Mental disorders

== Multiple diseases

® Musculoskeletal diseases (Ms)

= Ms, Sc, Is

= Neoplasms

= Nervous system diseases (Ns)

== Ns, Cv

= Ns |s

= Ns, Ms

== Nutritional and metabolic diseases |
™ Nm, Es, Is

== Skin and connective tissue disease
B Sc, Is

™= Urogenital diseases
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Historical overview: inter-relationships (networks)

B v °® A Intracranial aneurysm

1. HLA-DQAT1 (5)

2, Coronary 2. HLA-DRB1 (4)
o A\ . : =3y disease 3. CDKN2A (4)
Celiac disease ‘ /.\L\\ £ ! 4. CDKN2B (4)
o 5. IL23R (3)
R > 1 6. HLA-E (3)
Alzheimer’ il —E0 @’/ EIANN
disease S 2" W/%o disease
. ,A' _'. 4
Parkinson’s = %/c :
disease 7585
[ o ,'::“"“"“, . ;
@ o Bipolar reast cancer
£ Secedisorder
Schizophrenia

Chronic lymphocytic
leukemia

(Barrenas et al 2009: complex disease GENE network — nodes are genes)
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2 The rise of GWASs

(slide Doug Brutlag 2010)

Van Steen K
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What are GWASs?

e A genome-wide association study is an approach that involves rapidly
scanning markers across the complete sets of DNA, or genomes, of many
people to find genetic variations associated with a particular trait.

e Recall: a trait can be defined as a coded phenotype, a particular
characteristic such as hair color, BMI, disease, gene expression intensity
level, ...

Van Steen K
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Genome-wide association studies: basic principles

The genome-wide association study is typically (but not solely!!!) based on a
case-control design in which single-nucleotide polymorphisms (SNPs) across
the human genome are genotyped ... (Panel A: small fragment)

Chromosome 9 - :ﬂ—‘~

— Personl

— Person2

— Person3

Van Steen K
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Genome-wide association studies: basic principles

B SNP1 SNP2
Cases Initial discovery study .4l e Initialgis;olg study  ~ontrols
2 85 L8 284 =1x L a0

P=1x10-12 :

Common Variant

homozygote f Heterozygote homozygote

e Panel B, the strength of association between each SNP and disease is
calculated on the basis of the prevalence of each SNP in cases and
controls. In this example, SNPs 1 and 2 on chromosome 9 are associated

with disease, with P values of 10712 and 1078, respectively

(Manolio 2010)

Van Steen K
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Genome-wide association studies: basic principles

Position on chromosome 9

Chromosome 16 18 20 22

e The plot in Panel C shows the P values for all genotyped SNPs that have
survived a quality-control screen (each chromosome, a different color).

e The results implicate a locus on chromosome 9, marked by SNPs 1 and 2,
which are adjacent to each other (graph at right), and other neighboring
SNPs. (Manolio 2010)

Van Steen K
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View the GWAs catalogue (http://www.genome.gov/gwastudies/)

2317 studies (6/10/2014)

Page 10of 47 Next> Last>>

(Entries 1-50 of 2317)

Date First Disease/Trait Initial Replication Region Reported Gene(s) Mapped Strongest Context Risk Allele P-value OR or Platform CNV
Added to Author/Date/ Sample Sample Gene(s) SNP-Risk Frequency beta-coefficient |[SNPs passing QC]

Catalog Journal/Study Description Description Allele in and [95% CI]
(since Controls

11/25/08)

382 Han 559 Han 19p13.2 RETN RETN - rs1423096-G 0.78 1x107 .322 [0.25-0.40] Tlumina N

04/16/14 Chung CM Resistin levels
ug/mL increase [NR]

March 03, 2014 Chinese Chinese Ci9orfs9
Diabetes Metab ancestry ancestry
Res Rev indiviudals indiviudals
Common
guantitative trait
locus downstream
of RETN gene
identified by
genome-wide
association study
is associated with
risk of tyvpe 2
diabetes mellitus
in Han Chinese: a
Mendelian
randomization
effect.

10/03/14 Zhang B Colorectal 1,773 East 6,902 East 18q21.1 SMAD7 SMAD7 rs7229639-A  |intron 0.145 3x 10711 1.22 [1.15-1.29] Affymetrix &
Tllumina

[1,695,815]
(imputed)

January 21, 2014 |cancer Asian ancestry | Asian ancestry
Int ] Cancer cases, 2,642 | cases, 7,862
Genome-wide East Asian East Asian
association study ancestry ancestry
identifies a new controls controls
SMAD7 risk

variant associated

with colorectal
cancer risk in East

Asians.

