
Before next- generation sequencing (NGS), complex 
trait genetics focused on common variant contributions 
to disease risk using a genome- wide association study 
(GWAS) design1. These studies successfully identified 
a large number of significantly associated loci across a 
number of complex diseases. However, as study sample 
sizes have grown, newly identified variants have had 
smaller effects on risk. In fact, it has recently been argued 
that if enough individuals are genotyped, the common 
variants that are found to be significantly associated with 
several complex traits would be spread broadly and very 
densely across the genome (omnigenic model)2. This 
model is contrary to the original hope of GWAS: that the 
variants would cluster among, and hence implicate, key 
biological pathways (in a classical polygenic model). The 
clear implication of the omnigenic model is that except 
for some big hits that affect core genes, many common 
variant association signals emerging from GWAS would 
not generally be expected to provide a mechanistic 
understanding of disease or guidance regarding optimal 
clinical management for individual patients3. By contrast, 
rare- variant studies usually detect variants with larger 
effect sizes that may implicate additional core genes and 
therefore might lead to more direct insights into disease 
biology. A key limitation of studies based on genotype 
data has been that markers had to be predesigned in the 
genotyping microarrays and were limited in number. 
Therefore, the focus was typically on more- common 
variants. Advances in NGS technology have transformed 
human and medical genetics in the past decade by ena-
bling a more complete assessment of an individual’s 
genetic variation, including the rare (younger) alleles4,5.

The contribution of rare variants to a range of human 
phenotypes is already well established, with many disor-
ders being explained by individual, highly penetrant alleles 
with reduced reproductive fitness4,5. This reduced repro-
ductive fitness prevents the variants from becoming 
common in the general population, highlighting again 
why a focus on rare variants is important. The earliest 
applications of exome sequencing in human genetics 
focused on the diagnostic interpretation of individual 
patients with a presumed ‘simple’ genetic condition —  
an application that has been very  successful6–12.  
One question that remained largely unexplored until 
more recently, however, was the role that rare variation 
plays among the more common and complex traits. 
The need to address this question saw the emergence 
of rare- variant analytical approaches aimed at capturing 
rare- variant information across a gene or other defined 
genomic units. These approaches allow the identification 
of genes containing an excess of rare and presumably 
deleterious variation among cases ascertained for complex 
disease traits, relative to controls.

As NGS technologies became more high- throughput 
and costs continued to drop, the application of whole- 
exome sequencing (WES) and whole- genome sequenc-
ing (WGS) studies became more attractive among 
common complex disorders. Recent rare- variant studies 
have not only led to the identification of genes that show 
definitive genome- wide significant association with dis-
ease, but also provided insight into key issues that have 
otherwise been difficult to address, including identifying 
specific variants that contribute to disease risk, evalu ating 
the relative contributions of individual disease genes  
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to overall disease burden and assessing aspects of genetic 
architecture, including comparing the contributions of 
different allele frequencies and variant effect classes13–15.

A common theme across recent NGS studies is that rare  
variants, and in particular those found to be ‘ultra- rare’ 
in the population — that is, unobserved in available 
reference cohorts and likely to be very young in origin 
— also play an important role in the genetic architec-
ture of complex disorders. In this Review we focus on the 
gene- based collapsing approach, in which variants that 
satisfy specific criteria (qualifying variants) are binned 
together as equivalent, as a simple yet demonstrably 
effective approach to identifying rare- variant contri-
butions to disease. We summarize important lessons 
learned from the application of collapsing analyses to 
a range of phenotypes, including how applications have 
been optimized to improve genetic risk signal detection. 
Additionally, we describe elaborations currently being 
developed, such as incorporating regional intolerance 
within sub- regions of genes as an additional source 
of information16–20, aggregating information across 
multiple genes in order to understand the importance 
of various biological pathways, and applying genetic 
models beyond the single- gene-dominant models that 
have largely been considered to date. Finally, we discuss 
how analogous approaches can be applied to whole- 
genome sequence data, emphasizing the challenges 
related to defining the units within which to collapse 
variants and how to enrich for functional variants within  
those regions.

Introduction to rare- variant collapsing
Conceptually, gene- based rare- variant approaches work 
optimally when an expectation of allelic heterogeneity 
exists among the one or many disease- associated 
genes21. In these situations, each individual causal allele 
is expected to explain only a very small fraction of the 
cases under study, but different variants in the same  
gene may have a larger cumulative contribution. An intui-
tive example for this is provided by haploinsufficiency- 
mediated disorders. In haploinsufficient disease genes, the 
number of different alleles that confer equivalent risk is 
expected to be large and generally recognizable: any loss- 
of-function (LOF) allele, whether in an essential splice 
site, a frameshift or a stop mutation, will result in haplo-
insufficiency and, hence, disease. In such a case, it is 
reasonable to flag the presence (or absence) of any LOF 
variant and simply to test whether an increased number 
of cases have an LOF variant, relative to controls. In this 
context, the control sample is extremely important, as it 
reflects the empirical background variation rate for the 
suspicious class of variation in the test gene21.

Qualifying variant. In most cases, the successful appli-
cation of collapsing analyses depends on optimizing 
parameters in order to focus on the class of variation 
that will enrich for variants that confer risk and to 
reduce the impact of neutral background variation.  
A qualifying variant is one that is observed in the cases and 
controls being tested and passes a collection of filters13. 
Commonly applied filters include sequencing- based 
quality metrics, predicted variant effects, predictions 

of deleteriousness and — possibly the most important 
metric — population allelic frequencies. Specifically, 
for diseases under strong negative selection, restrict-
ing the analyses to the rarest variants has shown strong  
enrichments for causal variants14.

