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1 Setting the pace
1.a Terminology
Homology

e Homology forms the basis of organization for comparative biology.
e Sequence homology is the biological homology between DNA, RNA, or

protein sequences, defined in terms of shared ancestry in the evolutionary
history of life.

¢ In genetics, the term “homolog” is used both to refer to a homologous
protein and to the gene ( DNA sequence) encoding it.
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e Two segments of DNA can have shared ancestry because of either a
speciation event (orthologs) or a duplication event (paralogs).
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(By Thomas Shafee - Own work, CC BY 4.0,
https://commons.wikimedia.org/w/index.php?curid=68505353)
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Homology

e |nitial characterization of any new DNA or protein sequence starts with a
database search aimed at finding out whether homologs of this gene
(protein) are already available, and if they are, what is known about them.

e Homology among DNA, RNA, or proteins is typically inferred from their
nucleotide or amino acid sequence similarity. Homology among proteins or
DNA is often incorrectly concluded on the basis of sequence similarity.

e Significant similarity is strong evidence that two sequences are related by
evolutionary changes from a common ancestral sequence.

e Alignments of multiple sequences are used to indicate which regions of
each sequence are homologous.

[Stay tuned for RNA + Proteome analyses classes]
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Alignment vs frequency of occurrences of “text” (letters, words, ...)
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1.b Probability distributions

Our context

e \Words are short strings of letters drawn from an alphabet

e |n the case of DNA, the set of lettersis A, C, T, G

e A word of length k is called a k-word or k-tuple

e Differences in word frequencies help to differentiate between different
DNA sequence sources or regions

e Examples: 1-tuple: individual nucleotide; 2-tuple: dinucleotide; 3-tuple:
codon

e The distributions of the nucleotides over the DNA sequences have been
studied for many years = hidden correlations in the sequences (e.g., CpGs)
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Probability is the science of uncertainty

1. Rules = data: given the rules, describe the likelihoods of various
events occurring

2. Probability is about prediction — looking forwards

3. Probability is mathematics
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Statistics is the science of data

1. Rules € data: given only the data, try to guess what the rules were.
That is, some probability model controlled what data came out, and
the best we can do is guess — or approximate — what that model was.
We might guess wrong, we might refine our guess as we obtain /
collect more data

2. Statistics is about looking backward. Once we make our best
statistical guess about what the probability model is (what the rules
are), based on looking backward, we can then use that probability
model to predict the future

3. Statistics is an art. It uses mathematical methods but it is much more
than mathematics alone

4. The purpose of statistics is to make inference about unknown
guantities from samples of data.
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Statistics is the science of data

e Probability distributions are a fundamental concept in statistics.

e Before computing an interval or test based on a distributional assumption,
we need to verify that the assumption is justified for the given data set.

e For this chapter, the distribution does not always need to be the best-fitting
distribution for the data, but an adequate enough model so that the
statistical technique yields valid conclusions.

e Simulation studies: one way to obtain empirical evidence for a probability
model
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Expected values and variances

e Mean and variance are two important properties of real-valued random
variables and corresponding probability distributions.

e The “mean” of a discrete random variable X taking values x3, x5, . . . (de-
noted EX (or E(X) or E[X]), where E stands for expectation, which is another
term for mean) is defined as:

E(X) =X x; P(X = x;)

- E(Xi)=1 Xpa+0 X (1 —pa) if x; = A or {another letter}
- If Y=c X, then E(Y) = c E(X)
- E(X1+... + X,) = E(X1) + ... + E(X;)
e Because X;are assumed to be independent and identically distributed (iid):
E(X1 +... + Xn) = n E(X1) = n pa
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Expected values and variances

e The idea is to use squared deviations of X from its center (expressed by the
mean). Expanding the square and using the linearity properties of the
mean, the Var(X) can also be written as:

Var(X) = E(X?) — [E(X)]?]

- If Y=c X then Var (Y) = c?Var (X)
- The variance of a sum of independent random variables is the sum of
the individual variances

e For the random variables X; taking on values A or sth else:

Var (X)) = [1* X py + 0% x' (1 =pa)] — P4 =pa(1 —p4)
Var (N) =nVar (X1) =np4(1 —p,)
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Expected values and variances

e The expected value of a random variable X gives a measure of its location.
Variance is another property of a probability distribution dealing with the
spread or variability of a random variable around its mean.

Var(X) = E ([X — E(X)]?)

- The positive square root of the variance of X is called its standard
deviation sd(X) or oy
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Independence

e Discrete random variables Xy, ..., X, are said to be independent if for any
subset of random variables and actual values, the joint distribution equals
the product of the component distributions
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Correlation

e Correlation is a measure of association, most often used to reflect how two
variables are related/associated

e There are several correlation coefficients, often denoted p orr.

e The most common of these is the Pearson correlation coefficient, which is
sensitive only to a linear relationship between two variables (which may be
present even when one variable is a nonlinear function of the other).

e Other correlation coefficients (f.i. Spearman's rank correlation) are more
robust and/or sensitive to non-linear relation

Cov(Xy,X5)

Corr(X(,X,) =
Ox10x2
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Is independence equivalent to correlation?
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2 Frequency of occurrence of “words”

2.a 1-letter words
Assumptions

e Notation for the output of a random string of n bases may be: L3, L, ..., L,
(Li = base inserted at position or locus i of the sequence)
- The values [; for L; will come from a set y (with J possibilities)
- For a DNA sequence, J=4and y = {4,C,T,G}
e Simple rules specifying a probability model:
- First base in sequence is either A, C, T or G with prob pg, pc p1, ps
- Suppose the first r bases have been generated, while generating the

base at position r+1, no attention is paid to what has been generated
before.
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e Then we can actually generate A, C, T or G with the probabilities above
e According to our simple model, the Li are independent and hence
P(Li=ly,Lo=ly, ..., La=l1)=P(Li=11) P(L2=13) ...P(Ln=I1n)
e If p;is the prob that the value (realization of the random variable L) /;
occurs, then
" py, by =20andp; + ...+ p; =1
e The probability distribution (probability mass function) of L is given by the
collection py, ..., p;
- P(L=l) =pj, j=1, ..., )
e The probability that an event S occurs (subset of y) is P(L € S) =

Zj:lj €S (Pj)
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Probability distributions of interest

e What is the probability distribution of the number of times a given pattern
occurs in a random DNA sequence Ly, ..., L,? Simple pattern = “A”
- New sequence Xy, ..., X:
Xi=1 if Li=A and X;=0 else
- The number of times N that A appears is the sum
N=X1+...4+Xn
- The prob distr of each of the X;:
P(Xi=1) = P(Li=A)=pa
P(Xi=0) =P(Li=CorGorT)=1-pa

e What is a “typical” value of N?

