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1 Setting the pace 

1.a  Terminology 

Homology 

• Homology forms the basis of organization for comparative biology. 

• Sequence homology is the biological homology between DNA, RNA, or 

protein sequences, defined in terms of shared ancestry in the evolutionary 

history of life.  

• In genetics, the term “homolog” is used both to refer to a homologous 

protein and to the gene ( DNA sequence) encoding it.  

  

https://en.wikipedia.org/wiki/Homology_(biology)
https://en.wikipedia.org/wiki/DNA_sequence
https://en.wikipedia.org/wiki/RNA_sequence
https://en.wikipedia.org/wiki/Protein_primary_structure
https://en.wikipedia.org/wiki/Evolutionary_history_of_life
https://en.wikipedia.org/wiki/Evolutionary_history_of_life
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• Two segments of DNA can have shared ancestry because of either a 

speciation event (orthologs) or a duplication event (paralogs).  
 

 

 

(By Thomas Shafee - Own work, CC BY 4.0, 

https://commons.wikimedia.org/w/index.php?curid=68505353) 
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Homology 

• Initial characterization of any new DNA or protein sequence starts with a 

database search aimed at finding out whether homologs of this gene 

(protein) are already available, and if they are, what is known about them.  

• Homology among DNA, RNA, or proteins is typically inferred from their 

nucleotide or amino acid sequence similarity. Homology among proteins or 

DNA is often incorrectly concluded on the basis of sequence similarity. 

• Significant similarity is strong evidence that two sequences are related by 

evolutionary changes from a common ancestral sequence.  

• Alignments of multiple sequences are used to indicate which regions of 

each sequence are homologous.  

[Stay tuned for RNA + Proteome analyses classes] 

  

https://en.wikipedia.org/wiki/Nucleotide
https://en.wikipedia.org/wiki/Amino_acid
https://en.wikipedia.org/wiki/Sequence_alignment
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Alignment vs frequency of occurrences of “text” (letters, words, …) 
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1.b  Probability distributions 

Our context 
 

• Words are short strings of letters drawn from an alphabet 

• In the case of DNA, the set of letters is A, C, T, G 

• A word of length k is called a k-word or k-tuple 

• Differences in word frequencies help to differentiate between different 

DNA sequence sources or regions 

• Examples: 1-tuple: individual nucleotide; 2-tuple: dinucleotide; 3-tuple: 

codon 

• The distributions of the nucleotides over the DNA sequences have been 
studied for many years → hidden correlations in the sequences (e.g., CpGs) 
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Probability is the science of uncertainty 

 

1. Rules → data: given the rules, describe the likelihoods of various 

events occurring 

2. Probability is about prediction – looking forwards 

3. Probability is mathematics 
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Statistics is the science of data 

1. Rules  data: given only the data, try to guess what the rules were. 

That is, some probability model controlled what data came out, and 

the best we can do is guess – or approximate – what that model was. 

We might guess wrong, we might refine our guess as we obtain / 

collect more data 

2. Statistics is about looking backward. Once we make our best 

statistical guess about what the probability model is (what the rules 

are), based on looking backward, we can then use that probability 

model to predict the future 

3. Statistics is an art. It uses mathematical methods but it is much more 

than mathematics alone 

4. The purpose of statistics is to make inference about unknown 

quantities from samples of data. 
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Statistics is the science of data 

• Probability distributions are a fundamental concept in statistics.  

• Before computing an interval or test based on a distributional assumption, 

we need to verify that the assumption is justified for the given data set.  

• For this chapter, the distribution does not always need to be the best-fitting 

distribution for the data, but an adequate enough model so that the 

statistical technique yields valid conclusions.  

• Simulation studies: one way to obtain empirical evidence for a probability 

model 
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Expected values and variances 

• Mean and variance are two important properties of real-valued random 

variables and corresponding probability distributions. 