Gene- based collapsing approach. The conventional 
gene- based collapsing approach uses the protein- coding 
boundaries of genes to evaluate whether there is a sig-
nificant difference in the counts of cases versus controls 
who carry at least one qualifying variant13. This approach 
is particularly useful in traits for which a simple genetic 
model explains a proportion of the case population. 
Each gene is individually assessed for significant differ-
ences in counts of case and control individuals carrying 
a qualifying genotype. Given the approximately 19,000 
protein- coding genes, the conventional exome- wide 
multiplicity- adjusted significance threshold is assigned 
as α = (0.05/19,000) ≈ 2.6 × 10–6. As the number of 
hypotheses is clearly defined by the number of genes, 
exome- wide significance accounting for all independent 
hypotheses is the appropriate approach, as opposed to 
replication22. If multiple collapsing models are applied, 
as is usually the case, the significance threshold needs 
to be further divided by the number of models tested.

Other rare- variant association methods. Many appro-
aches have been suggested for rare- variant association 
testing, and the approaches can vary in both the null 
hypotheses being tested and what data can be incor-
porated (for example, quantitative traits and pedigree 
information). Unlike collapsing analyses, rare- variant 
burden methods23–25 aggregate the information found 
within a defined genetic region into a summary dose 
variable. In weighted burden tests26, variants are addi-
tionally weighted according to their frequency or func-
tional impact. Adaptive burden tests25,27–31 try to account 
for bidirectional effects by selecting appropriate weights. 
Variance component (kernel) tests such as C- alpha32 or 
SKAT33 also allow for bidirectional effects, but they are 
underpowered compared to collapsing or burden tests 
if many variants are causal and/or if effects are mostly 
unidirectional within a gene, which, on the basis of exist-
ing evidence, seems to be the case for several diseases. 
Therefore, omnibus tests such as SKAT- O34 use a com-
bination of burden and variance component tests, which 
helps for settings with limited prior knowledge of the 
underlying disease architecture.

The details underlying these approaches and the 
comparisons between different rare- variant association 
tests have been reported in great detail elsewhere35. Here 
we focus on the application of rare- variant collapsing 
analyses as a conceptually simple representative that has 
proven successful in various settings. However, many of 
the recommendations also apply to burden and other 
rare- variant association tests.

Controlling artefactual signals
Sequencing- based cohort analyses are sensitive to vari-
ability in the sequencing data of individual samples. 
Adopting a single common bioinformatic pipeline for 
the entire test cohort is crucial for reducing the variability 

Allelic heterogeneity
The presence of different 
pathogenic variants in the 
same gene or at the same 
chromosome locus that all  
lead to the same or to very 
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Haploinsufficient disease 
genes
Disease- associated genes  
for which a single functional 
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loss- of-function alleles are 
pathogenic even when 
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Usually benign variants in  
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are unconnected to the 
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Bidirectional effects
Effects within a given gene, 
wherein some variants increase 
risk of disease, while others 
reduce risk.
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that comes from different secondary analysis pipelines. 
In addition to ensuring a single common bioinformatic 
pipeline, various sequencing quality properties can 
introduce bias if their distributions differ significantly 
between the case and control samples. The overall goal 
is to design a study to minimize heterogeneity between 
the case and control samples for quality metrics such 
as the average capture- region read depth, the capture 
specificity from exome sequencing, the DNA specimen 
source (blood, saliva, amplified lymphoblastoid cell 
line (LCL), and so forth), the transition/transversion ratio  
(Ti/Tv), the proportion of the protein- coding sequence 
that has adequate coverage per index sample, and other 
bioinformatic pipeline metrics that could be correlated 
with elevated rates of exome- wide qualifying variants 
occurring preferentially in one group.

In this section, we summarize some of the impor-
tant considerations for reducing bias and thus optimiz-
ing disease risk signal detection as part of our common 
workflow (FiG. 1).

Sample selection. The starting point of all case–control 
studies is identifying an appropriate control popula-
tion (FiG. 1Aa,Ab). It is important to select individuals 
as controls who have not been ascertained for the trait 
or for a well- known comorbidity with the trait being 
studied. Additionally, both the cases and controls need 
to undergo basic quality control (QC) checks, and 
samples that, for instance, show high contamination 
rates, low capture region specificity or low coverage 
need to be removed. Subsequently, as was typical in  
the common- variant studies, multiple cohort- refining 
steps are necessary, to minimize contamination within 
the test cohort.

In population- based sequencing efforts such as the 
UK Biobank, case–control selection is often performed 
within the same study cohort. Therefore, cases and con-
trols are typically sequenced together and processed 
jointly, decreasing the importance of some of the QC 
procedures mentioned here.

An imbalance of genders among cases and controls 
can cause problems in collapsing analyses for genes on 
the sex chromosomes. This becomes an issue particu-
larly in recessive models, where male samples are auto-
matically treated as hemizygous for X- chromosomal 
variants. Ways to deal with this problem are to analyse 
the sex chromosomes separately for males and females, 
to assess matched male/female ratios14 or to use a tool 
specifically designed for the analysis of chromosome X, 
such as XWAS36.

Another biological confounder that has become sur-
prisingly relevant in rare- variant studies is the effect 
of an individual’s age at DNA specimen collection.  
Age- associated clonal haematopoiesis caused by 
acquired mutations in myeloid cancer- associated 
genes37–39 can contribute to the observation of inflated 
rates of qualifying variants among an elderly sampled 
population. Although the variant allele ratios of these will 
often be lower than the expected germline rate of 50%, 
they can remain higher than the lower thresholds com-
monly adopted during variant filtering. Interestingly, 
we previously published a collapsing analysis in which 

the case population was ascertained for amyotrophic 
lateral sclerosis (ALS), generally a late- onset adult dis-
order, with a mean range of onset among the WES sam-
ples being 57.1 ± 13.0 years of age13. Two known genes 
affected by age- associated clonal haematopoiesis37,40,  
DNMT3A and ASXL1, showed elevated rates of quali-
fying variants among ALS cases. While it might be 
associated with increased ALS risk, to date this asso-
ciation has not been established, and it seems likely 
that this observation was primarily driven by a sample 
age- related biological signal. This age- related effect is 
expected to be a practical problem for a small subset 
of genes involved in haematological cancers, and as 
such could be accommodated by surveillance of the 
top collapsing analysis signals, without necessitating 
strict restrictions to the cohort design. However, due 
to this effect, for any study exploring the application 
of collapsing or burden analyses among the somatic 
mutation class, it is critical to appropriately correct for 
age at sample collection.