Tllumina N

10/06/14 Xie T Amyotrophic 250 Han NA View full set of 175 SNPs
[859,311] (pooled)

January 17, 2014 | lateral sclerosis | Chinese
Neurobiol Aging | (sporadic) ancestry. NA RABSP1 NA kgp22272527-? NR 8x 1071 NR
A genome-wide cases, 250 Han
association studv Chinese
combining ancestry
pathwav analvsis controls . -3

12q24.33 GPR133 GPR133 rs11061269-2 |intron 0.08 8x10°10 3.7761 [2.49-5.74]
for typical S —
sporadic 21q22.3 TMPRSS2 IMPRSS2 - £53977018-2 0.05 2102 NR

NA MYo188 NA kgp8087771-? 0.2 2x10°10 3.0327
[2.212039-4.157817]

Van Steen K



GBIO_crash course GWAS_academic year 2020-2021_2"¢ Semester

Detailed flow of a genome-wide association study

Biological question | Sampling —p-( Selection of DNA chip
Laboratory DNA preparation | Chip hybridization Chip scan
Low level analysis Image analysis — Normalization —»  Genotype calling ]—D{Standard quality control

~

High level analysis

Statistical analysis D’[Replication [ Validation

.

C -
pulation ],

-
—%Impactonpo

A

—% Replication ;‘ValidationH Impact on population ‘

- T a
Imputation H Statistical analysis
/

— [

- "

N
Replication / Validation

Data -n-wining

lép[ Impact on population ‘

.—"

(Ziegler 2009)
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3 Study Design
Components of a study design for GWA studies

e The design of a genetic association study may refer to
- study scale:
= Genetic (e.g., hypothesis-drive, panel of candidate genes)
= Genomic (e.g., hypothesis-free, genome-wide)
- marker design:
= Which markers are most informative in GWAs? Common variants-
SNPs and/or Rare Variants (MAF<1%)
= Which platform is the most promising? Least error-prone? Marker-
distribution over the genome?
- subject design

Van Steen K
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3.a Marker Level

e Costs may play a role, but a
balance is needed between costs
and chip/sequencing platform
performance

e Coverage also plays a role (e.g.,
exomes only or a uniform spread).

e When choosing Next Generation
Sequencing platforms, also rare
variants can be included in the
analysis, in contrast to the older
SNP-arrays (see right panel).

Amplification
Digestion

Probe Iabeliny

Patient DNA

B

SNP array

SN <‘ e
qﬁ.+i§e§e$

Q Allele A

3\ 2 Allele

l Hybridization

Allele A

Allele B

@ Normal
@ Deletion

@ Duplication
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From common variants towards including rare variants

e Hypothesis 1 for GWAs: Common Disease — Common Variant (CDCV):

- This hypothesis argues that genetic variations with appreciable
frequency in the population at large, but relatively low penetrance (i.e.
the probability that a carrier of the relevant variants will express the
disease), are the major contributors to genetic susceptibility to common
diseases (Lander, 1996; Chakravarti, 1999; Weiss & Clark, 2002; Becker,
2004).

- The hypothesis speculates that the gene variation underlying
susceptibility to common heritable diseases existed within the founding
population of contemporary humans —> explains the success of GWAs?


http://www.sciencemag.org/cgi/content/summary/274/5287/536
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9915503
http://dx.doi.org/10.1016/S0168-9525%2801%2902550-1
http://dx.doi.org/10.1016/S0306-9877%2803%2900332-3
http://dx.doi.org/10.1016/S0306-9877%2803%2900332-3
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From common variants towards including rare variants

e Hypothesis 2 for GWAs: Common Disease — Rare Variant (CDRV):

- This hypothesis argues that rare DNA sequence variations, each with
relatively high penetrance, are the major contributors to genetic
susceptibility to common diseases.

- Some argumentations behind this hypothesis include that by reaching an
appreciable frequency for common variations, these variations are not as
likely to have been subjected to negative selection. Rare variations, on
the other hand, may be rare because they are being selected against due
to their deleterious nature.