• The “mean” of a discrete random variable X taking values x1, x2, . . . (de- 

noted EX (or E(X) or E[X]), where E stands for expectation, which is another 

term for mean) is defined as: 

E(X) =∑ 𝑥𝑖  𝑃(𝑋 = 𝑥𝑖)𝑖  

 

- E(Xi)= 1 ×pA+0 × (1 −pA) if xi = A or {another letter} 

- If Y=c X, then E(Y) = c E(X) 

- E(X1 +… + Xn) = E(X1) + … + E(Xn) 

• Because Xi are assumed to be independent and identically distributed (iid): 

E(X1 +… + Xn) = n E(X1) = n pA 
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Expected values and variances 

• The idea is to use squared deviations of X from its center (expressed by the 
mean). Expanding the square and using the linearity properties of the 
mean, the Var(X) can also be written as: 
 

𝑉𝑎𝑟(𝑋) = 𝐸(𝑋2) − [𝐸(𝑋)]2] 
 

- If Y=c X then Var (Y) = c2 Var (X) 
- The variance of a sum of independent random variables is the sum of 

the individual variances 
 

• For the random variables Xi taking on values A or sth else: 

Var (Xi) = [12  × 𝑝𝐴 +  02  ×′ (1 − 𝑝𝐴)] −  𝑝𝐴
2 = 𝑝𝐴(1 − 𝑝𝐴) 

    Var (N) = n Var (X1) = 𝑛𝑝𝐴(1 − 𝑝𝐴)
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Expected values and variances 

• The expected value of a random variable X gives a measure of its location. 
Variance is another property of a probability distribution dealing with the 
spread or variability of a random variable around its mean. 

 
𝑉𝑎𝑟(𝑋) = 𝐸 ( [𝑋 − 𝐸(𝑋)]2 ) 

 
- The positive square root of the variance of X is called its standard 

deviation sd(X) or 𝜎𝑋 
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Independence 

• Discrete random variables X1, …, Xn are said to be independent if for any 

subset of random variables and actual values, the joint distribution equals 

the product of the component distributions 
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Correlation 

• Correlation is a measure of association, most often used to reflect how two 

variables are related/associated 

• There are several correlation coefficients, often denoted ρ or r.  

• The most common of these is the Pearson correlation coefficient, which is 

sensitive only to a linear relationship between two variables (which may be 

present even when one variable is a nonlinear function of the other).  

• Other correlation coefficients (f.i. Spearman's rank correlation) are more 

robust and/or sensitive to non-linear relation 

 

𝐶𝑜𝑟𝑟(𝑋1, 𝑋2) =
𝐶𝑜𝑣(𝑋1, 𝑋2)

𝜎𝑋1𝜎𝑋2
 

 

https://en.wikipedia.org/wiki/Correlation_coefficient
https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
https://en.wikipedia.org/wiki/Robust_statistics
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Is independence equivalent to correlation? 

 

(Wikipedia) 
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2 Frequency of occurrence of “words” 

2.a 1-letter words  

Assumptions 

• Notation for the output of a random string of n bases may be: L1, L2, …, Ln  

(Li = base inserted at position or locus i of the sequence) 

- The values lj  for Lj will come from a set 𝜒 (with J possibilities) 

- For a DNA sequence, J=4 and 𝜒 =  {𝐴, C, T, G } 

• Simple rules specifying a probability model: 

- First base in sequence is either A, C, T or G with prob pA, pC, pT, pG 

- Suppose the first r bases have been generated, while generating the 

base at position r+1, no attention is paid to what has been generated 

before.  
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• Then we can actually generate A, C, T or G with the probabilities above 

• According to our simple model, the Li are independent and hence 

P(L1=l1,L2=l2, …,Ln=ln)=P(L1=l1) P(L2=l2) …P(Ln=ln) 

• If pj is the prob that the value (realization of the random variable L) lj 

occurs, then 

▪ 𝑝1, … , 𝑝𝐽  ≥ 𝑂 and 𝑝1 +  … +  𝑝𝐽 = 1 

• The probability distribution (probability mass function) of L is given by the 

collection 𝑝1, … , 𝑝𝐽 

- P(L=lj) = pj, j=1, …, J 

• The probability that an event S occurs (subset of 𝜒) is P(L ∈ 𝑆) = 

∑  (𝑝𝑗𝑗:𝑙𝑗 ∈𝑆 ) 
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Probability distributions of interest 

• What is the probability distribution of the number of times a given pattern 

occurs in a random DNA sequence L1, …, Ln? Simple pattern = “A” 

- New sequence X1, …, Xn: 

Xi=1 if Li=A and Xi=0 else 

- The number of times N that A appears is the sum 

N=X1+…+Xn 

- The prob distr of each of the Xi: 

P(Xi=1) = P(Li=A)=pA 

P(Xi=0) = P(Li=C or G or T) = 1 - pA 

• What is a “typical” value of N? 