Sample pruning. Since genetic relatedness can distort a 
variant’s contribution to the test statistic, it is necessary 
to eliminate detectable genetic relatedness from the test 
cohort in a standard collapsing analysis (FiG. 1Ba). In addi-
tion to double- counting true risk alleles among related 
cases, close relatives within the test also risk cancelling 
out qualifying variants in ultra- rare test settings, which 
can then result in deflated qualifying- variant rates.  
In this sample- pruning step, similar to common- variant  
GWAS study designs, a single representa tive from each 
genetically related pair should be remo ved from the test 
cohort until the cohort reflects a collection of unrelated  
index samples. If a cohort contains a larger number 
of related individuals, methods can be used that are 
designed to incorporate family information. These 
methods typically use measures of genetic similarity to 
account for relatedness information via linear mixed 
models41,42.

Similarly, the inclusion of samples coming from 
under- represented genetic ancestries can result in 
inflated rates of ‘rare’ qualifying variants43 (FiG. 1Bb). 
Especially if the case- versus-control composition is 
greatly imbalanced for genetic ancestry and not all are 
well- represented in internal and/or external reference 
cohorts, then the group with genetic ancestries that 
are under- represented in publicly available reference 
cohorts will report higher exome- wide rates of the quali-
fying variants, due to the reduced information that we  
have about their true frequencies within that under- 
represented ancestral population43. index samples from 
consanguineous populations or bottlenecked populations 
can have the opposite effect, presenting with lower rates 
of exome- wide ultra- rare qualifying variants due to a 
reduction of genetic diversity in those populations.

Interestingly, however, if all the samples are well- 
represented in internal and/or external reference 
cohorts, the shift in focus to rare variants, especially 
when focusing on ultra- rare variants, reduces the con-
ventional GWAS concern of population stratification.  
The simple reason for this is that with large enough sam-
ple sizes, very little structure underlies very rare variants,  

Transition/transversion ratio
(Ti/Tv). Ratio of the number  
of transitions (interchanges of 
two- ring purines (A to G or 
vice versa) or of one- ring 
pyrimidines (C to T or vice 
versa)) to the number of 
transversions (interchanges  
of purine for pyrimidine bases).

Index samples
individual samples or patients 
who are the focus of a study.

Consanguineous 
populations
Populations in which marriages 
between people who are 
second cousins or closer  
are common.

Bottlenecked populations
Populations that have gone 
through a severe and abrupt 
reduction in their number of 
individuals, which often leads 
to reduced genetic diversity.

Population stratification
Also known as population 
structure. Presence of a 
difference in allele frequencies 
due to systematic differences 
in ancestry between cases and 
controls.
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and effectively there is no structure underlying ultra- rare 
variants — variants that are unique to the index sample 
in the test44.

Approximately a quarter of all possible protein- 
coding variants result in a synonymous change. 
Although some synonymous variants may not be benign, 
taking the collection of synonymous variants found 
exome- wide, it is appropriate to consider synony mous 
variants as a nearly neutral class of genetic variation with 
respect to many diseases. These synonymous variants 
then become an important class of genetic variation with 
respect to good experimental design. This class of mostly 
neutral or nearly neutral variants provide an important 
opportunity to evaluate each sample’s exome- wide 
tally of qualifying variants under the null hypothesis 
of no significant difference between cases and controls.  
This exercise allows for the identification and exclusion 
of significant sample outliers in the test cohort distri-
bution of exome- wide synonymous variants under the 
minor allele frequency (MAF) of interest. Ensuring no 
signi ficant deviation between the case and control distri-
butions for sample- level exome- wide tallies of synony-
mous variants is one effective way to confirm that the 
qualifying variant comparisons are based on a relatively 
homogeneous cohort. Seeing a significant difference 
suggests that an underlying bias might subsequently 
influence the test statistics, and resolving this would best 
be addressed in advance.

Restricting the analysis to a certain population of 
interest can also be important if different genes are 
thought to be responsible for a condition in different 
populations. Therefore, it is often helpful to perform 
additional tests on population- specific subsets of the 
test cohort.

Coverage harmonization. A critical element in any rare- 
variant statistical test is to ensure that all tests are per-
formed on the genomic sequence in which qualifying 
variants are equally able to be called in cases and con-
trols. When the tested cohort differs in sequencing char-
acteristics between cases and controls, a signal can be 
detected that is not caused by the disease and therefore 
must be corrected in order to control inflation. For exam-
ple, the sequencing depth or exome capture kits used can 
result in very different expected numbers of qualifying 
variants between cases and controls, leading to sub-
stantial inflation in test statistics. There are numerous 
ways to control for this bias, including directly model-
ling read distributions in the association statistics45.  

This approach is computationally complex but has the 
advantage of being able to address extreme differences 
in coverage between cases and controls. A far simpler 
strategy to minimize potential bias due to coverage 
differences between cases and controls evaluates each 
protein- coding exome site — regardless of whether it is 
variant or invariant — and excludes genomic coordinates 
from the test if they are not equally covered in cases and 
controls. There are different approaches to removing dif-
ferences in coverage: bases can be excluded if less than 
90% of either the cases or controls have a pre- defined 
minimal adequate coverage (often defined as ≥10-fold 
coverage)46; if the case and control populations show dif-
fering proportions of individuals with enough coverage13; 
or if a binomial test shows that the case/control status and 
coverage are not independent47. Coverage harmonization 
(FiG. 1C) is a critical step, as sites where cases and controls 
are highly imbalanced in their ability to call a variant can 
become susceptible to false- negative calls in the less well- 
represented group, leading towards an enrichment bias 
among the better- represented group. This solution also 
provides researchers with an estimate of the proportion 
of each gene (or other defined genomic region) that was 
harmonized and thus suitable for the statistical test.

If cases and controls are sequenced and processed 
together, such as in the UK Biobank, the risk of system-
atic differences between cases and controls is usually low, 
and coverage harmonization may be skipped.