There is room for both hypothesis in current research !
(Schork et al. 2009)

Van Steen K
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Distribution of SNP “effects”

Dichotomous Traits Quantitative Traits
(a) 200 4
190 4
. ® 050
1.80 045 1@
| S =
1.70 3 040 -
2 160 - @ 035 -
€ 504 \® S 030 1 i 0
& 140 e % » o - § * &
30 Bsia ¢ P g 0204 o
' — o o5 = &~ . o o o
1.20 4 ) o0 ¢ \% | . *
| LR =t 0] o TRIR. o ¢ 8
% & O o o e 9 & 8 %P3 %
110 4 o 9 ® 005 4 & o © o° Y RES
100 4——or T T ™ T T T -] 000 + T T T T T T T T T 1
000 005 010 0.15 020 025 030 035 040 045 0.50 000 005 010 015 020 025 030 035 040 045 050
Minor allele frequency Minor allele frequency

Arking & Chakravarti 2009 Trends Genet

Food for thought:

e The higher the MAF, the lower the effect size
e Rare variants analysis is in its infancy in 20009 ....
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3.b Subject Level

Aim Selection scheme

Increased effect size Extreme sampling: Severely affected cases vs. extremely

normal controls

Genes causing early Affected, early onset vs. normal, elderly

onset

Genes with large / Cases with positive family history vs. controls with
moderate effect size negative family history

Specific GXE interaction Affected vs. normal subjects with heavy environmental

exposure

Longevity genes Elderly survivors serve as cases vs. young serve as controls

Control for covariates Affected with favorable covariates vs. normal with

with strong effect unfavorable covariate

Morton & Collins 1998 Proc Natl Acad Sci USA 95:11389

Van Steen K
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Popular design 1: cases and controls

Avoiding bias — checking assumptions:

1. Cases and controls drawn from same population
2. Cases representative for all cases in the population
3. All data collected similarly in cases and controls

Advantages: Disadvantages:
1. Simple 1. Population stratification
2. Cheap 2. Prone to batch effects and other biases
3. Large number of cases and controls 3. Case definition / severity
available 4. Overestimation of risk for common

4. Optimal for studying rare diseases diseases

Van Steen K
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Popular design 2: family-based

Avoiding bias — checking assumptions:

1. Families representative for population of interest

2. Same genetic background in both parents

Advantages:

1. Controls immune to population
stratification (no association without
linkage, no “spurious” (false positive)
association)

2. Checks for Mendelian inheritance
possible (fewer genotyping errors)

3. Parental phenotyping not required (late
onset diseases)

4. Simple logistics for diseases in children
5. Allows investigating imprinting (“bad
allele” from father or mother?)

Disadvantages

1. Cost inefficient
2. Sensitive to genotyping errors

ower power when compared wit
case-control studies
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Some more power considerations

e Rare versus common diseases (Lange and Laird 2006)

a Rare disease (prevalence 0.1%) b Common disease (prevalence 14%)
0.8 — 0.7 —
— S0 0004
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4 Pre-analysis steps

4.a Quality control

Standard file format for GWA studies

Standard data format: tped = transposed ped format file

FamiD PID FID MID SEX AFF SNP1; SNP1, SNP2; SNP2,

ped file

1 1 0 O 1 1 A A G T
2 1 0 O 1 1 A C T G
3 1 0 O 1 1 C C G G
4 1 0 O 1 2 A C T T
5 1 0 O 1 2 C C G T
6 1 0 O 1 2 C C T T

Chr SNP name Genetic distance Chromosomal position

1

SNP1

0

123456

1

SNP2

0

123654

map file
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Standard file format for GWA studies (continued)

Chr SNP

Gen. dist. Pos

PID1 PID2 PID3 PID4 PID5 PID6

1 SNP1 O

123456 A A A C C C A C C C C C

1 SNP2 O

123654 G T G T G G T T G T T T

tfam file: First 6 columns of standard ped file

FamIiD PID FID MID SEX AFF

1

0

0

1

1

tped file

tfam file

Gl W N
N S = B

o|jlo OO O

ol OO )| O

1
1
1
1
1

NN NP -
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Why is quality control (QC) important?

BEFORE QC - true signals are lost in false positive signals

07 i ek, e e TR
Tt A e e
: .v;‘ . ;_'_.:l ..:E : Aur
8 | T, ERATLE R a0k VR
o Sa g I L b SIS
; ix R L e SRt
) i D s T A
o N sesh Vg T oS o
6 RS DR EE R ek e
— -t Ey sryr. Lo AR
g ¥ L8 e o 5. PE IR
] - .;,.-i T :‘i'@ % Foubo W ¥
- k! = [t vl R ety e Y
4 - . k '?“I.-ﬁ_ i L ;." ‘:"
- £,
2 —
{] i
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 2

chromosome

Ger MI FS |, Affymetrix 500k array set, SNPs on chip: 493,840

(Ziegler and Van Steen 2010)
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Why is quality control important?