- Depends on how the individual Xi  (for different i) are interrelated  

  



GBIO0002 - Bioinformatics theory & case studies          

 

  Van Steen K 
 

The binomial distribution 
 

• The binomial distribution is used when there are exactly two mutually 
exclusive outcomes of a trial. These outcomes are appropriately labeled 
"success" and "failure". The binomial distribution is used to obtain the 
probability of observing x successes in a fixed number of trials, with the 
probability of success on a single trial denoted by p. The binomial 
distribution assumes that p is fixed for all trials. 

• The formula for the binomial probability mass function is : 

𝑃(𝑁 = 𝑗) = (
𝑛
𝑗 ) 𝑝𝑗(1 − 𝑝)𝑛−𝑗, j = 0,1, …,n 

with the binomial coefficient (
𝑛
𝑗 ) determined by 

(
𝑛
𝑗 ) =  

𝑛!

𝑗! (𝑛 − 𝑗)!
, 

and j!=j(j-1)(j-2)…3.2.1, 0!=1 
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The binomial distribution 

 

• The mean is np and the variance is np(1-p) 

• The following is the plot of the binomial probability density function for 

four values of p and n = 100. 
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Simulating from probability distributions 

• The idea is that we can study the properties of the distribution of N when 

we  can get our computer to output numbers N1, …, Nk having the same 

distribution as N 

- We can use the sample mean to estimate the expected value E(N): 

�̅� =  (𝑁1 +  … +  𝑁𝑘)/𝑘 

- Similarly, we can use the sample variance to estimate the true variance 

of N: 

𝑠2 =  
1

𝑘 − 1
 ∑(𝑁𝑖 −  �̅�)2

𝑘

𝑖=1

 

Why do we use (k-1) and not k in the denominator?  
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Simulating from probability distributions 

• What is needed to produce such a string of observations? 

- Access to pseudo-random numbers: random variables that are 

uniformly distributed on (0,1): any number between 0 and 1 is a 

possible outcome and each is equally likely 

• In practice, simulating an observation with the distribution of X1: 

- Take a uniform random number u 

- Set X1=1 if 𝑈 ≤ 𝑝 ≡  𝑝𝐴  and 0 otherwise.  

- Why does this work?   …  

- Repeating this procedure n times results in a sequence X1, …, Xn from 

which N can be computed by adding the X’s 
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Simulating from probability distributions 

 

• FYI: Simulate a general DNA sequence of bases A, C, T, G: 

- Divide the interval (0,1) in 4 intervals with endpoints 

0,𝑝𝐴, 𝑝𝐴 + 𝑝𝐶 , 𝑝𝐴 + 𝑝𝐶 + 𝑝𝐺 , 1 

- If the simulated u lies in the leftmost interval, L1=A 

- If u lies in the second interval, L1=C; if in the third, L1=G and otherwise 

L1=T 

- Repeating this procedure n times with different values for U results in a 

sequence L1, …, Ln 

• Use the “sample” function in R: 
pi <- c(0.25,0.75) 

x<-c(1,0) 

set.seed(2009) 

sample(x,10,replace=TRUE,pi) 
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Simulating from probability distributions 

 

• By looking through a given 

simulated sequence, we can count 

the number of times a particular 

pattern arises (for instance, the 

base A) 

• By repeatedly generating 

sequences (k times) and analyzing 

each of them, we can get a feel for 

whether or not our particular 

pattern of interest is unusual 
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Simulating from a known probability distribution 

• Using R code: 
 
x<- rbinom(2000,1000,0.25) 
mean(x) 
sd(x)^2 
hist(x,xlab="Number of successes",main="") 
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R documentation 

 

(https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Binomial.html) 

 

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Binomial.html
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Simulating from a known probability distribution 

• Using R code: 
 
x<- rbinom(2000,1000,0.25) 
mean(x) 
sd(x)^2 
hist(x,xlab="Number of successes",main="") 

                              

                                   

                                        How many entries are taken to compute the mean(x)? 

  

Number of sequences = 2000 = k 

Number of trials = 1000 = n 
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Back to our original question 

• Suppose we have a sequence of 1000bp and assume that every base occurs 

with equal probability. How likely are we to observe at least 300 A’s in such 

a sequence? 

