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Abstract

Single allele study designs, commonly used in genome-wide association studies (GWAS) as well 

as the more recently developed whole genome sequencing (WGS) studies, are a standard approach 

for investigating the relationship of common variation within the human genome to a given 

phenotype of interest. However, single-allele association results published for many GWAS studies 

represent only the tip of the iceberg for the information that can be extracted from these datasets. 

The primary analysis strategy for GWAS entails association analysis in which only the single 

nucleotide polymorphisms (SNPs) with the strongest p-values are declared statistically significant 

due to issues arising from multiple testing and type I errors. Factors such as locus heterogeneity, 

epistasis, and multiple genes conferring small effects contribute to the complexity of the genetic 

models underlying phenotype expression. Thus, many biologically meaningful associations having 

lower effect sizes at individual genes are overlooked, making it difficult to separate true 

associations from a sea of false-positive associations. Organizing these individual SNPs into 

biologically meaningful groups to look at the overall effects of minor perturbations to genes and 

pathways is desirable. This pathway-based approach provides researchers with insight into the 

functional foundations of the phenotype being studied and allows testing of various genetic 

scenarios.
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INTRODUCTION

This unit focuses on available pathway databases, software analysis packages, and points to 

consider when performing pathway analysis from genome-wide association studies (GWAS) 

or whole genome sequencing (WGS) data. While some of the rationale and hypotheses 

behind pathway analysis from high-throughput genomic data (GWAS/WGS) are described, 

the emphasis is on the logistic issues of choosing a database and algorithm. Pathway 

analysis algorithms are optimized for different study designs, thereby it is essential to 
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understand and select the statistically appropriate model. A targeted study, such as a 

candidate gene study, is not amenable to most of the pathway analysis methods outlined; the 

methods presented in this chapter require genome-wide data unless otherwise stated. 

Genotyping data from custom platforms that probe for candidate single nucleotide 

polymorphisms (SNPs) are not appropriate for pathway-based GWAS/WGS analysis. This 

unit assumes that the GWAS/WGS dataset under study has been generated and proper 

quality control methods have been applied. It should be noted that while WGS data may 

generate information for rare variants, minor allele frequency (MAF < 0.01), this chapter 

will focus solely on assessing common variation.

KEY CONCEPTS

Biological Pathways

Biological pathways capture our understanding of biological processes and can be thought 

of as groups of genes that are functionally related. These pathways represent a series of 

events leading to an ultimate functional result, be it assembly of a new molecule, completion 

of a necessary cellular process, or turning genes on and off at specific developmental time 

points. Each gene in the pathway encodes a molecule that functions to carry out a 

biochemical reaction. Consequently, pathways are often defined based on either the cellular 

organelle where the steps are carried out or the type of process being accomplished (i.e., 

metabolic, signaling, gene regulation). Generally, the initial gene in the pathway encodes the 

molecular product necessary for successful completion of all subsequent steps in the 

pathway. The final step in a pathway is often the reaction that generates the molecular 

product necessary to conclude the process of interest. Phenomena such as feedback 

inhibition and compensatory reactions often occur, contributing to the complexity of 

pathway definitions. Also, various reactions in many uniquely defined pathways generate 

by-products necessary to the function of other pathways. This means that dysfunction of a 

gene in one pathway has the potential to affect the function of numerous biological 

processes. For the purpose of this unit, a pathway refers to a set of biologically related genes 

found in a collated database.

Gene Sets

Gene sets are collections of genes having some functional or evolutionary relationship other 

than contributing to a shared biological pathway. This definition could include a group of 

genes that are in the same phylogenetic class, subclass, or family. A gene set could also be 

defined as a group of genes located tandemly on the same chromosome. For example, genes 

comprising one of the Hox clusters could be considered a gene set since each cluster is 

located on the same chromosomal region. All Hox genes also have a highly conserved 

homeobox sequence that may perform similar functions during organism development, and 

are thought to have evolved from the same ancestral gene. Additionally, a gene set could also 

include groups of genes with evidence for epistatic interactions. For the purpose of this unit, 

a gene set refers to a personalized list of genes collated by an individual investigator.
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Pathway Database Curation