Selection of qualifying variants. In general, collapsing 
models are designed with particular parameters, to 
focus the analysis on specific types of qualifying vari-
ants. Whereas QC filters are used for all models, other 
filters, such as the predicted variant effects or population 
allele frequencies, depend on the specific model in use.  
In addition to filters based on popular variant- QC scores, 
such as Phred quality (QUAL), genotype Phred quality 
(GQ), quality by depth (QD), mapping quality (MQ) and 
variant quality score log- odds (VQSLOD), it is also impor-
tant to filter out known artefacts that repeatedly result 
in false- positive variant calls. Although there are mul-
tiple reasons for the occurrence of these artefacts, such 
as sequencing errors or problems during alignment or 
variant calling, they are often specific to a certain capture 
kit, which can lead to a bias if capture kits differ between 
the cases and controls.

Reliable annotations are needed to focus on those 
variants that change a protein’s function. As the goal of 
collapsing is not to be a sensitive clinical diagnostic tool, 
but rather to optimize signal detection by reducing con-
tamination from neutral background variation, analy-
ses usually focus on protein- truncating, canonical splice 
site, in- frame insertion or deletion (indel), and missense 
variants. Furthermore, relying on the consensus coding 
sequence enables investigators to focus on variants found 
only in transcripts considered to be of high confidence, 
while eliminating variants that only affect rare isoforms 
that might not result in functioning proteins. Various 
bioinformatic tools can predict the likely effect of mis-
sense variants on the protein (for example, CADD48, 
PolyPhen-2 (REF.49), SIFT50, REVEL51 and PrimateAI52), 
and others identify possible splice vari ants masquerading 

Phred quality
(QUAL). The Phred- scaled 
posterior probability that all 
samples in a call set consist of 
homozygous reference alleles.

Genotype Phred quality
(GQ). Represents the Phred- 
scaled confidence that the 
genotype assignment is correct 
for a given sample.

Quality by depth
(QD). The Phred quality (QUAL) 
score normalized by allele 
depth for a variant.

Mapping quality
(MQ). Estimation of the overall 
mapping quality of reads 
supporting a variant call.

Variant quality score  
log- odds
(VQSLOD). A score, produced 
by the Genome Analysis 
Toolkit’s variant quality score 
recalibration, that represents 
the log- odds ratio of a variant 
being true versus being false 
under the trained Gaussian 
mixture model.

Fig. 1 | Outline of the standard collapsing analysis approach. First, cases and 
matching controls are selected (part Aa), and the same sample- level quality control (QC) 
is performed for cases and controls (part Ab). The sample- pruning level comprises 
relatedness pruning (part Ba) and the removal of population outliers based on principal 
components (PCs) (part Bb). All the remaining samples are used to perform coverage 
harmonization (part C), in which sites and therefore variants that show coverage 
differences between cases and controls are pruned. All remaining variants are used for 
qualifying variant (QV) selection (part D), in which various filters, including internal and 
external minor allele frequency (MAF) filters, are applied. The selected QVs are used to 
build the gene- by-individual collapsing matrix (part E), which indicates the presence of 
at least one QV. Finally , each gene is tested for an association between QV status and the 
phenotype of interest (part Fa), and the results can be evaluated by means of a quantile–
quantile (QQ) plot (part Fb).

◀
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as ‘neutral’ intronic or synonymous variants (for exam-
ple, TraP53 and SpliceAI54) or flag low- confidence LOF 
variants that are known to be enriched for annotation 
errors (for example, LOFTEE)55. Further analyses on 
several real datasets are needed to determine the appro-
priate thresholds for all these methods.

The ability to focus analyses on variants with very 
low population allele frequencies is arguably the most 
important reason that collapsing analyses now show 
good power for several different diseases and traits. The 
internal cohort MAF should be based on the combined 
test cohort and not just on the control MAF, as the lat-
ter will bias the test. For external MAF filtering (for 
example, based on the Genome Aggregation Database  
(gnomAD)), the same MAF filter should be applied 
equally across case and control variants, and no individu-
als represented in external datasets adopted for MAF fil-
tering should be included in internal sample sets for the  
case–control comparisons.

It must be noted that using strict filters not only in 
terms of variant quality, but also based on predictions 
of deleteriousness and low MAF, may lead to some loss 
in sensitivity. However, results across a range of diseases 
have shown that in a non- diagnostic setting, the increase 
in specificity due to the filtering outweighs the risk of 
missing some disease- causing variants14,15,47,56–58.

Only variants passing all filters of a specific model 
are termed qualifying variants (FiG. 1D) and subsequently 
used for building the gene- by-individual indicator 
matrix used for collapsing. In a dominant genetic model, 
a 0 in this matrix reflects no qualifying variants found in 
that gene in that individual, and a 1 reflects at least one 
qualifying variant found in that gene in that individual 
(FiG. 1E).

Test for association. The final step of the workflow 
(FiG. 1Fa,Fb) is to use aggregate statistics (for example, 
Fisher’s exact test, logistic regression or linear mixed 
models)59 to find associations between genes with quali-
fying variants and the phenotype of interest. A quantile–
quantile (QQ) plot can be used to evaluate the resulting 
P values.

Statistical considerations. Even though gene- based col-
lapsing combines the information of multiple rare vari-
ants into a single value per gene, frequently there will be 
either no cases or no controls with a qualifying variant 
in a relevant number of genes, leading to sparse data.  
In addition, often there is an imbalance between the 
numbers of cases and controls available. Both character-
istics limit the choice of statistical test, because methods 
that rely on asymptotic properties, such as Pearson’s chi- 
squared test or standard logistic regression, cannot be 
used. Methods such as Fisher’s exact test are preferred; 
however, they do not easily accommodate covariates. 
Here, providing evidence of homogeneity between the 
case and control samples is key14,15. An alternative option 
that allows for the addition of covariate information is 
Firth correction or a biased reduction logistic regres-
sion60–62. A score- test-based method that estimates the 
distribution of the test statistic by using the saddle- point 
approximation has been proposed as an alternative in 

unbalanced case–control configurations63. Permutation- 
based application of the chosen test statistic can further 
help increase the robustness of test results. Empirical  
P values can be calculated as the number of permutation 
tests achieving a smaller P value than the observed test, 
divided by the number of permutation tests performed. 
Computational limitations have to be considered, since 
detecting multiplicity- adjusted significance requires a 
large number of permutations.