- Exact computation using a closed form of the relevant distribution 

- Approximate via simulation  

- Approximate using the Central Limit Theory 
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Exact computation via closed form of relevant distribution 

• The formula for the binomial probability mass function is : 

𝑃(𝑁 = 𝑗) = (
𝑛
𝑗 ) 𝑝𝑗(1 − 𝑝)𝑛−𝑗, j = 0,1, …,n 

   and therefore 

𝑃(𝑁 ≥ 300) =  ∑ (
1000

𝑗
) (

1000

𝑗=300

1/4)𝑗(1 − 1/4)1000−𝑗  

      = 0.00019359032194965841  

 

• Note that the probability 𝑃(𝑁 ≥ 300) is estimated to be 0.0001479292 via  
 

1-pbinom(300,size=1000,prob=0.25) 
pbinom(300,size=1000,prob=0.25,lower.tail=FALSE) 
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(http://faculty.vassar.edu/lowry/binomialX.html)  
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Approximate via simulation 

• Using R code and simulations from the theoretical (“known”) distribution, 

 𝑃(𝑁 ≥ 300) can be estimated as 0.000196 via 

x<- rbinom(1000000,1000,0.25) 
sum(x>=300)/1000000 
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Approximate via Central Limit Theory 

• The central limit theorem offers a 3rd way to compute probabilities of a 

distribution 

• It applies to sums or averages of iid random variables 

• Assuming that X1, …, Xn are iid random variables with mean 𝜇 and variance 

𝜎2, then we know that for the sample average 

�̅�𝑛 =  
1

𝑛
 (𝑋1 +  … +  𝑋𝑛), 

E(�̅�𝑛) = 𝜇 and Var (𝑋̅̅ ̅
𝑛) = 

𝜎2

𝑛
 

• Hence,  

𝐸 (
�̅�𝑛 −  𝜇

𝜎/√𝑛
) = 0, 𝑉𝑎𝑟 (

�̅�𝑛 −  𝜇

𝜎/√𝑛
) = 1 
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Approximate via Central Limit Theory 

• The central limit theorem states that if the sample size n is large enough,  

𝑃 (𝑎 ≤  
�̅�𝑛− 𝜇

𝜎

√𝑛

 ≤ 𝑏) ≈  𝜙(𝑏) −  𝜙(𝑎), 

with 𝜙(. ) the standard normal distribution defined as 

𝜙(𝑧) = 𝑃(𝑍 ≤ 𝑧) =  ∫ 𝜙(𝑥)𝑑𝑥
𝑧

−∞
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Approximate via Central Limit Theory 

• Estimating the quantity 𝑃(𝑁 ≥ 300) when N has a binomial distribution 

with parameters n=1000 and p=0.25, 

𝐸(𝑁) = 𝑛𝜇 = 1000 × 0.25 = 250, 

𝑠𝑑(𝑁) =   √𝑛 𝜎 = √1000 ×
1

4
×

3

4
 ≈ 13.693 

𝑃(𝑁 ≥ 300) = 𝑃 (
𝑁 − 250

13.693
 >  

300 − 250

13.693
) 

 

                                       ≈ 𝑃(𝑍 >  3.651501) =  0.0001303560 

• R code: 
pnorm(3.651501,lower.tail=FALSE) 

 

How do the estimates of 𝑷(𝑵 ≥ 𝟑𝟎𝟎) compare? 
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Approximate via Central Limit Theory 

 

• The central limit theorem in action using R code: 

bin25<-rbinom(1000,25,0.25) 
av.bin25 <- 25*0.25 
stdev.bin25 <- sqrt(25*0.25*0.75) 
bin25<-(bin25-av.bin25)/stdev.bin25 
hist(bin25,xlim=c(-4,4),ylim=c(0.0,0.4),prob=TRUE,xlab="Sample size 
25",main="") 
x<-seq(-4,4,0.1) 
lines(x,dnorm(x))   
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Approximate via Central Limit Theory 
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2.b 2-letter words 

One motivation 

• The CpG sites or CG sites are regions of DNA where a cytosine nucleotide is 

followed by a guanine nucleotide in the 

linear sequence of bases along its 5' → 3' 

direction.  

• CpG sites occur with high frequency in genomic 

regions called CpG islands (or CG islands). Cytosines in CpG dinucleotides 

can be methylated to form 5-methylcytosines. Enzymes that add a methyl 

group are called DNA methyltransferases.  