Database curation is the process of evaluating and selecting items to be entered into the 

database. Pathway databases are curated in two ways: manually or computationally. Manual 

curation relies on manual transfer of knowledge from scientific publications. This process 

allows expert review of every publication related to a pathway prior to submission in the 

database. Most databases with manual curation procedures employ a scientific review boards 

to assess and discuss each pathway before adding it to the database. Usually, curators 

perform periodic reviews of all annotations for accuracy and completeness, updating as 

necessary. This process involves adding new annotations to reflect advances in knowledge 

and removing any annotations that are no longer supported by the literature. Expert curation 

is a powerful tool for producing and maintaining biologically relevant and current databases; 

however, users should be aware of the update intervals and criteria when using a manually 

curated database.

Computationally curated database submissions are not reviewed by scientific curators. 

Submissions are made by a variety of computational procedures, such as sequence similarity 

methods and keyword mapping files. Computational curation is less expensive and much 

faster than manual curation. However, pathways in databases that are solely computationally 

curated may be less scientifically accurate since computational predictions do not require 

experimental work other than the genome sequence. Computational curation procedures are 

usually repeated on a regular basis to keep up with improvements to computational methods 

and changes to genome sequence annotation (Costanzo et al., 2011). As manual and 

computational curations capture unique aspects, databases that combine both methods seem 

to provide the most accurate, current, and complete functional annotation of the genome.

Data Access

Most pathway databases provide the user with information in the form of downloadable 

files. Data in these files can be written in various computational languages. Knowledge of 

the language used is important since proper data format is essential to accurate evaluation of 

pathways in the analysis program being used. Three computational languages are commonly 

used to represent biological pathways and gene sets at the molecular and cellular levels. 

These standards are Biological Pathway Exchange (BioPAX), Proteomics Standard 

Initiative-Molecular Interactions (PSI-MI), and Systems Biology Markup Language 

(SBML). BioPAX was developed to provide well-defined semantics for pathway 

representation, allowing pathway databases and software to interact more efficiently (Demir 

et al., 2010). PSI-MI is a community standard data model for the representation and 

exchange of protein interaction data. This data model was jointly developed by members of 

the Proteomics Standards Initiative (PSI), a work group of the Human Proteome 

Organization (HUPO), and is supported by many major protein interaction data providers 

(Hermjakob et al., 2004; Deutsch et al., 2017). SBML is a free, open, XML-based format for 

representing biochemical reaction networks. SBML is a software-independent language for 

describing models common to research in many areas of computational biology, including 

cell signaling pathways, metabolic pathways, and gene regulation (Hucka et al., 2003; 

Hermjakob et al., 2004).
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Genome-Wide Pathway Analysis (GWPA)

GWPA is an agnostic, approach that harnesses the wealth of information from GWAS or 

WGS data to identify the additive effects of single variants aggregating in particular gene 

sets or pathways. The general concept behind pathway analysis of GWAS data can be 

thought of as data reduction and aggregation. First, the data on millions of individual sites 

around the genome are collected in the form of SNP data. These SNPs are then analyzed for 

allele frequency differences between case and control groups (as one example) and an 

assessment of statistical inference is obtained. The SNPs are placed within genes by 

genomic position, and the genes are placed into pathways or gene sets based on the 

information provided by the selected database(s). Thus, individual SNPs are now collections 

of SNPs within the framework of a group of genes. Most of the algorithms then look for a 

preponderance of single-allele p-values meeting a specific criterion within the pathway, or 

gene set, relative to what one would expect to see by chance (Fig. 1).

Candidate Pathway Analysis

Candidate pathway analysis is a hypothesis-driven approach to pathway-level investigation. 

Pathways, or gene-sets, of interest are preselected based on prior knowledge or investigation, 

and association testing is performed on the preselected loci of interest instead of the full 

genome. Rather than scanning an entire database of pathway information as with GWPA, 

which can be computationally intensive and requires stringent multiple-testing corrections, 

candidate pathway analysis is less demanding and therefore lends itself more readily to large 

data sets such as imputed and WGS data.