- Depends on how the individual X; (for different i) are interrelated
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The binomial distribution

e The binomial distribution is used when there are exactly two mutually
exclusive outcomes of a trial. These outcomes are appropriately labeled
"success" and "failure". The binomial distribution is used to obtain the
probability of observing x successes in a fixed number of trials, with the
probability of success on a single trial denoted by p. The binomial
distribution assumes that p is fixed for all trials.

e The formula for the binomial probability mass function is :

n . .
P(N :]) = ()p](l _p)n_Jij =0111 weey

n
) determined by

J
(n) _ n!
J7 i (n=j)r
and jI=j(j-1)(j-2)...3.2.1, 0!=1

with the binomial coefficient (
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The binomial distribution

e The mean is np and the variance is np(1-p)
e The following is the plot of the binomial probability density function for
four values of p and n = 100.
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Simulating from probability distributions

e The idea is that we can study the properties of the distribution of N when
we can get our computer to output numbers Ny, ..., Nx having the same
distribution as N

- We can use the sample mean to estimate the expected value E(N):

N= (N, + ..+ N)/k

- Similarly, we can use the sample variance to estimate the true variance
of N:

k
1 _
2 _ A2
S _k—l,Z(N‘ M)
=

Why do we use (k-1) and not k in the denominator?
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Simulating from probability distributions

e What is needed to produce such a string of observations?

- Access to pseudo-random numbers: random variables that are
uniformly distributed on (0,1): any number betweenOand 1is a
possible outcome and each is equally likely

e In practice, simulating an observation with the distribution of X1:

Take a uniform random number u

SetX.:=1ifU <p = p, and 0 otherwise.

Why does this work? ... P(X; =1)= P(U < pa) = pa

Repeating this procedure n times results in a sequence Xy, ..., Xn from

which N can be computed by adding the X’s
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Simulating from probability distributions

o FYI:

Simulate a general DNA sequence of bases A, C, T, G:
Divide the interval (0,1) in 4 intervals with endpoints
0,P4,Pa + Pc,Pa+Pc+ P61
If the simulated u lies in the leftmost interval, L1=A
If u lies in the second interval, L1=C; if in the third, L1=G and otherwise
L,=T
Repeating this procedure n times with different values for U results in a
sequence Ly, ..., Ly

e Use the “sample” function in R:

pi <- ¢(0.25,0.75)

x<-c(1,0)

set.seed(2009)
sample(x,10,replace=TRUE,pi)
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Simulating from probability distributions

e By looking through a given
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Simulating from a known probability distribution

e Using R code:

x<- rbinom(2000,1000,0.25)

mean(x)

sd(x)"2

hist(x,xlab="Number of successes",main="")
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R documentation

Binomial {stats} R Documentation

The Binomial Distribution

Description

Density, distribution function, quantile function and random generation for the binomial distribution with parameters size and prob.
This is conventionally interpreted as the number of ‘successes’ in size trials.

Usage

dbinom(x, size, prob, log = FALSE)

pbinom(q, size, prob, lower.tail = TRUE, log.p

gbinom(p, size, prob, lower.tail = TRUE, log.p
rbinom(n, size, prob)

FALSE)
FALSE)

Arguments

p-o r q
vector of quantiles.

P

vector of probabilities.
n

number of observations. If 1ength (n) > 1, the length is taken to be the number required.
size

number of trials (zero or more).

(https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Binomial.html)
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Simulating from a known probability distribution

e Using R code:

x<- rbinom(2000,1000,0.25)

mean(x)

sd(x)"2

hist(x,xlab="Number of successes",main="")

How many entries are taken to.compute the mean(x)?

Number of sequences = 2000 = k

100 200 300 400 500

N

Number of trials = 1000 = n

teen K
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Back to our original question

e Suppose we have a sequence of 1000bp and assume that every base occurs
with equal probability. How likely are we to observe at least 300 A’s in such
a sequence?
- Exact computation using a closed form of the relevant distribution
- Approximate via simulation
- Approximate using the Central Limit Theory
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Exact computation via closed form of relevant distribution

e The formula for the binomial probability mass function is :

P(N =j) = (7) pI(1—p)"7,j=0,1,..n
and therefore
1000
P(N > 300) = z (10].00) (1/4)7 (1 — 1/4)1000~J
j=300

= 0.00019359032194965841

e Note that the probability P(N = 300) is estimated to be 0.0001479292 via

1-pbinom(300,size=1000,prob=0.25)
pbinom(300,size=1000,prob=0.25,lower.tail=FALSE)
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Method 1. exact binomial calculation
Method 2. approximation viz normal

Method 3. approximation via Poisson

Method 1. exact binomial calculation
Method 2. approximation viz normal

Method 3. approximation viz Poisson

Method 1. exact binomial calculation
Method 2. approximation viz normal

Method 3. approximation viz Poisson

P: exactly 300 out of 1000
0.00004566114740576488

0.000038

F: 300 or fewer out of 1000

0.9995520708293378

0.999585

F: 300 or more out of 1000
0.00019359032194565841

0.000153

For hy 15 testing

Method 1. exact binomial calculation
Method 2. approximation viz normal

approximation via Poisson

One-Tail
0.00019359032194565841

0 or more out of 1000

0.0003025705168772097

0.000153

(http://faculty.vassar.edu/lowry/binomialX.html)

0.000306
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Approximate via simulation

e Using R code and simulations from the theoretical (“known”) distribution,
P(N = 300) can be estimated as 0.000196 via

x<- rbinom(1000000,1000,0.25)
sum(x>=300)/1000000
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Approximate via Central Limit Theory

e The central limit theorem offers a 3" way to compute probabilities of a
distribution

e |t applies to sums or averages of iid random variables

e Assuming that Xy, ..., X, are iid random variables with mean u and variance
a?, then we know that for the sample average