• In mammals, 70% to 80% of CpG cytosines are methylated [see also 

Homework 1 assignment: paper style] 

  

https://en.wikipedia.org/wiki/DNA
https://en.wikipedia.org/wiki/Cytosine
https://en.wikipedia.org/wiki/Nucleotide
https://en.wikipedia.org/wiki/Guanine
https://en.wikipedia.org/wiki/DNA_sequence
https://en.wikipedia.org/wiki/Base_pair
https://en.wikipedia.org/wiki/Directionality_(molecular_biology)
https://en.wikipedia.org/wiki/Directionality_(molecular_biology)
https://en.wikipedia.org/wiki/DNA_methylation
https://en.wikipedia.org/wiki/5-methylcytosine
https://en.wikipedia.org/wiki/Enzyme
https://en.wikipedia.org/wiki/DNA_methyltransferase
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Assumptions of independence simplify the problem once again 

• Concentrating on abundances, and assuming the iid model for L1, …, Ln: 

𝑃(𝐿𝑖 = 𝑙𝑖 = 𝐶, 𝐿𝑖+1 = 𝑙𝑖+1 = 𝐺) = 𝑝𝑙𝑖 𝑝𝑙𝑖+1  

• Has a given sequence an unusual dinucleotide frequency compared to the 

iid model?  

 

Which statistic (that we have already seen in class) would apply? 
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Chi-square statistic 

A chi-squared test can be completed by following five simple steps: 

• Identify hypotheses (null versus alternative) 

• Construct a table of frequencies (observed versus expected) 

• Apply the chi-squared formula 

• Determine the degree of freedom (df) 

• Identify the p value (should be <0.05) 
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Example 

• The trait for smooth peas (R) is dominant over wrinkled peas (r) and yellow 

pea colour (Y) is dominant to green (y) 

• A dihybrid cross between two heterozygous pea plants is performed 

(RrYy × RrYy) 

• The following phenotypic frequencies are observed: 

701 smooth yellow peas  ;  204 smooth green peas  ;  243 wrinkled yellow 

peas  ;  68 wrinkled green peas  
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Observed minus expected
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What is your conclusion? 

 

(https://ib.bioninja.com.au/higher-level/)  
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Returning to CpG counts… 

• Compare observed O with expected E dinucleotide numbers 

χ2 =  
(O−E)2

E
, 

   with 𝐸 = (𝑛 − 1)𝑝𝑙𝑖
𝑝𝑙𝑖+1

.  

 

Why (n-1) as factor in E above?  

 

• How to determine which values of χ2are unlikely or extreme? 

- If the observed nr is close to the expected number, then the statistic 

will be small. Otherwise, the model will be doing a poor job of 

predicting the dinucleotide frequencies and the statistic will tend to be 

large… 

- Degrees of freedom? 
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- Recipe:  

▪ Compute the number c given by  

𝑐 = {
1 + 2𝑝𝑙𝑖 −  3𝑝𝑙𝑖

2 ,  if 𝑙𝑖 =  𝑙𝑖+1

1 − 3𝑝𝑙𝑖
𝑝𝑙𝑖+1

,        if 𝑙𝑖  ≠  𝑙𝑖+1
  

▪ Calculate the ratio 
χ2

c
, where χ2is given as before 

▪ Compare the ratio to a chi-square distribution: If this ratio is larger 

than 3.84 then conclude that the iid model is not a good fit.   

▪ Via R : qchisq(0.95,1) = 3.84 
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2.b 3-letter words 

Transcription 

 

 

(https://www.nature.com/scitable) 
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Types of RNA 

• Messenger RNA (mRNA) 

- Carry a copy of the instructions from the nucleus to 

other parts of the cell 

• Ribosomal RNA (rRNA) 

- Makes up the structure of ribosomes 

• Transfer RNA (tRNA) 

- Transfers amino acids (proteins) to the ribosomes to be 

assembled 
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Transcription and  

Translation 

 

 

 

 

 

 

 

 

(https://www.nature.com/scitable) 
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Amino acids 

 

• There are 61 codons that specify amino acids and three stop codons → 64 

meaningful 3-words. 

• Since there are 20 common amino acids, this means that most amino acids 

are specified by more than one codon.  
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Point mutations 

 

                                                             (adapted from Wikipedia) 
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Predicted relative frequencies 

• In general, an amino acid may be coded in different ways, but perhaps 

some codes have a preference? (higher frequency?) 