STRATEGIC APPROACH & ALGORITHM SELECTION

There is an ever-growing list of pathway analysis algorithms. While they ostensibly claim to 

achieve the same objective, there are well-defined differences between these algorithms. 

Algorithm selection should be guided by underlying methodology and applicability to the 

specific question. Selection will depend heavily on study design and the type of data that is 

available. This section discusses the primary deciding factors in designing a robust pathway 

analysis study and selecting the most appropriate algorithm: research question, input data 

type, database selection, and program options.

Research Question

The research question itself should indicate if a candidate or agnostic pathway analysis is 

most appropriate. A hypothesis-driven question, such as “are oxidative stress pathways 

genetically different in individuals with cancer?” would benefit from a candidate pathway 

study design, while the broader question, “what pathways are these genetic associations 

aggregating in?” would benefit more from an agnostic approach. Additionally, investigator-

curated gene sets can be a useful intermediate. For instance, if a researcher wishes to attempt 

a gene-level replication of previously implicated variants, they may wish to perform gene-set 

analysis with their GWAS results and a manually curated list of previously associated genes. 

Establishing the overall study design best suited to the research question, in conjunction with 

the available input data, is essential for selecting both the biological database(s) of interest 

and the analysis algorithm.
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Input Data Considerations

Pathway analyses can be performed with multiple types of input data, including raw 

genotype data from individual samples, SNP-level p-values such as those from a GWAS, and 

gene-level p-values (for example from RNA-seq differential expression analysis). The 

selection of input data should be based not only on what data are available, but also on what 

criteria are most important in the downstream analysis. Algorithms that utilize genotype data 

can correct for linkage disequilibrium (LD) but often cannot correct for covariates in the 

analysis.

Pre-computed p-values, on the other hand, can certainly be adjusted for covariates and 

population structure, although many pathway analysis algorithms that use pre-computed 

SNP p-values require post-hoc correction for LD. It is especially important to consider the 

LD correction options when working with populations of non-European descent; LD 

patterns vary by race/ethnicity and not accounting for this variation could adversely affect 

SNP-gene mapping (Wall & Pritchard., 2003) Most algorithms have been designed and 

optimized for analysis of European-descent populations, but some allow the investigator to 

specify population-specific reference panels from available databases, such as the 1000 

Genomes Project (1KGP) or, better yet, include a user-generated LD file for more accurate 

mapping (The 1000 Genomes Project Consortium., 2015). Additionally, many SNP-based 

pathway analysis algorithms rely on curated lists of reference SNPS (refSNPs) with 

accompanying refSNP or “rs” identification (rsID) numbers from the National Center for 

Biotechnology Information (NCBI) database for annotation and mapping. Consequently, 

research questions that include novel loci not found within the NCBI database, or other 

public databases, should consider algorithms, such as PARIS, that can accept position files 

in lieu of an rsID list.

Pathway Database Considerations

Appropriate database selection should be heavily informed by the research question. For 

instance, candidate pathway analyses can manage more detailed pathway annotations and 

may benefit from specialized databases that include plausible recently identified attributes, 

while GWPA studies may find canonical information more useful and computationally 

manageable. Additionally, some pathway analysis programs allow for incorporation of user-

defined gene sets. Numerous pathway databases are freely available (Ooi et al., 2010). A 

selection of commonly used databases appears in Table 1. These databases serve to group 

genes based on biological function while providing information on defined gene networks in 

humans. These databases may provide two main pathway database structures: discrete 

pathway maps and functional hierarchies (ontologies).

As for all of the options presented in this unit, the choice of protocol is dependent on your 

study design and dataset. For example, if a gene of interest is not annotated in a certain 

database, it would be best to choose another database where it is annotated. The Pathguide 

resource (http://www.pathguide.org) helps identify the database most suited to the 

underlying biology of your phenotype of interest. This resource provides the user with 

information for each listed database regarding access, types of pathways defined, 
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computational language used to represent the information, and links to the original research 

papers describing the database (Bader et al., 2006).