= 1
Xn — ; (Xl + ...+ XTL)I

— _ 2
E(X,,) =uand Var (X,) = =

n

Xp— u _ Xp— u _
E(a/ﬁ>_°’var<a/ﬁ>_l

e Hence,
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Approximate via Central Limit Theory

e The central limit theorem states that if the sample size n is large enough,

N
with ¢ (.) the standard normal distribution defined as

5(2) = P(Z <7) = f b (x)dx

P <a < Bk o b) ~ ¢(b) — ¢(a),

Normal Curve

Standard Deviation

7N\

2

19.1%|[19.1%

15.0% 15.0%

-3 =25 -2 15 4 -0.5 0 0.5
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Approximate via Central Limit Theory
e Estimating the quantity P(N = 300) when N has a binomial distribution
with parameters n=1000 and p=0.25,
E(N) =nu = 1000 x 0.25 = 250,

1 3
sd(N) = Vno= [1000 X —Xx— = 13.693
\ 4" 4

PN > 300) = P (N — 250 . 300 — 250)
- B 13.693 13.693

~ P(Z > 3.651501) = 0.0001303560

e R code:
pnorm(3.651501,lower.tail=FALSE)

How do the estimates of P(N > 300) compare?
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Approximate via Central Limit Theory

e The central limit theorem in action using R code:

bin25<-rbinom(1000,25,0.25)

av.bin25 <- 25*0.25

stdev.bin25 <- sqrt(25*0.25*0.75)
bin25<-(bin25-av.bin25)/stdev.bin25
hist(bin25,xlim=c(-4,4),ylim=c(0.0,0.4),prob=TRUE,xlab="Sample size
25", main="")

x<-seq(-4,4,0.1)

lines(x,dnorm(x))
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Approximate via Central Limit Theory
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2.b 2-letter words
One motivation

e The CpG sites or CG sites are regions of DNA where a cytosine nucleotide is
followed by a guanine nucleotide in the
linear sequence of bases alongits 5' > 3' 5 GG C
direction. SN, GC G 3

e CpG sites occur with high frequency in genomic
regions called CpG islands (or CG islands). Cytosines in CpG dinucleotides
can be methylated to form 5-methylcytosines. Enzymes that add a methyl
group are called DNA methyltransferases.

e In mammals, 70% to 80% of CpG cytosines are methylated [see also
Homework 1 assignment: paper style]
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Assumptions of independence simplify the problem once again

e Concentrating on abundances, and assuming the iid model for Ly, ..., Ln:
P(Li=1;=CLiys = lix1 =G) =py, 01,
e Has a given sequence an unusual dinucleotide frequency compared to the
iid model?

Which statistic (that we have already seen in class) would apply?
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Chi-square statistic
A chi-squared test can be completed by following five simple steps:

e |dentify hypotheses (null versus alternative)

e Construct a table of frequencies (observed versus expected)
e Apply the chi-squared formula

e Determine the degree of freedom (df)

e |dentify the p value (should be <0.05)
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Example

e The trait for smooth peas (R) is dominant over wrinkled peas (r) and yellow
pea colour (Y) is dominant to green (y)

e A dihybrid cross between two heterozygous pea plants is performed
(RrYy x RrYy)

e The following phenotypic frequencies are observed:

701 smooth yellow peas ; 204 smooth green peas ; 243 wrinkled yellow
peas ; 68 wrinkled green peas

Van Steen K
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Observed minus expected

Round =R Yellow =Y

Wrinkled =T Green = y

R r Y y

R RR Rr Y| YY Yy

ri Rr r y Yy yy
% RR % Rr Yarr WYY Yy ayy

% YY—1/16 RRYY — 1/16 RRYY

Ya RR< %2Yy— 1/8 RRYy — 2/16 RRYy
% yy —* 1/16 RRyy —— 1/16 RRyy

YaYY— 1/8 RrYY — > 2/16 RrYY

Vs Rr < 2Yy—— 1/4 RrYy — 4/16 RrYy
Yayy — 1/8 Rryy — 2/16 Rryy

YYY— 116 rrYY — 116 rrYY

Yarr < Y% Yy— 18 rrYy —— 2/16 rrYy

Yayy — > 1M16rryy — 116 rryy

Observed Frequencies
. | Smooth yellow 701
0 | Smooth green | 204
€= | Wrinkled yellow 243
0 | Wrinkled green | 68
Total 1216

I

\
!

RRYY

RRYy ' RrYY RrYy

|
4

RrYY | RrYy | mYY Yy

RrYy = Rryy ‘ Yy rryy

RRYy RRyy | RrYy = Rry

=9 e=

3 &

=3 ‘:

1
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Step 1: |dentify hypotheses

A chi-squared test seeks to distinguish between two distinct possibilities and hence requires two contrasting hypotheses:

= Null hypothesis (Hp): There is no significant difference between observed and expected frequencies (i.e. genes are unlinked)

» Alternative hypothesis (H4): There is a significant difference between observed and expected frequencies (i.e. genes are linked)

Step 2: Construct a table of frequencies

A table must be constructed that compares observed and expected frequencies for each possible phenotype

= Expected frequencies are calculated by first determining the expected ratios and then multiplying against the observed total

Observed (0)

Expected (E)

701

684
1216 x (9/16)

204

228
1216 x (3/16)

243

228
1216 x (3/16)

68

76
1216 x (1/16)

1216

1216
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Step 3: Apply the chi-squared formula

The formula used to calculate a statistical value for the chi-squared test is as follows:

(0 —E)?