Sparse observations can also lead to biased power  
calculations if asymptotic properties do not hold64. Thus, 
empirical power calculations need to be performed, by 
simulating the observed sample data under different 
parameters15.

Evaluations of results with QQ plots and the infla-
tion factor lambda are also unreliable with very sparse 
data and unbalanced case–control configurations. The 
conventional expected P value distribution is based on 
a chi- squared approximation that relies on the assump-
tion that the P values are uniformly distributed under 
the null hypothesis of no significant difference between 
cases and controls. This is not an appropriate assump-
tion in certain sparse- data and unbalanced case–control  
configurations. One working solution is to use an empir-
ical (permutation- based) expected probability distribu-
tion14,15 (BOx 1). Despite being more computationally 
intensive, this method will be more representative of 
the true null distribution of the test statistic P values for 
a given study configuration. A complementary test to 
determine whether exome- wide inflation exists is to com-
pare the proportions of exome- wide qualifying variants 
in test cases and controls. Observing no significant dif-
ference suggests that the exome- wide qualifying variant  
pool is representative of the case–control ratios14.

Minor allele frequency resolution offered by public  
reference cohorts. The MAF resolution associated with 
publicly available reference cohorts has been a key fea-
ture of the success of rare- variant analyses. By taking 
the sum of the ExAC65/gnomAD55, DiscovEHR66 and 
Bravo/TOPMed67 reference cohorts currently available 
in 2019, we have access to over 250,000 exomes. Thus, 
the absence of a test cohort variant at a well- covered 
protein- coding site across these 250,000 exomes is 
approximately equivalent to an autosomal MAF of 
<0.0002%. The current version of gnomAD (2.1.1) on 
its own, without the addition of other databases, enables 
investigators to identify protein- coding variants present 
at MAFs as low as ≤0.0009% in European Caucasians, 
≤0.004% in South Asians, ≤0.006% in Africans/African 
Americans and ≤0.006% in East Asians. Achieving reso-
lution at such low MAFs enables investigators to focus 
on the youngest alleles present within an index sample 
— something found to be of great importance for the 
many traits for which purifying selection affects risk 
alleles. Indeed, a recurring observation in recent studies 
of complex disorders has been that the strongest signals 
from collapsing analyses are concentrated among the 
rarest of variants14,15,56,68 (FiG. 2).

Due to the MAF resolution accessible by large popu-
lation reference cohorts, collapsing analyses have demon-
strated utility even in populations that were previously 
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considered to be accessible only through trio sequencing. 
Trio- sequencing approaches transformed our under-
standing of dominant paediatric Mendelian diseases by 
pinpointing de novo mutations in the proband that were 
not constitutively present in parents. However, currently 
we are often able to identify association signals driven by 
de novo mutations by screening for qualifying variants 
that are absent in the large population reference data-
bases available today. This was recently demonstrated in 
a collapsing analysis study that studied the probands of 
epileptic encephalopathy trios and was able to success-
fully implicate multiple genes that had previously been 
implicated through a trio study design using the same 
families. Rediscovery of the same signal was enabled by 
our ability to use large population reference cohorts to 
reduce the number of exome- wide non- synonymous 
variants per index sample down to the fewer- than-dozen 
youngest qualifying variants per sample44.

A common question in the application of collapsing 
studies is whether to use more liberal MAF thresholds. 
For relatively common diseases, clinically relevant variants 
may theoretically be present even in multiple copies in 
databases as large as gnomAD, especially since gnomAD 
and TOPMed include disease cases as well. However, it 

is important to emphasize that some common diseases 
under study are often influenced by a series of strongly 
acting mutations across tens to hundreds of genes, thus 
limiting the number of cases that can be explained by indi-
vidual mutations in individual genes. Moreover, the aim of 
the collapsing paradigm is not to ensure that every single 
variant that influences disease risk qualifies for analysis. 
Instead, the aim is to achieve an effective balance between 
sensitivity and specificity in the inclusion of clinically rele-
vant variants. Indeed, the success of collapsing analyses 
has been shown to stem from our ability to minimize the 
background variation within a gene to allow true genetic- 
risk alleles that are present due to clinical ascertainment 
to become prominent in the test. The best way to demon-
strate this has been by evaluating the contribution to the 
detectable risk signal among a collection of known dis-
ease genes and across increasing MAF bins (FiG. 2). Thus,  
the disorders that will benefit most from collapsing analy-
ses are those with high allelic heterogeneity, whereby 
even if the reference cohorts include a small collection 
of affected individuals, for the purposes of collapsing 
tests (that is, gene discovery rather than clinical utility), 
the increased specificity achieved by strict MAF filters is 
worth a potential decrease in sensitivity.

Box 1 | Permutation- based expected P values

under sparse data and unbalanced case–control configurations, the 
conventional expected P value distribution used for quantile–quantile 
(QQ) plots and the inflation factor lambda becomes unreliable.  
one working solution is to use an empirical (permutation- based) 
expected probability distribution. To achieve this, for each collapsing 
model the original case and control labels (part a of the figure) are 
randomly permuted while keeping the rest of the gene- by-sample matrix 
fixed (part b of the figure). The P values for all genes are recomputed with 
Fisher’s exact test using the permuted case–control labels to get the 
confusion matrix. This is repeated 1,000 times and, for each permutation, 

the P values are ordered. The mean of each rank- ordered estimate across 
the 1,000 permutations (that is, the average first- order statistic, the 
average second- order statistic and so forth) represents the empirical 
estimate of the expected ordered P values (part c of the figure).  
This empirical- based expected P value distribution no longer depends on 
an assumption that the P values are uniformly distributed under the null 
hypothesis of no significant difference between cases and controls.  
The negative logarithm of the permutation- based expected distribution 
relative to the observed ordered statistic is plotted in order to get the 
permutation- based QQ plot (part d of the figure).