AFTER QC - skyline of Manhattan (= name of plot: Manhattan plot):

-log(P]

1 2 3 4 5 6 7 10 11 12 13 14 18 16 17 19 21

chromosome

Ger MI FS |, Affymetrix 500k array set, SNPs on chip: 493,840
SNPs passing standard quality control: 270,701

(Ziegler and Van Steen 2010)
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What is the standard quality control?

e Quality control can be performed on different levels:

— Subject or sample level
— Marker level (in this course: SNP level)
— X-chromosomal SNP level (in this course not considered)

e Consensus on how to best QC data has led to the so-called “Travemiinde
criteria” (obtained in the town Travemiinde) — see later
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Marker level QC thresholds may be genotype calling algorithm dependent

 rbend=AA % Beed=AB e Allele signal intensity genotype
® Grdseed =B 8 * Brdseed = NoCall ¥ .l frdiced =B B * Birdseed = NoCal .
" o calling cluster plots for two
B 3 wiE z 13 . different SNPs from the same study
g 800 g 0 ¥
g - - population.
% % 16 .
T @ . T @& S Upper panels: Birdseed genotypes
a0 : i
e L Lower panels: BEAGLECALL
P Nleleaintensity. el ATntensity
Edie genotypes.
= BoagheCal = A A » BeageCal=A B » BeagleCall= A A BeageCal = A B
= BeageCal =B B x BoagleCall = NoCal o - x -
% § g DRSS The plots on the left show a SNP
o L 10007 ; .
3 1 ol s 1% with poor resolution of A_B and
Zwll
é é B_B genotype clusters and the
© e . .
- ﬁ§ increased clarity of genotype calls
E = 400 1 © .
e E that comes from using BEAGLECALL
R o’ SRR
B R = =B e | (Golden HellxBlog)
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Quality control at the marker level

e Minor allele frequency (MAF):
— Genotype calling algorithms perform poorly for SNPs with low MAF
— Power is low for detecting associations to genetic markers with low
MAF (with standard large-sample statistics)
e Missing frequency (MiF)
— 1 minus call rate
— MiF needs to be investigated separately in cases and controls because
differential missingness may bias association results
e Hardy-Weinberg equilibrium (HWE)
— SNPs excluded if substantially more or fewer subjects heterozygous at a
SNP than expected (excess heterozygosity or heterozygote deficiency)

Van Steen K



GBIO_crash course GWAS_academic year 2020-2021_2" Semester

What is Hardy-Weinberg Equilibrium (HWE)?

Consider diallelic SNP with alleles A and a
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What is Hardy-Weinberg Equilibrium (HWE)?
Consider diallelic SNP with alleles A; and A,

e Genotype frequencies
P(A1A)) = pu, P(A1A2) = pr2, P(A2Az) = pa
o Allele frequencies P(A|) = p = pi1 + %plg , P(A2) =g =py+35p

D =
S
[

the population is said to be in HWE at the SNP

(Ziegler and Van Steen 2010)
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The Travemiinde criteria

Filter criterion

Standard value for filter

Sample level Call fraction > 97%
Cryptic relatedness Study specific
Ethnic origin Study specific; visual inspection of
principal components
Heterozygosity Mean £ 3 std.dev. over all samples
Heterozygosity by gender Mean £ 3 std.dev. within gender group
SNP level MAF >1%
MiF < 2% in any study group, e.g., in both

MiF by gender
HWE

cases and controls
< 2% in any gender
p < 10

(Ziegler 2009)
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The Travemiinde criteria

Filter criterion Standard value for filter
SNP level Difference between control groups p > 10" in trend test

Gender differences among controls p>10"in trend test
X-Chr SNPs Missingness by gender No standards available

Proportion of male heterozygote calls No standards available

Absolute difference in call fractions for No standards available
males and females

Gender-specific heterozygosity No standard value available

(Ziegler 2009)
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4.b Linkage disequilibrium

e Linkage Disequilibrium (LD) is a measure of co-segregation of alleles in a
population — linkage + allelic association

Two alleles at different loci that occur together on the same chromosome
(or gamete) more often than would be predicted by random chance.

® |t is a very important concept for GWAs, since it gives the rational for
performing genetic association studies

IRdiFECt e > [Disease ]
association _e=""" phenotype
-
-
’ Direct Direct
» association association
- - —Haplotype

Typed marker locus Unobserved causal locus
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4.c Confounding by shared genetic ancestry
What is spurious association?

e Typically, there are two characteristics present:
- A difference in proportion of individual from two (or more)
subpopulation in case and controls

- Subpopulations have different allele frequencies at the locus.