2:
XZE

Where: > =Sum ; O = Observed frequency ; E = Expected frequency

These calculations can be broken down for each phenotype and added to the table to make the final summation easier

Observed (0) 701 204 243 68
Expected (E) 684 228 228 76
(O-E) 17 -24 15 -8
(0-E)?
T 042 2.53 0.99 0.84
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Step 3: Apply the chi-squared formula

The formula used to calculate a statistical value for the chi-squared test is as follows:

(0 —E)

2:
xZE

.aKke the final summation easier

oo
e
e \‘3’3\“
\.‘3\\6“ &:‘ﬁ
\)\\5“\ 28
Observed (0 _ (° x O 68
e <)
R0 02
o) %)
- e % 228 76
i ©2° @‘A’L"
fl -
o X 17 -24 -8
(0-E)?
—F 0.42 2.53 0.84
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Step 4: Determine the degree of freedom (df)

In order to determine if the chi-squared value is statistically significant a degree of freedom must first be identified

» The degree of freedom is a mathematical restriction that designates what range of values fall within each significance level

The degree of freedom is calculated from the table of frequencies according to the following formula:

df =(m—1)(n—1)

Where: m = number of rows ; n=number of columns

For all dihybrid crosses, the degree of freedom should be: (number of phenotypes — 1)

= In this particular instance, the degree of freedom is 3
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Step 5: |dentify the p value

The final step is to apply the value generated to a chi-squared distribution table to determine if results are statistically significant

= A value is considered significant if there is less than a 5% probability (p < 0.05) the results are attributable to chance

p values for Chi-Square (%?) distribution

0.90 0.75 0.50 0.25 0.10 005 0.025 0.01

3 0.584 1.212 2.366 6.251 7.815 9.348 11.345

statistically significant

When df = 3, a value of greater than 7.815 is required for results to be considered statistically significant (p < 0.05)

What is your conclusion?

(https://ib.bioninja.com.au/higher-level/)
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Returning to CpG counts...

e Compare observed O with expected E dinucleotide numbers

2 _ (0-E)?
= =

with E = (n — 1)p,.p;

i+1°
Why (n-1) as factor in E above?

e How to determine which values of x?are unlikely or extreme?

- If the observed nr is close to the expected number, then the statistic
will be small. Otherwise, the model will be doing a poor job of
predicting the dinucleotide frequencies and the statistic will tend to be
large...

- Degrees of freedom?
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- Recipe:
= Compute the number c given by

{1 +2p;, — 3pi, ifl; = ligq
C — .
1-— Bplipli_H' if li 2 li+1

XZ

= Calculate the ratio o where Xzis given as before

= Compare the ratio to a chi-square distribution: If this ratio is larger
than 3.84 then conclude that the iid model is not a good fit.
= Via R :gchisq(0.95,1) =3.84
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2.b 3-letter words

Transcription
Upstream Downstream
< RNA-coding region >
DNA 3
Transcription
o
¢

Transcription
termination site

Transcription

..... - ' start site Transcription

3
TACCACGTA
3!

Gy,
4 Cac CACUCAUC\)POAT T CATS’
TGCGTGAGTA

DNA RNA polymerase

mina 5 I ¢

(https://www.nature.com/scitable)
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Types of RNA

e Messenger RNA (mRNA)
- Carry a copy of the instructions from the nucleus to
other parts of the cell
e Ribosomal RNA (rRNA)
- Makes up the structure of ribosomes
e Transfer RNA (tRNA)

- Transfers amino acids (proteins) to the ribosomes to be
assembled

Uracil

FURLIECRELES

Amino acid

-
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Transcription and

Translation

(https://www.nature.com/scitable)

Transcription

polypeptide

Translation

tRNA

Ribosome
binding site
\\ Start codon
; Y

Small subunit
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Amino acids

2nd base in codon i S S
U C A G H:Nfillfyfnu H:\—:‘[—:‘)—UH 5 ( j [
Pha Ser Ty'[ C}l‘?p u ‘ H oo
U Phe | Ser | Tyr Cys C w Ll pivhe - -
E Leu Ser STOP STOP _F\ 2 \ 1‘ o ..:\7(7(‘—,,,(‘” H;\—r—("—«u—on H;N—(‘rr("—ou
'g Leu | Ser | STOP| Trp G o \E
o Leu | Pro His Arg U E Picfine () etre (530 Seckoe ) e
E C Leu P"] His AFH C 3' H O H O l(:.‘\‘—("r—r(”'—nn
g Leu Pro Gln .ﬁ.t’g A_ [y ] Ho H,N ¢—d—on H 0 HN— O ‘
E LEU Frﬂ GIH AF G g H;N—C—C—OH H;\—("—\ —OH
- lle Thr Asn Ser U S
- A lle Thr Asn Ser C i . , ... ; e
le | Thr | Lys | Arg | A N
Met | The | Lvs | A | G o " s na
"J’ai .I'JLIH -IE'l-Sll GIF U H;N— E——:—ou ”,x,':,:f,m, H:\i(‘ﬂi“H HN—C “‘ OH
G Val | Ala | Asp | Gly C | '
Val Ala Glu Gly A
Val Ala Glu Gly G ... L. W L O B

e There are 61 codons that specify amino acids and three stop codons = 64

meaningful 3-words.
e Since there are 20 common amino acids, this means that most amino acids

are specified by more than one codon.
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Point mutations

Point mutations

No mutation e | N
Silent Nonsense Missense
conservative non-conservative
DNA level TTC TTT ATC TCC TGC
mRNA level AAG AAA UAG AGG ACG
protein level Lys Lys STOP Arg Thr

Hac\rOH

e

(adapted from Wikipedia)
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Predicted relative frequencies

e In general, an amino acid may be coded in different ways, but perhaps
some codes have a preference? (higher frequency?)

e For a sequence of independent bases L, Ly, ..., L, the expected 3-tuple
relative frequencies can be found by using the logic employed for
dinucleotides we derived before

e The probability of a 3-word can be calculated as follows:

P(LT e T‘J_?LE—FI — TZ?L?;_FZ = Td) =
P(LL — rrl)[[}j(L*.&—l—l — TB)ED(Lg'_i_Q — ?’q)

assuming the iid model
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The codon adaptation index

e This provides the expected frequencies of particular codons, using the
individual base frequencies. It follows that among those codons making up
the amino acid Phe, the expected proportion of TTT is

P(TTT)
P(TTT) + P(TTC)
e One can then compare predicted and observed triplet frequencies in coding

sequences for a subset of genes and codons from f.i. E. coli.

e Médigue et al. (1991) clustered different genes based on codon usage
patterns.

e For instance for Phe (TTT - UUU; TTC = UUC), the observed frequency
differs considerably from the predicted frequency, when focusing on highly

expressed genes (so-called “class Il genes” in the work of Médigue et al.
(1999)
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e Figures in parentheses below each gene class show the number of genes in

that class.
Observed
Gene Class I |Gene Class IT

Codon Predicted (502) (191)