Qv, qualifying variant.

Trio sequencing
Procedure in which the index 
patient and both parents are 
sequenced in order to identify 
causative variants in the 
patient.
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Beyond dominant single- gene collapsing
Region- based collapsing approach. Different regions 
within genes can vary in their tolerance to missense vari-
ation, and known causal alleles have been shown to pref-
erentially reside in the intolerant sub- regions of disease 
genes (BOx 2). The accumulation of non- causal variants in 
more tolerant sub- regions of the same gene reduces the 
power of gene- based collapsing approaches. Two basic 
approaches help address this problem: first, collapsing 
directly on sub- regions (for example, exons or domains) 
within the genes, which leads to more tests to correct for 
in the significance threshold, or second, incorporating 
missense intolerance within genes as an additional fil-
ter when selecting qualifying variants. Different regional 
intolerance measures have recently been proposed: the 
missense tolerance ratio (MTR)16, a heuristic tool for 
measuring the extent of purifying selection acting on 
missense variants in a given protein- coding window, 
independent of known genic boundaries; a domain- 
based MTR69, which is a complementary approach to 
subRVIS70; a score for missense badness, PolyPhen-2 and 
constraint (MPC)19; constrained coding regions (CCRs)20, 
which look for an absence of protein- changing variation 
over large stretches of coding sequence; and the localized 
intolerance model using Bayesian regression (LIMBR)17, 
which is a hierarchical model that can jointly use 
genome- wide, genic and sub- region-level information. 
In the intolerance- informed collapsing approach, regions 
with intolerance below, for example, the exome- wide 
50th percentile can be used for prioritizing variants that 
are more likely to be clinically relevant, thereby further 
reducing the noise in the test from background variation. 
Future studies on real data are needed to show which 
method and threshold maximize power in a collapsing 
framework, and whether different diseases need different 
thresholds, based on factors such as severity, population 
frequency and the genetic architecture of the disease.

Gene- set collapsing. Especially for studies with smaller 
sample sizes, noise from background variation can 

complicate the detection of significant enrichment for 
qualifying variants within individual genes. To increase 
signal, genes can be grouped together into biologically 
informed gene sets and tested for enrichment of quali-
fying variants among the genes that belong to the set14,15. 
Gene sets can be based on previously associated genes, 
implicated pathways or other prior knowledge about the 
disease under investigation. To control for background 
variation, synonymous qualifying- variant counts within 
the gene set and qualifying- variant counts in all genes 
not part of the gene set can be used as covariates in a 
logistic regression model15.

Applications to more complex genetic models. Although 
the collapsing framework so far has been used primarily 
to identify genes that confer risk due to single dominant- 
acting mutations, in principle the framework can be 
applied both to more complex genetic models and to 
non- coding variation, but with notable complications 
in its implementation. Perhaps the simplest elaboration 
of the single- gene-dominant model is consideration of 
single- gene-recessive models. Despite being straightfor-
ward in principle, recessive models are more challenging 
to implement. One important difference is that internal 
and external MAF thresholds need to be relaxed, because 
heterozygous carriers tend to be unaffected, which results 
in higher MAFs in the general population. A big chal-
lenge is caused by the fact that the case–control frame-
work employed in collapsing analyses means that phase 
is generally unresolved. Therefore, the collapsing frame-
work counts genes with two (or more) qualifying variants 
as compound heterozygous, when in fact they might be in 
cis and affect the same copy of the gene, rather than both 
copies, as is required for recessive inheritance.

Beyond the analysis of single- gene models, the col-
lapsing framework can also be applied to models in 
which variants in different genes interact to confer risk. 
Although such digenic or oligogenic models are likely to 
be important to many complex diseases, the identification 
of causal genotypes is challenging, due to the high rate of 
occurrence of qualifying genotypes. A model in which 
variants in two different, related genes interact to confer 
risk has been suggested in several conditions, including 
epilepsy71,72, Bardet–Biedl syndrome73,74 and other condi-
tions75. If we considered all possible pairwise gene combi-
nations, we would have to perform more than 180 million 
tests (19,000, choose 2). However, if we take epilepsy as an 
example, we might be interested in testing for an excess of 
qualifying genotypes in any two ion channel genes, given 
the importance of ion channels in epilepsy and evidence 
of interaction between ion channels in animal models76. 
To illustrate this approach, we used a dataset of 600 cases 
with genetic generalized epilepsies (GGE) and 2,400 con-
trols from a previously published collapsing analysis15 and 
applied lenient internal and external MAF thresholds 
of 1%. There are around 350 known ion channel genes, 
amounting to roughly 60,000 possible gene pair combi-
nations. However, in our dataset, for more than 40,000 of 
those combinations there was no individual with a quali-
fying variant in both genes. If we further required that 
more than 5 individuals harbour qualifying variants in 
both genes, only 1,300 gene pairs were left for testing for 

Fig. 2 | Characterizing where the disease risk signal resides. Forest plots of three 
recently published collapsing analyses: genetic generalized epilepsies (GGE)15 (part a), 
non- acquired focal epilepsies (NAFE)15 (part b) and idiopathic pulmonary fibrosis (IPF)14 
(part c). For each disease group, we used a multivariate logistic regression model to 
assess the contributions to disease risk from mutually exclusive increasing minor allele 
frequency (MAF) bins of qualifying variants, similar to the approach described in the 
original papers14,15. The MAF bins for missense variants range from an ‘ultra- rare’ (UR) 
definition, based on absence of the variant from a collection of over 250,000 exomes 
(leveraging variation data from the combination of gnomAD release 2.0, DiscovEHR and 
Bravo), to an MAF of 0.1%. Protein- truncating variants (PTVs) are included as a single bin 
with a maximum MAF of 0.1%. As a negative control bin, we used synonymous variants 
(syn) with a maximum MAF of 0.001%. We split missense variants into those predicted 
and those not predicted to be ‘probably damaging’ by PolyPhen-2 (PP2). For the 
epilepsies (parts a and b), we adopted the same list of 43 dominant epilepsy genes as 
in the original paper, and for the IPF cohort (part c), we adopted the same three genes 
(TERT, RTEL1 and PARN) as in the original paper. The x- axes represent the log- odds  
ratios, log(OR). All P values and accompanying estimates are corrected for the nine  
tests performed per disease (excluding the tenth, synonymous negative control bin).  
The strongest disease risk resides in the rarest bin. For all three diseases there is a significant 
enrichment of UR ‘PP2 probably’ variants (top red line in each plot). In addition, there is a 
significant P value for MAF bin 0.0002% to 0.001% with PP2 probably for IPF (part c), as 
well as significant enrichment of PTVs for both NAFE (part b) and IPF (part c).