Population 1 Cases Population 2

I
I
I

Controls

Genotype .aa .Aa .AA
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What are typical methods to deal with population stratification?

e Methods to deal with spurious associations generated by population
structure generally require a number (at least >100) of widely spaced null
SNPs that have been genotyped in cases and controls in addition to the

candidate SNPs.
e These methods large group into:

— Principal components: finding continuous axes of genetic variation
— Structured association methods: “First look for structure (population
clusters) and second perform an association analysis conditional on the

cluster allocation”

— Genomic control methods: “First analyze and second downplay
association test results for over optimism”
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Principal components

score matrix S -omics data matrix X
loading matrix L
g
]
g
=]
: —
a = *
Q.
£
]
o
PCs
v nxd
PCs >

n -omic item measured

pxd pXnN

a1 = Xgplig ¥ X000 X3 l50 + X 0001 + Xy 5.15 1 + X0 6161

e Mathematical derivation:
https://courses.cs.ut.ee/MTAT.03.227/2017 spring/uploads/Main/lecture-notes-9.pdf

e Applications in omics: http://cdn.intechopen.com/pdfs-wm/30002.pdf
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Principal components

Figure 1: PCA for Data Representation

L2

M2

A @ P1

5 > &I
Mol 1

Figure 3: The PCA Transformation

>
X

Figure 2: PCA for Dimension Reduction

Find eigenvectors of the covariance matrix
for standardized (x1, x2, ...) ["2SNPs]
These will give you the direction vectors
indicated in Fig3 by phi_1 and phi_2
These determine the axes of maximal

variation
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Principal components in statistical genetics

In European data, the first 2 principal components “nicely” reflect the N-S and

E-W axes ! Y-axis: PC2 (6% of variance); X-axis: PC1 (26% of variance)

v00

| S ——
A
@ hitp SMistgzo ab-Sx-maseile. fr

—
Y

French
Spanish
Slovak

Hungarian
Polish
Romanian
Norway

800
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0.05 0.10 0.15

0.15

Principal components in statistical genetics: the more SNPs the better?

500 rSNPs

e CEU Subjects with both parents
* CHB 30 4 from the same group
; * YRI _
o (Sabatti et al.
i gﬂ 3 20 4 - 2009)
& g .
N =
O
. °g-; 10 4
4 ‘ 6
og é
(&)
” w O
1 10,000 rSNPs 5
3 ‘
* W
oail | T T T T t _10 i
-0.2 -0.1 0.0 0.1 0.2 . ®m West Lapland @ South Oulu
PC1 @ Central Lapland  ® North Oulu
Q L ] -20 { @ East Lapland ® Kainuu
2 -40  -20 0 20
(Pardo-Seco et al. 2014) ? * First coordinate MDS
Van Steen K
2
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5 Analysis Steps

5.a Testing for Associations

The linear regression model

y =00+ [ix1+ ...+ Oixk +e€

@ y: response variable.

@ X1,....X:. regressor variables, independent variables.

@ (o, /31...., k. regression coefficients.
@ ¢: model error.
» Uncorrelated: cov(ej,ej) =0,7 # J.

» Mean zero, Same variance: var(¢;) = 0. (homoscedasticity)
» Normally distributed.
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Linear vs non-linear

Linear Models Examples:

y = o+ Bix + Bax? + €
y = ,.30 + ,531)(1 4+ :JSQXQ —+ 512)(1 Xo + €
y = o+ Pilogxy + Brlogxo + €

. , 1 , 1
|Ogy = :fj)[;. + :31 () — ,.32 () —+ €
X1 X2

Nonlinear Models Examples:

y = Bo+ Bix{t + Baxy? + €
50
1 + eﬁl)q + €

y:
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Regression inference

— Bo + OB1x1 + ...+ Bixk + €

@ Least square estimation of the regression coefficients.
b= (XTX)"I1XTy.
@ Variance estimation for o2 (see later)

o Coefficient of Determination. RZ.

o Partial F test or t-test for Hy : 3; = 0.
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Tests in GWAS using the regression framework

e Example 1:
Y= [y+ [1SNP + ¢
-Hop: 1 =0
-Hi:py #0
— dfg = n — 2 (this links to df in variance estimation)
— dfg = n — 1 (this links to df in variance estimation)

It can be shown that for testing f; = O versus 5; # 0
SSE(R)=SSE(F) . SSE(F) _ - (t%)?
dfr—dfr  dfr Z(b )
Why is the t-test more flexible?

- F* =

Van Steen K
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Tests in GWAS using the regression framework

e Example 2:
Y= fpy+ BiSNP + [,PC; + [3PC, + ¢
-Hy: 51 =0
-Hi: 5, #0
-dff=n-—4
-dfg =n—3

How many dfs would the corresponding F-test have?