• For a sequence of independent bases L1, L2, ... , Ln the expected 3-tuple 

relative frequencies can be found by using the logic employed for 

dinucleotides we derived before 

• The probability of a 3-word can be calculated as follows: 

assuming the iid model 
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The codon adaptation index 

• This provides the expected frequencies of particular codons, using the 

individual base frequencies.  It follows that among those codons making up 

the amino acid Phe, the expected proportion of TTT is 

P(TTT)

P(TTT) +  P(TTC)
 

• One can then compare predicted and observed triplet frequencies in coding 

sequences for a subset of genes and codons from f.i. E. coli.  

• Médigue et al. (1991) clustered different genes based on codon usage 

patterns. 

• For instance for Phe (TTT → UUU; TTC → UUC), the observed frequency 

differs considerably from the predicted frequency, when focusing on highly 

expressed genes (so-called “class II genes” in the work of Médigue et al. 

(1999)   
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• Figures in parentheses below each gene class show the number of genes in 

that class.  
                   

 

 

 

(Deonier et al. Computational Genome Analysis, 2005, Springer)  

Class II  : Highly expressed genes 

Class I   : Moderately expressed genes 

[Gene expression analyses workflow – 

future class] 
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3 Types of sequence analyses 

3.a Summary 

Identification of Genes in a Genomic DNA Sequence 

• Examples: prediction of protein coding genes 

• In multicellular eukaryotes, most genes are interrupted by introns.  

• The mean length of an exon is ~50 codons, but some exons are much 

shorter; many of the introns are extremely long, resulting in genes 

occupying up to several megabases of genomic DNA.  

• This makes prediction of eukaryotic genes a far more complex problem 

than prediction of prokaryotic genes. 
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• A comparison of predictions generated by different programs reveals the 

cases where a given program performs the best and helps in achieving 

consistent quality of gene prediction.  

• Such a comparison can be performed, for example, using the TIGR 

Combiner program (http://www.tigr.org/softlab), which employs a voting 

scheme to combine predictions of different gene-finding programs, such as 

GeneMark, GlimmerM, GRAIL, GenScan, and Fgenes. 

  

http://www.tigr.org/softlab
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Sequence similarity 

• Looking for exactly the same sequence is quite straightforward.  

- One can just take the first letter of the query sequence, search for its 

first occurrence in the database, and then check if the second letter of 

the query is the same in the subject.  

- If it is indeed the same, the program could check the third letter, then 

the fourth, and continue this comparison to the end of the query.  

- If the second letter in the subject is different from the second letter in 

the query, the program should search for another occurrence of the 

first letter, and so on.  

- This will identify all the sequences in the database that are identical to 

the query sequence (or include it).  

• Of course, this approach is primitive computation-wise, and there are 

sophisticated algorithms for text matching that do it much more efficiently 
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• When comparing nucleic acid sequences, there is very little one could do.  

- All the four nucleotides, A, T, C, and G, are found in the database with 

approximately the same frequencies and have roughly the same 

probability of mutating one into another.  

- As a result, DNA-DNA comparisons are largely based on straightforward 

text matching, which makes them fairly slow and not particularly 

sensitive, although a variety of heuristics have been developed to 

overcome this 

- Direct nucleotide sequence comparison is indispensable only when 

non-coding regions are analyzed. 
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• Amino acid sequence comparisons have several distinct advantages over 

nucleotide sequence comparisons: 

- Firstly, because there are 20 amino acids but only four bases, an amino 

acid match carries with it >4 bits of information as opposed to only two 

bits for a nucleotide match. → Statistical significance can be 

ascertained for much shorter sequences in protein comparisons than in 

nucleotide comparisons.  

- Secondly, because of the redundancy of the genetic code, nearly one-

third of the bases in coding regions are under a weak (if any) selective 

pressure and represent noise → adversely affects search sensitivity.  

- Thirdly, nucleotide sequence databases are much larger than protein 

databases because of the vast amounts of non-coding sequences 

coming out of eukaryotic genome projects, and this further lowers the 

search sensitivity.  
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- Fourthly, unlike in nucleotide sequence, the likelihoods of different 

amino acid substitutions occurring during evolution are substantially 

different, and taking this into account greatly improves the 

performance of database search methods.  