Phase
Defined as alleles that belong 
to the same parental haplotype 
and therefore affect the same 
copy of a gene; variants that 
are not in phase are on 
different haplotypes and 
therefore affect both copies  
of a gene.

Compound heterozygous
Presence of two different 
mutant alleles in a particular 
gene that affect both copies of 
the gene because they are not 
in phase.
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enrichment (see our Digenic analysis tool for the under-
lying scripts). This illustrates how the challenge of digenic 
or more complex models might be addressed, by focus-
ing on more biologically informed sets of related genes. 
Another approach for reducing the search space would be 
to focus attention on the more intolerant regions of those 
genes, to remove benign variation.

Tests for non- coding regions. The application of col-
lapsing and related analyses to non- coding regulatory 
variation is complicated by two primary challenges. 
First, the tools for recognizing functional variants are 
currently far more effective for protein- coding genes 

than for regulatory regions. Second, multiple lines of 
evidence suggest that single regulatory variants are less 
likely to have strong effects on gene expression than do 
protein- coding variants, suggesting that a true burden 
framework would be more important for regulatory than 
for coding variation. To effectively apply collapsing and 
burden analyses to regulatory variation, we would need 
not only to identify the appropriate regulatory regions 
within which to aggregate signal, but also to determine 
the appropriate ways to do the aggregation. Although 
no formal frameworks have been explored, there are 
metrics capable of quantifying the importance of non- 
coding regions, including but not limited to conserva-
tion (for example, GERP++77 and ncGERP70), ensemble 
prediction scores (for example, GWAVA78 and CADD48) 
and regional human- lineage intolerance of non- coding 
sequence variation (for example, Orion79 and ncRVIS70). 
Recently the enhancer domain score (EDS)80 has been 
introduced, which can be used independently of and 
complementary to other metrics of intolerance. The 
EDS relies on the fact that the number of evolution-
arily conserved bases in a gene’s enhancers reflects the 
patho genicity of protein- disrupting variants in this gene. 
Because it has been shown that, especially for genes with 
large enhancer domains, multiple variants in non- coding 
regions are often necessary to change the expression of 
the gene, burden tests that take the number of qualify-
ing variants per individual into account may be more 
successful in this application. Although results from 
family- based studies have shown that de novo mutations 
in non- coding regions do contribute to diseases such as 
autism81, non- coding variants are currently not routinely 
included in collapsing- like rare- variant association stud-
ies. However, as methods for predicting the functional 
consequences of non- coding variants evolve, including 
this class of variant will eventually increase the power of 
rare- variant association methods.

Combining data. There are multiple ways of leveraging 
data from different sequencing projects of the same 
disease. If cases but no controls are sequenced for one 
of the projects, all cases can be combined and jointly 
compared to the controls. The same is true if the cases 
and controls are not well- matched in terms of ancestry, 
as combining the cohorts could lead to a better balance. 
Otherwise, the data can also be analysed sepa rately and 
combined via meta- analysis. The simplest approach 
would be to directly combine P values across studies by 
using Fisher’s82 or Stouffer’s Z score83 method. However, 
these appro aches are not well- powered, compared 
to joint analy sis or more complex methods84. Some 
tools have been developed specifically for the meta- 
analysis of rare- variant associations, such as MASS85,86, 
RAREMETAL87,88 and MetaSKAT89. All these methods 
use score statistics instead of P values and can be used for 
different types of rare- variant association tests.

Application to complex diseases
The list of diseases for which collapsing analyses have 
been effective in securely implicating causal genes and 
also pinpointing individual causal alleles with high 
confidence continues to grow. Examples range from 

Box 2 | Leveraging regional intolerance to missense variation

To illustrate a possible application of regional missense intolerance, we have plotted 
the distribution of all pathogenic missense variants in Clinvar104 compared to the 
missense variants in DiscoveHR66 for the epileptic encephalopathy gene PCDH19  
(see the figure). To highlight how missense intolerance scores help distinguish between 
pathogenic and benign variants, we include scores from the localized intolerance 
model using Bayesian regression (lImBR)17 as an example. lImBR uses a Bayesian 
hierarchical model, which facilitates borrowing information across genes, to test for 
relative depletion in variation at the exon or domain level. In part a of the figure, lImBR 
intolerance scores are plotted per exon, with 95% credibility in grey across the 
combined coding positions in all transcripts. The bar strip below that plot indicates the 
start and end of each exon. The other plots show the densities of variants divided by  
the number of bases in the exon, matched up at the corresponding genomic positions 
with the intolerance scores, for Clinvar pathogenic variants (part b of the figure) and 
DiscoveHR control variants (part c of the figure).

The plots show that all pathogenic missense variants in Clinvar can be found in the 
last exon, which has a very low lImBR score, meaning that it is intolerant to missense 
variation. By contrast, the variants found in a control population such as DiscoveHR  
are spread throughout the whole gene and also lie in regions that are very tolerant  
to missense mutations. Restricting rare- variant collapsing to missense- intolerant  
regions would increase the signal, because only control variants reflecting background 
noise would be excluded.
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application in early- onset paediatric conditions, such as 
epileptic encephalopathies44, sudden unexplained death 
in epilepsy90 and congenital kidney malformations91, to 
more common complex conditions, such as ALS13,69,92,93, 
Alzheimer disease47,94,95, schizophrenia68,96, epilepsies15, 
idiopathic pulmonary fibrosis (IPF)14 and myocardial 
infarction97. The numbers of cases and controls used 
range from fewer than 300 cases and 4,000 controls, for 
IPF14, to 7,000 cases and 13,000 controls, for Alzheimer 
disease47, which illustrates the applicability of collapsing 
analyses over a wide range of sample sizes.