Van Steen K
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The impact of different encoding schemes for SNPs

Coding scheme for statistical modeling/testing
Indiv. X1 X1 X2 X1 X1 X1
genotype
Additive Genotype Dominant |Recessive |Advantage
coding coding coding (for coding (for | Heterozygous
(general mode ||a) a)
of inheritance)
AA 0 0 0 10 0 0
Aa 1 1 0 1 0 1
aa 2 0 1 1 1 0
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Which encoding scheme provides a good fit to the data?

P e e e o e e e e e e e e e . —— —

cholesterol

e

AA Aa aa
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Which encoding scheme provides a good fit to the data?

1
= : '
E | %5, 02020202 Aas- : :
k- : 5 x :

= '
g i;/_: lac: x
| , :
:::::::::::::::::::l ————————————————————————— D e B s = =]
0 O 1
O 1 O
1 I 1
AA Aa aa

Robust vs overkill ?

Van Steen K



GBIO_crash course GWAS_academic year 2020-2021_2"9 Semester

Which encoding scheme provides a good fit to the data?

cholesterol

AA Aa aa

Most commonly used
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Regression analysis in R

Syntax Model Comments
Y~A Y =B, + B1A Straight-line with an implicit y-
intercept
Y~-1+A Y =[(A Straight-line with no y-intercept:

that 1s, a fit forced through (0.0)

Y ~ A +1(A"2)

Y= E’D_ ﬁlA N BZAE

Polynomial model: note that the
identity function I( ) allows terms
in the model to include normal
mathematical symbols.

Y= E’D_ ﬁlA a BZB

A first-order model in A and B
without interaction terms.

Y= E’D_ EJIAB

A model containing only first-order
interactions between A and B.

Y~A+B
Y ~A:B
Y ~A*B

Y =[p,* A+ BB+ B;AB

A full first-order model with a term:
an equivalent codeis Y ~A+B +
A:B.

Y~(A+B+C)2

Y =Pt BiA+ BB+ BC
PsAB + BsAC + PeAC

A model including all first-order

effects and interactions up to the ™

order, where n 1s given by ( )"n.
An equivalent code in this case is
Y ~ A*B*C - A:B.C.
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Model diagnostics are model-dependent ...

e There are 4 principal assumptions which justify the use of linear regression
models for purposes of prediction:
- linearity of the relationship between dependent and independent
variables
- independence of the errors (no serial correlation)
- homoscedasticity (constant variance) of the errors
= versus time (when time matters)
= versus the predictions (or versus any independent variable)
- normality of the error distribution. (http://www.duke.edu/~rnau/testing.htm)

e To check model assumptions: go to quick-R and regression diagnostics
(http://www.statmethods.net/stats/rdiagnostics.html)
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QQ plots for model diagnostics — Q for Quantile

e Quantiles are points in your data below which a certain proportion of your
data fall.
What is the 0.5 quantile for normally distributed data?
e Here we generate a random sample of size 200 from a normal distribution
and find the quantiles for 0.01 to 0.99 using the quantile function:

qguantile(rnorm(200),probs = seq(0.01,0.99,0.01))

e Q-Q plots take your sample data, sort it in ascending order, and then plot
them versus quantiles calculated from a theoretical distribution.
The number of quantiles is selected to match the size of your sample data.
The quantile function in R offers 9 different quantile algorithms!
See help(quantile)
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QQ plots for model diagnostics — Q for Quantile

e A Q-Q plot is a scatterplot created by plotting two sets of quantiles against
one another.

e If both sets of quantiles come from the same distribution, we should see
the points forming a line that’s roughly straight.

e Here’s an example of a Normal Q- Normal G- Plot

Q plot when both sets of quantiles

truly come from Normal

distributions.

Van Steen K
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Examples of QQ plots: no straight line

e QQ plot of a distribution that’s skewed right; a Chi-square distribution with

3 degrees of freedom against a Normal distribution
gqplot(gnorm(ppoints(30)), qchisg(ppoints(30),df=3))

qchisq(ppoints(30), df = 3)

gnorm(ppoints(30))
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Testing for association between case/control status and a SNP

e Fill in the table below and perform a chi-squared test for independence

between rows and columns > genotype test = 2 df

AA

Aa

dd

Cases

Controls

Sum of entries =
cases+controls

e Fill in the table below and perform a chi-squared test for independence
between rows and columns > allelic test (ONLY valid under HWE) - 1df

A

d

Cases

Controls

Sum of entries is
2 x (cases + controls )
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5.b Replication and validation