 

• Given all these advantages, comparisons of any coding sequences are 

typically carried out at the level of protein sequences: 

- Substitutions leading to similarities in physio-chemical properties of 

amino acids should be penalized less than a replacement of an amino 

acid with one that has dramatically different properties 

Connecting DNA sequence and protein sequence comparative analysis: 

- Even when the goal is to produce a DNA-DNA alignment (e.g. for 

analysis of substitutions in silent codon positions), it is usually first done 

with protein sequences, which are then replaced by the corresponding 

coding sequences.  
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Sequence Alignment 

 

• In principle, the only way to identify homologs is  

- by aligning the query sequence against all the sequences in the 

database (algorithms exist to skip sequences that are obviously 

unrelated to the query),  

- sorting these hits based on the degree of similarity, and  

- assessing their statistical significance that is likely to be indicative of 

homology 

 

• It is important to make a distinction between a global (i.e. full-length) 

alignment and a local alignment, which includes only parts of the analyzed 

sequences (sub-sequences).  
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• Although, in theory, a global alignment is best for describing relationships 

between sequences, in practice,  

local alignments are of more general use for two reasons: 

- Firstly, it is common that only parts of compared proteins are 

homologous.  

- Secondly, on many occasions, only a portion of the sequence is 

conserved enough to carry a detectable signal, whereas the rest have 

diverged beyond recognition.  

• Optimal global alignment of two sequences was first realized in the 

Needleman-Wunsch algorithm, which employs dynamic programming. 

• The notion of optimal local alignment (the best possible alignment of two 

sub-sequences from the compared sequences) and the corresponding 

dynamic programming algorithm were introduced by Smith and Waterman.  
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• Due to computational burden (the time and memory required to generate 

an optimal alignment are proportional to the product of the lengths of the 

compared sequences), multiple sequence alignments usually only produce 

approximations and do not guarantee the optimal alignment. 

• Optimal alignment above:  

- is a purely formal notion, which means that, given a scoring function, 

the algorithm outputs the alignment with the highest possible score 

- has nothing to with statistical significance of the alignment, which has 

to be estimated separately  

- has nothing to do with the biological relevance of the alignment 

• Examples of popular sequence data base search algorithms: 

- Smith-Waterman 

- FASTA 

- BLAST 

(section ref: https://www.ncbi.nlm.nih.gov/books/NBK20261/) 

https://www.ncbi.nlm.nih.gov/books/NBK20261/


GBIO0002 - Bioinformatics theory & case studies          

 

  Van Steen K 
 
 

 

 

 



GBIO0002 - Bioinformatics theory & case studies          

 

  Van Steen K 
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(https://a-little-book-of-r-for-bioinformatics.readthedocs.io/en/latest/index.html) 
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Links and further reading 

as adapted from  

https://a-little-book-of-r-for-bioinformatics.readthedocs.io/en/latest/index.html 

• For background reading on sequence alignment: Chapter 3 of Introduction to 
Computational Genomics: a case studies approach by Cristianini and Hahn (Cambridge 
University Press; www.computational-genomics.net/book/). 

• There is also a very nice chapter on “Analyzing Sequences”, which includes examples of using 
SeqinR and Biostrings for sequence analysis, as well as details on how to implement 
algorithms such as Needleman-Wunsch and Smith-Waterman in R yourself, in the book 
Applied statistics for bioinformatics using R by Krijnen (available online at cran.r-
project.org/doc/contrib/Krijnen-IntroBioInfStatistics.pdf). 

• For more information on and examples using the Biostrings package, see the Biostrings 
documentation at 
http://www.bioconductor.org/packages/release/bioc/html/Biostrings.html. 

 

http://www.computational-genomics.net/book/
http://cran.r-project.org/doc/contrib/Krijnen-IntroBioInfStatistics.pdf
http://cran.r-project.org/doc/contrib/Krijnen-IntroBioInfStatistics.pdf
http://www.bioconductor.org/packages/release/bioc/html/Biostrings.html


GBIO0002 - Bioinformatics theory & case studies          

 

  Van Steen K 
 
 

3.b Rare variants association studies 

 

(slide Doug Brutlag 2010) 
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Why studying rare variants? 

• Most human variants are rare 

 

 

 

(refs: slides Fan Li 2016) 
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Why studying rare variants? 

• Functional variants tend to be rare 

 

 
(refs: slides Fan Li 2016) 

  



GBIO0002 - Bioinformatics theory & case studies          

 

  Van Steen K 
 
 

Analytic challenges 

• A variant – genetic association test implies filling in the table below and 

performing a chi-squared test for independence between rows and 

columns  

 AA Aa aa 
Cases    
Controls    

 

 

How many observations do you expect to have two copies of a rare allele 

(say MAF = 0.001)? 

 

  

Sum of entries = 

cases+controls 
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• In a chi-squared test of independence setting: 

- When MAF <<< 0.01 then some cells above will be sparse and large-

sample statistics (classic chi-squared tests of independence) will no 

longer be valid. 