Algorithm Considerations

At the minimum, pathway analysis algorithms may be thought of as data aggregators. To 

move from individual SNPs to pathways, there must be a way of systematically grouping the 

SNPs. Pathway databases (or personally selected gene sets) act as the framework. The 

algorithm assigns the SNPs to genes and the genes to the framework, and then determines 

whether the statistically significant signals are over-represented in the set. A selection of 

commonly used pathway analysis algorithms is presented in Table 2. However, when 
calculating over-representation, the philosophy behind pathway-based analysis is 
subject to multiple biases; gene size, pathway size, density of SNP coverage, and 
linkage disequilibrium (LD) patterns are all factors that must be considered and 
appropriately addressed. At a standard type I error rate of α = 0.05, each SNP tested has a 

5% chance of being associated with a disease by chance alone. Testing more SNPs therefore 

increases the number of false-positive associations. Thus, genes with more SNPs tested have 

an a priori increased likelihood of having a greater number of SNPs associated by chance. 

Larger pathways with more genes similarly increase this potential bias. Furthermore, any 

type I error will likely extend across all SNPs that are in LD with each other. Fortunately, 

many of the available algorithms employ methodology to help reduce these biases.

SNP to Gene mapping—Once the input data is determined, the pathway analysis 

algorithm must map the input to genes and gene-sets. The following is true regardless of the 

approach (GWPA or Candidate) selected. In the simplest approach, input SNPs or positions 

are mapped to genes (defined in the software database or by user input) by identifying 

variants whose base pair positions fall within the reported gene boundaries. However, 

linkage disequilibrium (LD) differences can vary significantly between genes, and cis 

regions outside the transcript start and end sites can play significant roles in gene regulation. 

It has been shown that 90% of SNPs affecting expression quantitative trail loci were 

observed within 15kb from the 5’ and 3’ gene boundary (Pickrell et al., 2010). Thus, 

restricting mapping protocols to include only SNPs that fall within the strict boundaries of 

the gene (5’ – 3’ region) may exclude regulatory SNPs with biologically relevant 

information.

To account for LD, many programs will sort SNPs into high-LD regions, or blocks, before 

scanning for positional overlap with gene regions. Thus, SNPs that are not within 

transcriptional boundaries but are in high LD with a genic SNP will be considered in that 

gene’s enrichment score. If genotype data is accessible, high LD regions can be calculated 

from the study cohort by the algorithm (if raw genotype data is accepted), prior to analysis 

in an external program like PLINK and passed through the algorithm as a specified input (if 

custom LD region files are accepted). If genotype data is not available, many programs rely 

on HapMap or 1000 Genome reference panels to estimate LD blocks; it is imperative that 

the selected LD reference panel be representative of the study cohort. Gene boundaries can 

typically be manipulated manually by the user to include additional upstream and 

downstream regions, if desired, to include potential regulatory variants.
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It is important to note, however, that the assignment of disease-associated variants to their 

closest mapped genes may not be the most accurate approach for predicting functional 

relationships. Evidence has suggested that SNPs may regulate gene expression over broad 

genomic regions, resulting in SNPs whose gene-level impacts involve distal genes rather 

than their closest mapped or encompassing genes (Heintzman & Ren, 2009). For instance, 

intronic variants in the FTO locus demonstrate strong association with obesity; however, 

chromatin-capture sequencing (Hi-C) and expression Quantitative Trait Loci (eQTL) data 

later revealed that these variants did not regulate the expression of FTO, but of IRX3/5, a 

gene about half a mega base away (Herman & Rosen, 2015). IRX3/5 was later shown to play 

a role in white and beige adipocyte differentiation. Thus, eQTL and Hi-C mapping can be 

powerful approaches for estimating gene-level p-values based on putative functional 

relationships with disease-associated SNPs. A recently released web based platform, FUMA, 

incorporates positional, Hi-C, and eQTL data as a part of its SNP-to-gene mapping approach 

(Watanabe et al., 2017). FUMA also incorporates the pathway analysis tool, MAGMA (de 