Phe TTT 0.493 0.551 0.201
TTC 0.507 0.449 0.709

Ala  GCT 0.246 0.145 0.275
GCC 0.254 0.276 0.164

GCA 0.246 0.196 0.240

GCG 0.254 0.382 0.323

Asn AAT 0.493 0.409 0.172
AAC 0.507 0.591 0.828

Class Il : Highly expressed genes
Class | : Moderately expressed genes

[Gene expression analyses workflow —
future class]

(Deonier et al. Computational Genome Analysis, 2005, Springer)
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3 Types of sequence analyses

3.2 Summary

Identification of Genes in a Genomic DNA Sequence

e Examples: prediction of protein coding genes

e In multicellular eukaryotes, most genes are interrupted by introns.

e The mean length of an exon is ~¥50 codons, but some exons are much
shorter; many of the introns are extremely long, resulting in genes
occupying up to several megabases of genomic DNA.

e This makes prediction of eukaryotic genes a far more complex problem
than prediction of prokaryotic genes.
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e A comparison of predictions generated by different programs reveals the
cases where a given program performs the best and helps in achieving
consistent quality of gene prediction.

e Such a comparison can be performed, for example, using the TIGR
Combiner program (http://www.tigr.org/softlab), which employs a voting

scheme to combine predictions of different gene-finding programs, such as
GeneMark, GlimmerM, GRAIL, GenScan, and Fgenes.
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Sequence similarity

e Looking for exactly the same sequence is quite straightforward.

- One can just take the first letter of the query sequence, search for its
first occurrence in the database, and then check if the second letter of
the query is the same in the subject.

- If it is indeed the same, the program could check the third letter, then
the fourth, and continue this comparison to the end of the query.

- If the second letter in the subject is different from the second letter in
the query, the program should search for another occurrence of the
first letter, and so on.

- This will identify all the sequences in the database that are identical to
the query sequence (or include it).

e Of course, this approach is primitive computation-wise, and there are
sophisticated algorithms for text matching that do it much more efficiently
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e \WWhen comparing nucleic acid sequences, there is very little one could do.

- All the four nucleotides, A, T, C, and G, are found in the database with
approximately the same frequencies and have roughly the same
probability of mutating one into another.

- As a result, DNA-DNA comparisons are largely based on straightforward
text matching, which makes them fairly slow and not particularly
sensitive, although a variety of heuristics have been developed to
overcome this

- Direct nucleotide sequence comparison is indispensable only when
non-coding regions are analyzed.
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e Amino acid sequence comparisons have several distinct advantages over
nucleotide sequence comparisons:

- Firstly, because there are 20 amino acids but only four bases, an amino
acid match carries with it >4 bits of information as opposed to only two
bits for a nucleotide match. = Statistical significance can be
ascertained for much shorter sequences in protein comparisons than in

nucleotide comparisons.

- Secondly, because of the redundancy of the genetic code, nearly one-
third of the bases in coding regions are under a weak (if any) selective
pressure and represent noise > adversely affects search sensitivity.

- Thirdly, nucleotide sequence databases are much larger than protein
databases because of the vast amounts of non-coding sequences
coming out of eukaryotic genome projects, and this further lowers the
search sensitivity.
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- Fourthly, unlike in nucleotide sequence, the likelihoods of different
amino acid substitutions occurring during evolution are substantially
different, and taking this into account greatly improves the
performance of database search methods.

e Given all these advantages, comparisons of any coding sequences are
typically carried out at the level of protein sequences:

- Substitutions leading to similarities in physio-chemical properties of
amino acids should be penalized less than a replacement of an amino
acid with one that has dramatically different properties

Connecting DNA sequence and protein sequence comparative analysis:

- Even when the goal is to produce a DNA-DNA alignment (e.g. for
analysis of substitutions in silent codon positions), it is usually first done
with protein sequences, which are then replaced by the corresponding

coding sequences.
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Sequence Alignment

e In principle, the only way to identify homologs is
- by aligning the query sequence against all the sequences in the
database (algorithms exist to skip sequences that are obviously
unrelated to the query),
- sorting these hits based on the degree of similarity, and
- assessing their statistical significance that is likely to be indicative of
homology

e |t is important to make a distinction between a global (i.e. full-length)
alignment and a local alignment, which includes only parts of the analyzed
seguences (sub-sequences).
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e Although, in theory, a global alignment is best for describing relationships
between sequences, in practice,
local alignments are of more general use for two reasons:

- Firstly, it is common that only parts of compared proteins are
homologous.

- Secondly, on many occasions, only a portion of the sequence is
conserved enough to carry a detectable signal, whereas the rest have
diverged beyond recognition.

e Optimal global alignment of two sequences was first realized in the
Needleman-Wunsch algorithm, which employs dynamic programming.

e The notion of optimal local alignment (the best possible alighnment of two
sub-sequences from the compared sequences) and the corresponding
dynamic programming algorithm were introduced by Smith and Waterman.
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e Due to computational burden (the time and memory required to generate
an optimal alignment are proportional to the product of the lengths of the
compared sequences), multiple sequence alignments usually only produce
approximations and do not guarantee the optimal alignment.

e Optimal alignment above:

- is a purely formal notion, which means that, given a scoring function,
the algorithm outputs the alignment with the highest possible score

- has nothing to with statistical significance of the alignment, which has
to be estimated separately

- has nothing to do with the biological relevance of the alignment

e Examples of popular sequence data base search algorithms:

- Smith-Waterman

- FASTA

- BLAST

(section ref: https://www.ncbi.nlm.nih.gov/books/NBK20261/)
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m) U.S. National Library of Medicine NCBI National Center for Biotechnology Information Signin to NCBI

BLAST ® » blastn suite Home Recent Results ~ Saved Strategies Help

COVID-19 is an emerging, rapidly evolving situation.
Get the latest public health information from CDC: https://www.coronavirus.gov .

Get the latest research from NIH: https://www.nih.gov/coronavirus.
Find NCBI SARS-CoV-2 literature, sequence, and clinical content: https:/www.ncbi.nlm.nih.gov/sars-cov-2/.