- This is the case when there are less than 5 observations in a cell 

 

𝑋2 = ∑
(𝑂𝑖−𝐸𝑖)2

𝐸!
𝑎𝑙𝑙 𝑐𝑒𝑙𝑙𝑠 𝑖    (contrasting Observed minus Expected) 

 

• In a regression framework:  

- The minimum number of observations per independent variable should 

be 10, using a rough rule of thumb (guideline provided by Hosmer and 

Lemeshow  - Applied Logistic Regression) 
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Increased false positive rates 

Q-Q plots from GWAS data, unpublished 

  

N=~2500 

MAF>0.03 

N=~2500 

MAF<0.03 

N=~2500 

MAF<0.03 

Permuted 

N=50000 

MAF<0.03 

Bootstrapped  
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Remediation: do not look at a single variant at a time, but collapse 

• Rationale for aggregation tests 

- At α= 0.05, Bonferroni correction will lead to too stringent thresholds 

(accounting for all variants included in the study) 

- One needs VERY LARGE samples sizes in order to be able to reach that 

level, even if you find “the variant”. 

• Remedy = aggregate / pool variants 

- Requires specification of a so-called “region of interest” (ROI) 

- A ROI can be anything really: 

▪ Gene 

▪ Locus 

▪ Intra-genic area 

▪ Functional set               [see also Homework 1 assignment: paper style] 
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Overall process for imputing and analyzing rare variants 

 

 

A flowchart describing the steps in imputing rare variants into genome-wide SNP datasets 

(Hoffman and Witte, 2015) 
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Haplotypes 

  

• When haplotypes are 
defined in relation to SNPs: 
a haplotype is a set of SNPs 
found to be statistically 
associated on a single 
chromatid, I.e. adjacent 
SNPs that are inherited 
together on the basis of 
linkage disequilibrium.  

• For a more detailed 
definition is the 
International HapMap 
Project 

 

http://www.hapmap.org/whatishapmap.html.en
http://www.hapmap.org/whatishapmap.html.en
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Imputation in common variant GWAS 

 

(book exert: Zeggini and Morris 2011- Analysis of Complex Disease Association Studies) 
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Imputation in common variant GWAS 

• Two easy ways dealing with uncertain genotypes (genotype coding 0, 1, 2): 
 

- Genotype Calling: 
Choose the most likely genotype and continue as if it is true 
(p11=10%, p12=20% p22=70% => G=2) 

- Mean genotype: 
Use the weighted average genotype 
(p11=10%, p12=20% p22=70% => G=1.6) 

(ref: slides E Bouzigon 2020) 

• Haplotype imputation services 
- EAGLE - https://data.broadinstitute.org/alkesgroup/Eagle/ 
- SHAPEIT - https://jmarchini.org/shapeit3/ 
  

https://jmarchini.org/shapeit3/
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Popular imputation programs 
 

• IMPUTE 5 (Rubinacci S et al 2019, Genotype imputation using the Positional 
Burrows Wheeler Transform bioRxiv) https://jmarchini.org/impute5/ 

 

• Minimac4 (Das S et al. Nat Genet 2016) 
https://github.com/statgen/Minimac4 

 
Hidden Markov Model - based 

• HLA allelic imputation programs 
- HIBAG: 

https://bioconductor.org/packages/release/bioc/html/HIBAG.html 
- HLA*IMP:02: https://oxfordhla.well.ox.ac.uk/hla/static/tutorial.pdf 
- SNP2HLA: http://software.broadinstitute.org/mpg/snp2hla/ 
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Popular imputation services 
 

• Michigan Imputation Server (a free genotype imputation service using 
Minimac4) 
https://imputationserver.sph.umich.edu 
 

• Sanger Imputation Server (using PBWT/IMPUTE 5) 
https://www.sanger.ac.uk/tool/sanger-imputation-service/ 
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Additional analysis considerations 

• Variable selection 

• Ways to define regions of interest and to test them 

 

(Lee et al. 2014) 
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An abundance of tests 

 

(Lee et al. 2014) 
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An abundance of tests 

 

(Lee et al. 2014) 
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(Dering et al. 2014) 
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 (Dering et al. 2014) 
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Questions? 
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Main supporting doc to this class (complementing course slides) 

 

 
Nature reviews Genetics 2019; 20:747 

 

√ 

 