In addition, gene- based collapsing can also be applied 
to population- based cohorts, as has been demonstrated 
recently in an analysis on the UK Biobank data58. The 
authors used electronic health records to obtain thou-
sands of phenotypes for more than 40,000 individuals 
and looked for gene- based rare- variant associations 
using the collapsing framework. Furthermore, they per-
formed a successful replication study on over a thou-
sand of the phenotypes, using a separate cohort from a 
different medical record system. This analysis was the 
first to look for rare- variant associations in thousands 
of phenotypes across two large cohorts58.

Although collapsing analyses can achieve remarka-
ble diagnostic yield (FiG. 2), this analytical framework is 
not intended to be a replacement for a thorough clinical 
genetic evaluation. A collapsing analysis is simply the 
application of a specific set of conditions or rules to a 
combined case- and-control population to identify where 
signals of case enrichment exist. As such, if the clinical 
variant interpretation guidelines are pre- defined, then 
what the collapsing analysis framework ultimately offers 
is the ability to perform an objective evaluation of the 
rates at which such pre- defined qualifying variants occur 
in a case collection, in comparison to the rates we find 
them in a sampling of individuals who were not ascer-
tained for the trait of interest (controls). In addition, 
however, collapsing analyses also provide an opportunity 
to identify the specific classes of variants for which the 
detectable signal is found most enriched. This can lead 
to a critical and objective understanding of the genetic 
architecture that contributes directly to increased disease 
risk. In FiG. 2, we see a clear illustration that for three con-
ditions, the missense variant risk signal is most enriched 
among the ultra- rare missense class of variants — that is, 
missense variants absent from among over 250,000 avail-
able reference control samples. A similar effect has also 
been shown for protein- truncating variants (PTVs) 
across multiple phenotypes, particularly psychiatric 
disorders56, although that study also highlighted that  
a role for ultra- rare variation could only be detected for a 
subset of the diverse disease types analysed. Once a gene 
is securely implicated via collapsing analysis, it is appro-
priate to reassess all test cases using more liberal QC, 
variant effect and MAF thresholds for the new gene(s) 
under a clinical interpretation paradigm98.

The future of collapsing analyses
As we have outlined here, collapsing analyses have 
proven highly effective in identifying genes across a range 
of disorders in which rare variants in single genes confer 
substantial risk. We have specified several considerations 

for the effective application of this framework, and we 
expect it will continue to implicate new disease genes and 
help evaluate the contributions of known genes. As high-
lighted above, we also see considerable opportunity to 
extend this framework in numerous important directions. 
We and others have shown that different regions within 
genes can vary in their tolerance to missense variation, 
and that known causal alleles preferentially reside in the 
intolerant sub- regions of disease genes16–20. Incorporating 
missense intolerance within genes as an additional 
qualifying- variant criterion specifically acting upon 
missense variants could help further reduce the noise 
in the test from background variation and thus improve 
the prioritization of the truly pathogenic missense 
variants that preferentially affect missense- intolerant  
regions of a gene, as illustrated in BOx 2.

Similar approaches are also being developed to quan-
tify intolerance to genetic variation among stretches of 
human non- coding sequence48,70,77–80,99. Quantifying and 
defining the intolerant non- coding boundaries is not 
trivial, but once available, it will provide valuable infor-
mation for WGS collapsing applications. Continuous 
innovation in these non- coding methodologies will fur-
ther optimize signal detection and lead to better- powered  
whole- genome collapsing analyses.

Perhaps the single greatest challenge facing rare- 
variant analyses is the issue of scalability. Sample sizes 
are increasing, accompanied by corresponding increases 
in their storage and computational requirements. Large- 
scale sequencing efforts such as the UK Biobank100,101 
or TOPMed67 offer the possibility of analysing a large 
variety of phenotypes58,102. However, parallelization and 
computationally efficient implementations are needed in 
order to leverage all the available data. Fortunately, the 
cloud provides a highly flexible solution — operating 
under a compute- time rent model — to eliminate the 
need to continuously scale up local institutional clusters. 
Companies and academic units are already creating the 
necessary solutions to help address the needs for large- 
scale population- based rare- variant studies. Many stud-
ies commonly generate variants using a joint- calling step 
across all cohort samples, especially population- based 
cohort studies such as the UK Biobank or TOPMed, 
in which cases and controls are sequenced together. 
However, for projects that combine multiple cohorts 
that were not sequenced together and in which controls 
might be re- used for several cohorts, the cost and time 
required make joint- calling for each analysis rather 
impractical. This might become even more important 
in the future, when UK Biobank and TOPMed sam-
ples are used as controls for cases sequenced separately.  
We have successfully used a single- sample haplotype- 
calling strategy to combine independently generated 
variants for each sample14,15. By using depth of coverage 
from the alignment step as a proxy for inferring the refer-
ence allele at positions without variant calls in a sample,  
we can create a genotype matrix across all samples, with 
minimal computation. This strategy only requires single- 
sample variant call format (VCF) files and a pileup of 
the depth of coverage from the alignments, which can  
be collected and stored with a minimal storage footprint. 
Following the generation of a genotype matrix across a 

Diagnostic yield
Rate of discovered diagnostic 
variants within a collection of 
cases being tested.
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cohort, the statistical analysis can also be computation-
ally intensive. Parallel- processing frameworks have been 
developed to address the speed and efficiency of these 
analyses103. We anticipate a very urgent need to stand-
ardize the generation and storage of these large- scale 
datasets in a format that is optimized for integration 

across multiple studies. Such standardization will allow 
us to maximize the use of these datasets in order to ade-
quately power studies and discover associations with 
modest effect sizes.
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