Standard Nucleotide BLAST

blastn -] blastp | blastx | tblastn | tblastx |

BLASTN programs search nucleotide datab using a nucleotide query. more... Reset page

Enter Query Sequence

Enter accession number(s), gi(s), or FASTA sequence(s) & Clear Query subrange &
From[ ] BLAST has New Default
To[ | Parameters and Search Limits. =@
Click here for more info. i
Or, upload file No file selected. @
Job Title |

Enter a descriptive title for your BLAST search &

(] Align two or more sequences &
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BLAST ® Home  RecentResults  Saved Strategies  Help

COVID-19 is an emerging, rapidly evolving situation.
Get the latest public health information from CDC: hitps://www.coronavirus.gov .

0 Get the latest research from NIH: hitps://www.nih.gov/coronavirus.

Find NGBI SARS-CoV-2 literature, sequence, and clinical content: https://www.ncbi.nlm.nih.gov/sars-cov-2/.

BLAST topics

A. Query Input and database selection

The query sequence(s) to be used for a BLAST search should be pasted in the 'Search’ text area. BLAST accepts a number of different types of input and automatically determines the format or
the input. To allow this feature there are certain conventions required with regard to the input of identifiers (e.g., accessions or gi's). These are described in 3) below. Accepted input types are
FASTA, bare sequence, or sequence identifiers .

Accepted Input Formats

1. FASTA
A sequence in FASTA format begins with a single-line description, followed by lines of sequence data. The description line (defline) is distinguished from the sequence data by a greater-
than (">") symbol at the beginning. It is recommended that all lines of text be shorter than 80 characters in length. An example sequence in FASTA format is:

>P01013 GENE X PROTEIN (CVALBUMIN-RELATED)
QIKDLLVSSSTDLDITLVLVNAIYFRGMWKTAFNAEDTREMPEFHVIKQESKPVOMMCMNNS ENVATLPAE
EMKILELPFASGDLSMLVLLPDEVSDLERIEKTINFEKLTEWTNPNTMEKRRVEVY LEQMKIEEKYNLTS
VLIMALGMTDLFIPSANLTGISSAESLKISQAVHGAFMELSEDGIEMAGSTGVIEDIKHSPESEQFRADHP
FLFLIKHNETNT IVYFGRYWSP
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Pairwise local alignment of protein sequences using the Smith-Waterman

algorithm

You can use the pairwiseAlignment() function to find the optimal local alighment of two sequences, that is the best
alignment of parts (subsequences) of those sequences, by using the “type=Ilocal” argument in pairwiseAlignment().
This uses the Smith-Waterman algorithm for local alignment, the classic bioinformatics algorithm for finding optimal

local alignments.

For example, to find the best local alignment between the M. leprae and M. ulcerans chorismate lyase proteins, we can

type:

> localAlignLepraeUlcerans <- pairwiseAlignment(lepraeseqstring, ulceransseqstring,
substitutionMatrix = BLOSUMS@, gapOpening = -2, gapExtension = -8, scoreOnly = FALSE, type="local")
> localAlignlLepraeUlcerans # Print out the optimal lLocal alignment and its score

Local PairwiseAlignedFixedSubject (1 of 1)

pattern:
subject:

score: 761
> printPairwiseAlignment(localAlignlLepraeUlcerans, 68)

[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]

ri

(https://a-little-book-of-r-for-bioinformatics.readthedocs.io/en/latest/index.html)

"MTNRTLSREEIRKLDRDLRILVATNGTLTRVLNVVANEEIVVDIINQQLLDVAPKIPELE
"MTECHLSDEEIRKLNRDLRILIATNGTLTRILNVLANDEIVVEIVKQQIQDAAPEMDGCD
"NLKIGRILQRDILLKGQKSGILFVAAESLIVIDLLPTAITTYLTKTHHPIGEIMAASRIE
"HSSIGRVLRRDIVLKGRRSGIPFVAAESFIAIDLLPPEIVASLLETHRPIGEVMAASCIE
"TYKEDAQVWIGDLPCWLADYGYWDLPKRAVGRRYRIIAGGQPVIITTEYFLRSVFQDTPR
"TFKEEAKVWAGESPAWLELDRRRNLPPKVVGRQYRVIAEGRPVIIITEYFLRSVFEDNSR
"EELDRCQYSNDIDTRSG 240"

"EEPIRHQRSVGTSARSG 240"

womn

[1] MTNRTLSREEIRKLDRDLRILVATNGTLTRVLNVV...IITTEYFLRSVFQDTPREELDRCQYSNDIDTRSG
[11] MTECHLSDEEIRKLNRDLRILIATNGTLTRILNVL...IIITEYFLRSVFEDNSREEPIRHQRSVGTSARSG

69 n
69 n

12e"
12e"

18e"
18e"
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Links and further reading

as adapted from

https://a-little-book-of-r-for-bioinformatics.readthedocs.io/en/latest/index.html

e For background reading on sequence alignment: Chapter 3 of Introduction to
Computational Genomics: a case studies approach by Cristianini and Hahn (Cambridge
University Press; www.computational-genomics.net/book/).

e There is also a very nice chapter on “Analyzing Sequences”, which includes examples of using
SeqinR and Biostrings for sequence analysis, as well as details on how to implement
algorithms such as Needleman-Wunsch and Smith-Waterman in R yourself, in the book
Applied statistics for bioinformatics using R by Krijnen (available online at cran.r-
project.org/doc/contrib/Krijnen-IntroBiolnfStatistics.pdf).

e For more information on and examples using the Biostrings package, see the Biostrings
documentation at
http://www.bioconductor.org/packages/release/bioc/html/Biostrings.html.
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3.b Rare variants association studies

(slide Doug Brutlag 2010)
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Why studying rare variants?

e Most human variants are rare

NHLBI GO
o
z V]
w
c o
O o
D —
Q — —I—l_'_‘—l 1 1 I 1 1 — X y —
o | | | |
0.0001 0.001 0.01 0.1
MAF

(refs: slides Fan Li 2016)
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Why studying rare variants?

e Functional variants tend to be rare

NHLBI GO

B Non-synonymous
M Synonymous

Proportion of SNPs
00 01 02 03 04 05 06
1

< .02% 02%-.1% 1%-.5% S5%-2% 2%-10% 10%-50%

MAF

(refs: slides Fan Li 2016)
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Analytic challenges

e A variant — genetic association test implies filling in the table below and
performing a chi-squared test for independence between rows and
columns

AA Aa aa

Cases
Controls

Sum of entries =

cases+controls

How many observations do you expect to have two copies of a rare allele
(say MAF = 0.001)?
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¢ In a chi-squared test of independence setting:
- When MAF <<< 0.01 then some cells above will be sparse and large-

sample statistics (classic chi-squared tests of independence) will no
longer be valid.