Random variation
'

Original
study

Systematic variation

Original , Different

population

population

Validation

Replication

(Igl et al. 2009)
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Guidelines for replication studies

e Replication studies should be of sufficient size to demonstrate the effect
e Replication studies should conducted in independent datasets

e Replication should involve the same phenotype

e Replication should be conducted in a similar population

e The same SNP should be tested

e The replicated signal should be in the same direction

e Joint analysis should lead to a lower p-value than the original report

e Well-designed negative studies are valuable

Note that SNPs are most likely to replicate when they
- show modest to strong statistical significance,
- have common minor allele frequency,
- exhibit modest to strong genetic effect size (~strength of
association)
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5.c Causation
“Association does not imply causation”

e Meaning:

Just because two things correlate does not necessarily mean that one
causes the other.

e As a seasonal example, just because people in Belgium tend to spend more
in the shops when it's cold and less when it's hot doesn't mean cold
weather causes high street spending.
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Establishing causation: wet lab experiments in model organisms

e Gene knock-out experiments
V) &1 3 =

RESEARCH & FACULTY ~ EDUCATION & LEARNING v JAXMICE & SERVICES ~ PERSONALIZED MEDICINE~  NEWS~  ABOUTUS v~  GIVE

decades to uncover anything useful about aging and associated diseases. And, there are myriad ethical issues that prevent researchers from influencing

human inheritance, controlling daily environment or behavior, or fully investigating our biology. Clearly there needs to be a different experimental subject.

The best models — stand-in surrogates for humans and our diseases — are mice.

(https://www.jax.org/about-us/why-mice)

e The findings of animal experiments may not always be directly applicable to
the human situation because of genetic, anatomic, and physiologic
differences or the entity of exposures a human being has experienced
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Establishing causation: dry lab

e As opposed to association studies that benefit from LD, the main challenge
in identifying causal variants at associated loci analytically (finemapping)
lies in distinguishing among the many closely correlated variants due to LD

4

A & I I I
Gy s +—t +—t—t L e o e s o ¢

000 67400000 6
R —— | .
Hypothetical protein, IL12RB2: interleukin 12
NM_001013674 g receptor, beta-2
-
IL23R: interleukin 23 receptor

< telomeric centromeric—»
B4
124
£ 10-
<
> 84
[
o 64
g 4
T L)
0“ ® * 9 o 0 . 4 N e . . -,
67300000 67400000 67500000
C 1 .l'\l n \‘ l\.&l LLLL IK\ \ . 8 1 Hin
T e u ,_a LS TNTA R R d IRl PSS
R R G2t A IO 4
“.-o'-',' (‘s _’\ y & \‘~‘\\/
Loy :,‘ , 3 / .\\
%z . A

(Duerr et al 2006)
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5. d Interpretation
Functional genomics analyses: incl transcriptomics

e One of the fundamental needs for the interpretation of the effects of
genome variants is the understanding of the specific biological effect such
variants have in the cell, which provides a handle to the biology of the
disease or organismal phenotype.

e GWAS have demonstrated that the majority of such variants are found in
non-coding regions of the genome and are therefore likely to be involved in
gene regulation. Hence, there should be interpretational advantages in
analyzing these variants in the context of gene expression (in cells/tissues)

e An eQTL is a locus that explains a fraction of the genetic variance of a gene

expression phenotype.
(Nika and Dermitzakis 2013)
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Functional genomics analyses: incl transcriptomics

a Cis (local) m e
=~

( \ D
A( —
b Trans (distal) ‘r;
Py N =
— . o
A
\a =
——

Nature Reviews | Genetics

(Cheung and Spielman 2009)

e Cis-acting variants are

found close to the
target genes and
trans-acting variants
are located far from
the target genes,
often on another
chromosome.
Different allelic forms
of the cis- and trans-
acting variants have
different influence on
gene expression.
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Functional genomics analyses: incl transcriptomics

OPEN
Functional mapping and annotation of genetic

associations with FUMA

2 Arjen van Bochoven® & Danielle Posthuma® "4

Kyoko Watanabe!, Erdogan Taskesen

E ZBROAD

INSTITUTE
DEPICT

"DEPICT" your
association study

DEPICT is an integrative tool that based on predicted gene
functions systematically prioritizes the most likely causal
genes at associated loci, highlights enriched pathways, and
identifies tissues/cell types where genes from associated loci
are highly expressed

Download DEPICT (2.9 GB) today
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“Colocalization analysis” (not to be confused with protein colocalization)
e Estimates the posterior probability that the same variant is causal in both a