Leeuw et al., 2015); enabling it to combine its integrative SNP-to-gene annotation scheme 

with a powerful gene set analysis method to produce gene, pathway, and tissue enrichment 

results. Of the algorithms listed in Table 1.20.2, only GSA-SNP allows users to upload a 

custom SNP-to-gene mapping file; this feature enables GSA-SNP (Nam et al., 2010) to 

incorporate Hi-C and eQTL data through pre-processing using programs such as FUMA, 

thereby increasing the likelihood that that gene/pathway analysis will yield functionally 

relevant results. While the other algorithms mentioned in Table 1.20.2 still hold merit as 

capable pathway analysis algorithms, all would benefit from software updates that would 

allow for the inclusion of Hi-C and eQTL data as a part of the SNP mapping procedures.

Gene p-value calculation and corrections—Previously, several common pathway 

analysis algorithms employed some form of sentinel SNP approach, in which the most 

significant SNP mapped to a given gene is selected as the representative p-value for the 

gene, to assign gene-level significance. Some programs, like ICSNPathway (Zhang et al., 

2011) couple this approach with functional annotation to further prioritize SNPs, while 

others, like GSA-SNP2 (Nam et al., 2010; Yoon et al., 2018) use the kth best SNP as the 

representative p-value to limit the false positive effects of spurious GWAS hits. However, 

selecting only one SNP’s p-value to represent each gene may not capture the additive effects 

of multiple SNPs within a gene with smaller effect sizes.

Algorithms like PARIS avoid the potential confounding of spurious GWAS associations with 

a threshold overrepresentation approach; a blanket p-value threshold for moderate 

association (p-value < 0.05 by default) is paired with permutation testing to determine the 

likelihood that the number of associated features mapped to the gene or gene set by chance. 

Such a method effectively tests for the additive effects of moderately associated SNPs on 

phenotype susceptibility without bias from randomly significant hits. However, in the case 

of true causative GWAS hits with highly significant p-values, it may be more powerful to 

use an approach that incorporates relative SNP p-values.

Finally, algorithms such as VEGAS2 (Liu et al., 2010; Mishra & MacGregor, 2015; Mishra 

& MacGregor, 2017) and INRICH (Lee et al., 2012) employ a ranked enrichment test in 

which a statistical test is performed to calculate the enrichment of a gene or gene set’s SNPs 
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at the significant end of a list of ranked SNP p-values. This approach is powerful because it 

can account for all SNPs, reducing the effects of false positive GWAS results in favor of 

enrichment of moderate SNPs, without negating potential importance of extremely 

significant vs. moderately significant SNPs. However, ranking and testing enrichment using 

all the SNPs from a GWAS can be computationally intensive, so these tests are often used 

with a threshold (e.g. top 5% or top 1% of SNPs) to reduce computation time.

Genes can vary by size, SNP density, and LD patterns. The latter is addressed during SNP 

mapping but can also affect p-value calculations when the number of significant SNPs/gene 

is of interest. Gene size and SNP density can skew the likelihood of significant SNPs 

occurring in a given gene by chance and should be addressed during gene p-value 

calculation. A large gene has a higher probability of containing significant SNPs than genes 

that span fewer base pair; likewise, a gene with high genotyping density (i.e. genotype arrays 

contain a higher proportion of SNPs for one gene compared to others) has a higher chance of 

containing significant SNPs. To account for variation in genomic structure is yet another 

aspect of pathway based analysis that must be considered when both performing analysis 

and interpreting the results.

Pathway p-value calculation and corrections—Pathway based analysis (PBA) 

algorithms essentially test the enrichment or likelihood of gene p-values in gene lists that 

represent pathways or curated gene sets (“pathway” and “gene set” will be used 

interchangeably). Again, there are many mathematical models employed to evaluate the 

significance of a pathway given the distribution of its constituent gene p-values. Algorithms 

can adopt a competitive or self-contained approach. Competitive methods compare the gene 

statistics for the constituents of a given pathway to those of the rest of the genome, 

evaluating if the genes in the set have the same magnitude of trait association as the rest of 

the genome. Self-contained methods directly test gene set association with the trait of 

interest, often utilizing permutations, or other randomizations, to correct for pathway size 