- This is the case when there are less than 5 observations in a cell
O:—E;: 2
X% = Zall cells i% (contrasting Observed minus Expected)

® In a regression framework:

- The minimum number of observations per independent variable should

be 10, using a rough rule of thumb (guideline provided by Hosmer and
Lemeshow - Applied Logistic Regression)
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Increased false positive rates

N=~2500
MAF>0.03

N=~2500
MAF<0.03

Permuted

d

c
oo @
e
Lo ]
| L L L
2 3 4 5

Q-Q plots from GWAS data, unpublished

N=~2500
MAF<0.03

N=50000
MAF<0.03
Bootstrapped
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Remediation: do not look at a single variant at a time, but collapse

e Rationale for aggregation tests
- At a= 0.05, Bonferroni correction will lead to too stringent thresholds
(accounting for all variants included in the study)
- One needs VERY LARGE samples sizes in order to be able to reach that
level, even if you find “the variant”.
e Remedy = aggregate / pool variants
- Requires specification of a so-called “region of interest” (ROI)
- A ROl can be anything really:
= Gene
= Locus
" |ntra-genic area
= Functional set [see also Homework 1 assignment: paper style]
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Overall process for imputing and analyzing rare variants

|

Pre-phase

Genotype
via microarray

DNA of
your sample

Computationally phase
—— > the genotyped data
eShape-it

eHapi-UR

Sequence part
of dataset

T

1000 Genomes Project

(or newer)

Reference panel

Genotype imputation
Match reference haplotypes
to genotyped haplotypes,

and fill in missing genotypes.

elmpute2
eMinimach
eBeagle

Association analysis

One-at-a-time for common
and possibly less common

Choose/merge
reference panels

/

Other sequence
data...

Rare variant tests

eBurden

eAdaptive burden

e\/ariance component
eVariance component + burden

v

Validation

eGenotype subset, correlated
with imputed?
eReplicate in another dataset?

A flowchart describing the steps in imputing rare variants into genome-wide SNP datasets

(Hoffman and Witte, 2015)
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Haplotypes

Afro-Caribbean
I — =

e 2 8 28 g 3 I 8

~ ~ =} ~ (= =13 ] ~

2 2 3 E B =& % =

[ 2 [ % L @ Y #

Allele 1 T T T A C A A C

Allele 2 c € C T G T G A

rs9389269

O

rs9402686

> @

(el 1511154792

AC-B1H1 B 0.70 [ s S e e s = R

AC-B1H?2 I (.25 0.164
AC-B1H3 I 0.025 0.040
AC-B1H4 EEE—— (.02 0.109

i i i 0.045

Block1 (8kb)
1 2

doi: https://doi.org/10.137 1/journal.pone.0004218.g001

e When haplotypes are
defined in relation to SNPs:
a haplotype is a set of SNPs
found to be statistically
associated on a single
chromatid, l.e. adjacent
SNPs that are inherited
together on the basis of
linkage disequilibrium.

e For a more detailed
definition is the
International HapMap

Project
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Imputation in common variant GWAS

B. Testing association at typed

SNPs may not lead 1o a chear

D. Reference set of haplotypes

€ g Haphtap

1111101001000101

signal
E
m
-
a
=
?o ® o
© o
o ® ®
1 1:747022 2 0
0 2:7 27022 2 0
1 2 2 021 2 0
1 2:1 340122 2 0
2 272°%121 2 0=
1 12 ¢°122 2 0
1 2 2 021 2 1
2 1712121 271
1 0 0 222 270,

A. Genotype data with missing

data at untyped SNPs (grey
question marks)

0010111001111110]

0010111001111110

mosaic of those in the haplotype

reference panel.

40 10 p-value

F.

lesting association at

imputed SNPs may lead to a
boost in the signal.

f/
I f
¥
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:
:

then used to mpute alleles into the

Rk . 1~
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OC==0O0C000Q
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- O
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[t P L L e
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[

rence haplotypes are

samples to create imputed
genotypes (gray)

(book exert: Zeggini and Morris 2011- Analysis of Complex Disease Association Studies)
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Imputation in common variant GWAS

e Two easy ways dealing with uncertain genotypes (genotype coding 0, 1, 2):

- Genotype Calling:
Choose the most likely genotype and continue as if it is true
(p11=10%, p12=20% p22=70% => G=2)
- Mean genotype:
Use the weighted average genotype
(p11=10%, p12=20% p22=70% => G=1.6)

(ref: slides E Bouzigon 2020)

e Haplotype imputation services
- EAGLE - https://data.broadinstitute.org/alkesgroup/Eagle/
- SHAPEIT - https://jmarchini.org/shapeit3/
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Popular imputation programs

e IMPUTE 5 (Rubinacci S et al 2019, Genotype imputation using the Positional
Burrows Wheeler Transform bioRxiv) https://jmarchini.org/impute5/

e Minimac4 (Das S et al. Nat Genet 2016)
https://github.com/statgen/Minimac4
( J

Y
Hidden Markov Model - based

e HLA allelic imputation programs
- HIBAG:
https://bioconductor.org/packages/release/bioc/html/HIBAG.html
- HLA*IMP:02: https://oxfordhla.well.ox.ac.uk/hla/static/tutorial.pdf
- SNP2HLA: http://software.broadinstitute.org/mpg/snp2hla/
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Popular imputation services

e Michigan Imputation Server (a free genotype imputation service using
Minimac4)
https://imputationserver.sph.umich.edu

e Sanger Imputation Server (using PBWT/IMPUTE 5)
https://www.sanger.ac.uk/tool/sanger-imputation-service/
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Additional analysis considerations