GWAS and eQTL study while accounting for the uncertainty of LD

e Example statistical methods following a Bayesian statistical framework:
eCAVIAR (Hormozdiari et al. 2016), COLOC (Giambartolomei et al. 2014)
e Posterior support for the following hypotheses:

HO: no causal variants for either trait;

H1: a causal variant for disease association (GWAS) only;

H2: a causal variant for gene expression association (eQTL) only;
H3: two distinct causal variants, one for each trait;

H4: a single causal variant common to both traits (co-localization).
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Changing units of analysis: from SNPs to genes

p:\:vpmn Jowrral of Human Genedcs (J019) ITFETI-EX
hﬂm’.ﬁcﬂ.ﬂ"gﬂﬂ.mﬂm 100315

ARTICLE

i» |

Comparison of methods for multivariate gene-based association
tests for complex diseases using common variants

laeyoon Chung (3™ - Gyungah R. Jur'** - Josée Dupuis® - Lindsy A. Famer' 4457

Berewedt 13 December 27T/ Beried: 30 (riober N2/ Accepted: 4 Decemnber 2ME / Published onlne: 15 Jamary 2019
@ The hhoris) D19 This artde = published with open access

Abstract

Complen disesses are wually asocmied walh muliple comrelated phenalypes, and the analyss of compaosie soones or deesse
Aalus may mod Tully capiure the complexaty (or mulldmensionalily ). Jomi analyss of mulbople disesse-related phenotypes m
el et oould polenbally monesie power 0 delecl asoaahon of 8 deesse wilh common SNPS (or genes . Clene-Ta e
lesis are desagned o adeninly genes contnnmg mulbple nsk vamanis thal mdwvadually sre wealdy assooaked wath & wm vansle
tranl. We combned three mullivanale saasabon e (OFBren method, TATES, and MuoliPhen) walh two gene-lesed
aanciahon s (LATES and Y EGAS) and compered perlomusmos (type | ernor and power) of s mullivanate gene-leaesd
melhods usmg amulsled data. Dela (o = AN for genebc sequence and oome baled phenolypes wene somulaked by vanying
causal vananl proportons and phenalype comelabons lor vanows soenanos. These amulshions showed thal two mulb vansle

winke the three mulbvansle saoaabon i pEred wath GATES have oomect type | emor. Mol Phen pared wvath GATES
las hagher power than compelmg melhods i the comelalons among phensiypes ane low (r< 057 ) We apphed thess gene
hased smapcabon methad: o oa OWAS dateel Inom the Aldhemer's Disesse Cenebcs Consonmum oontonmg Uhree
mewopatholgical rai need o Aldheimer disese (newne plgue, newolibnllary angles and cerelwal amyload
angoquihy) mesared m 3500 sulopaed brains. Cene-level significant evidence (F <27 = 107%) was identified in a mEgim
conlaimng three conliguows penes (FRAFPPC (2, TRAPPCT2Z-AST, AU ) wang O Bren and VEGAS, Gene-wade significan

aanciahins were nol chégrved 1n mivanale gene-hased e

Van Steen K



GBIO_crash course GWAS_academic year 2020-2021_2"9 Semester

Changing units of analysis: from SNPs to (genes to) pathways

e A biological pathway is an example of a biosystem, that can consist of
interacting genes, proteins, and small molecules.

e A biosystem, or biological system, is a group of molecules that interact in
a biological system.

e Another type of biosystem is a disease, which can involve components
such as genes, biomarkers, and drugs.

e The NCBI BioSystems Database currently contains records from several
source databases: KEGG, BioCyc (including its Tier 1 EcoCyc and MetaCyc
databases, and its Tier 2 databases), Reactome, the National Cancer
Institute's Pathway Interaction Database, WikiPathways, and Gene
Ontology (GO).

(https://www.ncbi.nlm.nih.gov/Structure/biosystems/docs/biosystems_about.html)
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https://www.ncbi.nlm.nih.gov/Structure/biosystems/docs/biosystems_help.html#WhatIs
https://www.ncbi.nlm.nih.gov/Structure/biosystems/docs/biosystems_help.html#SourceDatabases
http://www.genome.jp/kegg/
http://biocyc.org/
http://biocyc.org/biocyc-pgdb-list.shtml#tier1
http://ecocyc.org/
http://metacyc.org/
http://biocyc.org/biocyc-pgdb-list.shtml#tier2
http://www.reactome.org/
https://pid.nci.nih.gov/
http://www.wikipathways.org/index.php/WikiPathways
http://www.geneontology.org/
http://www.geneontology.org/
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Questions?
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