and structure, without depending on the rest of the genome. Competitive methods effectively 

test the “enrichment” of associated genes within a gene set compared to the rest of the 

genome while self-contained approaches test for the “existence” of associated genes in each 

pathway and calculate significance based on the likelihood of a pathway containing that 

many significant constituents. Self-contained approaches tend to be more sensitive and thus 

more powerful for finding novel pathways, and are better powered when SNPs in multiple 

gene sets are associated with the trait. However, genes often have multiple functions, such 

that the mere presence of an associated gene in a pathway does not necessarily confer a 

pathway-level aberration, which is accounted for in the competitive enrichment model. Thus, 

competitive and self-contained pathway analysis algorithms serve as complementary 

approaches.

Like genes, pathway size and annotation density can impact the likelihood of association by 

chance; a large pathway or a heavily annotated pathway is more likely to be enriched with 

significant genes by chance than a small or under-documented pathway that may actually be 

associated. In addition to database selection, pathway analysis algorithms leverage a variety 

of techniques to correct for structural confounders within and between pathways and gene 

sets.
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Summary: Algorithm Considerations—In this section, we discussed common 

methods employed in pathway-based analysis as well as the potential biases and proposed 

solutions to keep in mind when selecting a method. In brief, several common gene-level 

calculations can rely on sentinel SNPs, threshold overrepresentation testing, ranked 
enrichment of SNP p-values, or some combination while pathway-level assessment can be 

self-contained or competitive depending on the study design’s null hypothesis. When 

addressing important corrections, population structure and covariates are easiest to correct 

for in GWAS or initial testing prior to PBA. Accounting for LD between SNPs and genes is 

performed during the mapping stages of PBA and the permutation/ randomization stages, 

where applicable. When working with non-European populations, read the algorithm options 

carefully to ensure that you can either provide your own LD regions or, at the very least, 

select a reference population that is representative of the study population. Finally, gene and 

pathway size and density can skew association results and must be corrected for with 

permutation testing for some statistical modification.

In summary, there are several biases involved with performing pathway-based analysis from 

GWAS data. Many of these biases are size-related (the number of SNPs tested within a gene 

boundary, the number of genes in a pathway, etc.). In most cases, the algorithms themselves 

provide unique and robust ways to control for these biases.

COMMENTARY

After Running the Algorithm

After the algorithm and database are chosen and the data processed, assuming you are 

running a test of more than one pathway or gene set, you will have a list of pathways 

significantly associated with your phenotype. At this point, it is important to point out that, 

while many algorithms correct for multiple testing in the original genome-wide SNP data, 

they may not correct for testing of more than one pathway or gene set. Often, several 

pathways will be seen as significantly associated at the chosen p-value significance 

threshold. Thus, it is helpful to outline steps that simplify the results into a manageable list 

of pathways. This section describes examples of possible ways to sort through a list of 

significantly associated pathways. A simple flowchart for one possible method appears in 

Figure 2.

First, as we are interested in a pathway and not an individual gene, it is recommended to 

remove any pathways where the signal is driven by a single gene. There are many ways to 

investigate this. As an example, the SNP Ratio Test (SRT) can be used to test each 

associated pathway in a step-method that selectively deleted one gene at a time (Anney et 

al., 2011). If the significance of the whole pathway dropped due to the exclusion of one 

gene, than that one gene was driving the signal for the entire pathway, thus reducing interest 

in that pathway. Theoretically, this method could be applied to any algorithm that allows the 

use of custom gene sets. As another example, PARIS (Yaspan et al., 2011; Butkiewicz et al., 

2016) contains functionality for assessing the contribution of SNPs within each individual 

gene as they relate to the significance of a pathway as a whole.
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Many different biological pathways contain similar sets of genes. While this may lead to a 

large list of associated pathways, it is possible to use this to your advantage to identify 

subsets of genes within those pathways that truly drive the signal. Consider a scenario where 

three pathways are associated. The largest pathway has 100 genes and a p-value of 0.04, the 

second largest pathway has 50 genes and a p-value of 0.01, and the smallest pathway has 10 

genes and a p-value of 0.001. Further inspection of the genes in these pathways identifies 

five genes common to all three pathways. In this scenario, it would be recommended to 

check the p-values of the SNPs within these genes for significance, as it is possible that it is 

not the three pathways that are of interest, but rather the five genes that are common between 

them.