e Variable selection
e Ways to define regions of interest and to test them

REVIEW

Rare-Variant Association Analysis:
Study Designs and Statistical Tests

Seunggeung Lee,! Gongcalo R. Abecasis,! Michael Boehnke,! and Xihong Lin2*

Despite the extensive discovery of trait- and disease-associated common variants, much of the genetic contribution to complex traits
remains unexplained. Rare variants can explain additional disease risk or trait variability. An increasing number of studies are underway
toidentify trait- and disease-associated rare variants. In this review, we provide an overview of statistical issues in rare-variant association
studies with a focus on study designs and statistical tests. We present the design and analysis pipeline of rare-variant studies and review
cost-effective sequencing designs and genotyping platforms. We compare various gene- or region-based association tests, including
burden tests, variance-component tests, and combined omnibus tests, in terms of their assumptions and performance. Also discussed
are the related topics of meta-analysis, population-stratification adjustment, genotype imputation, follow-up studies, and heritability
due to rare variants. We provide guidelines for analysis and discuss some of the challenges inherent in these studies and future research
directions.

(Lee et al. 2014)
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An abundance of tests

Description

Methods

Advantage

Disadvantage

Software Packages”

Burden tests

Adaptive bunden tests

Varance-component
tests

collapse rare vardants
into genetic scores

use data-adaptive
weights or thresholds

test vadance of genetic
effects

ARIEL test,™ CAST,”
CMC method, ™
MZ test,”* W55

aSum,” Step-up,””
EREC test,” VT,™
KBAC method,™
RBTJ-'I

SKAT,”" 88U test,”
C-alpha test””

are powerful when a
large proportion of
varants are causal and
effects are in the same
direction

are more robust than
burden tests using fixed
weights or thresholds;
some tests can improve
result interpretation

are powerful in the
presence of both trait-
increasing and trait-
decreasing variants or a
small fraction of causal
varants

lose power in the presence
of both trait-increasing and

EPACTS, GRANVIL,
PLINE/SEC), Bvtests,

trait-decreasing variants ora SCORE-5eq, SKEAT, VAT

small fraction of causal
variants

are often computationally
intensive; VT requires the

EPACTS, KBAC,
PLIMNE/SEC), Bviests,

same assumptions as burden S5C0RE-Seq, VAT

tests

are less powerful than
burden tests when maost
variants are causal and
effects are in the same
direction

EPACTS, PLINK/SEQ,
SCORE-5eq, SEAT, VAT

(Lee et al. 2014)
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Combined tests combine burden and SEAT-0," Fisher are more robust with can be slightly less EPACTS, PLINE/SECQ),
variance-component method,”” MiST™" respect to the percentage powerful than burden MiST, SKAT
tests of causal vadants and Or vafance-component
the presence of both tests if their assumptions
trait-increasing and trait- are largely held; some
decreasing variants methods (e.g., the

Fisher method) are
computationally intensive

EC test exponentially combines EC test™ is powerful when a very is computationally no software is available
score statistics small proportion of intensive; is less powerful vet
vaniants are causal when a moderate or large
proportion of variants are
causil

Abbreviations are as follows: ARIEL, accumulation of rare variants integrated and extended locus-specific; aSum, data-adaptive sum test; CAST, cohort allelic sums
test; CMC, combined multivariate and collapsing; EC, exponential combination; EPACTS, efficient and parallelizable assodation container toolbox; EREC, esti-
mated regression coefficient; GRAMVIL, gene- or region-based analysis of variants of intermediate and low frequency; KBAC, kernel-based adaptive cluster;
MiST, mixed-effects score test for continuous outcomes; MZ, Morris and Zeggini; RET, replication-based test; Rvtests, rare-variant tests SKAT, sequence kernel

association test; 35U, sum of squared score; VAT, variant association tools; VT, variable threshold; and W3S, weighted-sum statistic.
“More information is given in Table 3.

(Lee et al. 2014)
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The adwent of next genaration saquancing (MGE! technologies enabled the imvastigation
of the rare variant-common diseasa hypothesis in unrelated individuals, aven on the
genome-wide level. Analysis of this hypothesis requires tailored statistical methods as
singhe marker tests fail on rare variants. An entire class of statistical methods collapsas
rare variants from a genomic region of interest (RO, thereby aggregating rare variants.
In an extensive simulation study using data from the Ganetic Analysis Workshop 17
we compared the performance of 15 collapsing methods by means of 2 varety of
pre-defined BOls ragarding minor allele freguency thresholds and functionality. Findings
of the simulation study were sdditionally confirmed by 3 resl data sat investigating tha
association between methotrexate clearance and the SLCOTET gens in patients with
scute lymphoblastic leukemia. Our analyses showed substantizlly inflated type | arror
levels for many of the proposed collapsing methods. Only four approaches yielded valid
type | armors in all considerad scenarios. None of the statistical tests was able 1o detect
true associations ower a substantial proportion of replicates in the simulated data. Detailed
annotation of functionality of varants is crucial to detact true associations. Thesa findings
were confirmed in the analysis of the real data. Recent thaoretical work showed that karga
power is achieved in gene-based anakysas only if large sample sizes are available and 3
substantial proporiion of cawsing rare vanants is present in the gene-basad analysis. Many
of the investigated statistical approachas use permutation reguiring high computational
cost. There is a clear need for valid, powerful and fast to calculate test statistics for studias
investigating rare variants.

(Dering et al. 2014)
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Main supporting doc to this class (complementing course slides)
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Rare-variant collapsing analyses
for complex traits: guidelines and
applications
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Andrew 5 Aller® and David B. Goldsteinh ™

Albstract | The first phase of genome-wide asociationstudies| DWAS) assessed theroleof
coammon varn ation in human disesse. Advances optimizing and economi zing high-throughput
sequenting have enabled asecond phese of assocation s udies that sses the contribution of
rafe variation o comples disease in all protein-coding genes. Linlike the ear by miono anisy-hased
stud ies, sequencing-based sodies cataloguethe full range of genetic variation, induding the
et i onar iby youngest forma Al hough the e ienc ewithoommaonvariants el ped e sblich
reley anit standand s For genome-widestudies, the anglysis ofrare vanationintrod uces several
challenges that require novel anahsis approaches

Nature reviews Genetics 2019; 20:747
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