For hypothesis-independent investigations, it is recommended to consider prioritizing 

biologically relevant pathways when sorting through a substantial list of associated 

pathways; leveraging prior biological knowledge when sifting through the list of associated 

pathways and can be a very powerful approach to identifying interesting results. A final 

recommendation for hypothesis-independent GWPA is to utilize more than one algorithm 

and prioritize pathways and gene sets identified by both approaches. Dual-pronged pathway 

analysis approaches that provide diverse, but convergent, evidence of an association may 

prove effective for prioritizing putative pathways for further functional investigation.

Visual Representation

The inclusive concept of pathway analysis lends itself to several types of diagram or network 

visualization (e.g., KEGG database). Once a pathway of interest is identified, an overlay of 

information on the visual framework can be very illuminating. Visual overlay can 

encompass many types of information ranging from sentinel SNP p-values or gene 

mutational load (e.g. ratio of significant SNPs to total SNPs) to other functional information. 

Figure 3 shows an example of a pathway diagram with genes shaded by sentinel SNP for 

rapid visual assessment of patterns between genes; for instance, genes that interact directly 

would be obvious candidates for gene-gene interaction analysis to examine possible epistatic 

effects.

It may also be helpful to visualize gene-sets and pathways with alternate paradigms to 

investigate additional aspects of pathway enrichment output. For instance, treeplots and 

dotplots can efficiently summarize information about several pathways simultaneously. In a 

treeplot, pathway groups, sized relative to pathway size or pathway significance, can be 

further subdivided by their gene content with each gene box colored by its p-values for 

visualization of the gene ratio (# significant genes to # total genes) for each pathway. A 

dotplot provides a visual summary of pathway-level information including multiple 

pathways (y-axis), gene ratio (x-axis), pathway size (dot size) and pathway significance (dot 

color), which can be especially helpful for identifying relationships between pathway size 

and summary statistics or gene ratio and significance. Evaluation of pathway overlap can be 

visualized effectively with a heatplot in which pathways are clustered according to the 

similarity of their genic content and genes are color-coded by their p-values within the 

pathways. Finally, a useful and intuitive visualization technique when extrapolating gene and 

pathway enrichment from GWAS data is the gene-level Manhattan plot; each dot on a 
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chromosome represents a gene rather than a SNP, ordered by transcription start site location, 

-log(pgene) on the y-axis and pathway genes represented in a contrasting color scheme to 

non-pathway genes (e.g. i-GSEA4GWASv2 output). Alternative visualizations can 

summarize multiple pathways at once, effectively represent the relationship with between 

pathway size and significance, and help the investigator identify potential confounding gene 

sets driving the significance of multiple pathways.

Summary

In this unit, we have discussed the basic tenets and principles behind pathway analysis from 

GWAS data. We have examined several different algorithms and pathway databases through 

the logistical lens, including range of methodology and approaches. We have also provided 

some commentary on which algorithm, database, and design could be appropriate given a 

particular dataset or analysis plan. Finally, we have outlined some beginning steps toward 

making sense of the results after analysis. When used, properly, pathway analysis of high 

throughput genomic data (GWAS/WGS) is a powerful technique for expanding the utility of 

a GWAS dataset, and can be performed to both answer and generate lines of scientific 

theory.
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Figure 1: 
Overall protocol for pathway-based GWAS / WGS analysis.
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Figure 2: 
Flowchart for sorting through a list of pathways after the algorithm has finished.
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Figure 3: 
Notch signaling pathway as seen in the KEGG database (hsa:04330). The most significant 

SNP in the gene from the single-allele analysis is colored. A graphic overlay such as this can 

highlight genes most likely to be of interest in follow-up studies such as gene-gene 

interaction analyses. Reprinted with permission from Kanehisa Laboratories.
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