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Genome-wide Association Studies

1 Setting the pace

1.2 What can your spit tell you about your DNA?

1.b Speaking the language: relevant questions and concepts
1.c “The Human Genome Project”

2 The rise of GWAs

3 Study Design Elements

3.a Marker level

3.b Subject level

3.c Gender level (not considered in this course)
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4 Pre-analysis Steps

4.a Quality-Control

4.b Linkage disequilibrium

4.c Confounding by shared genetic ancestry
5 Analysis Steps

5.a Association / Regression

5.b Replication and Validation

5.c Causation &

5.d Interpretation
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6 Adding levels of complexity
6.a Trait heterogeneity in GWAS
6.b Missingness

6.c Multiple testing

6.d Multiple studies

6.e When variants become rare
6.f Non-independent effects

6.g Confounding in the context of 6a-6f
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1 Setting the pace
1.2 What can your spit tell you about your DNA?

The use of saliva

e People spit for a variety of reasons. We've all employed the technique to
remove a hair or some other distasteful object from our mouths. People
who chew tobacco do it for obvious reasons. Ball players do it because
they're nervous, bored or looking to showcase their masculinity. And
people in many different cultures spit on their enemies to show disdain.

e Thanks to a phenomenon known as direct-to-consumer genetic testing or
at-home genetic testing, people are spitting today for a much more
productive (and perhaps more sophisticated) reason -- to get a glimpse of

their own DNA.
(science.howstuffworks.com)
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SIGN IN REGISTER KIT HELP Vv

23andMe*
OUR SERVICE HOW IT WORKS v STORIES BUY E

Order 7 Spit “_ Discover

% y 4 /

//4 Your saliva collection kit %ﬁ Follow kit instructions to spit ///////// In approximately 6-8 weeks,
typically arrives within 3 to 5 in the tube provided — all we will send you an email to
days. Express shipping is from home. Register your let you know your reports
available. saliva collection tube using are ready in your online

the barcode so we know it account. Log in and start
belongs to you, and mail it discovering what your DNA
back to our lab in the pre- says about you.

paid package.

> 7 _
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From saliva to DNA

e Your saliva contains a veritable mother load of biological material from
which your genetic blueprint can be determined.

e For example, a mouthful of spit contains hundreds of complex protein
molecules — enzymes -- that aid in the digestion of food.

e Swirling around with those
enzymes are cells sloughed off
from the inside of your cheek.

e Inside each of those cells lies a
nucleus, and inside each nucleus,
chromosomes, which themselves
are made up of DNA
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Commercial kits

Do not eat, dnnk, smoke, chew gum, brush your teeth, or use mouthwash for at
least 30 minutes pnor 1o providing your sample

Collect the recommended volume of saliva The recemmended volume of saliva to
provide 1s 2 mlL, or about )2 teaspoon Your saliva sample should be just above the
fill ne.

Provide your sample and add the stabiization buffer wathin 20 mnutes. The full
saliva sample should be collected within 30 minutes and the funnel contents
should be released nto the tube immediately. Waging longer than 30 minutes may
decrease the yield and quality of your DNA

Cap securely before shipping. Remember to remove and discard the funnel kd and
place the tube cap on securely before mading your sample 10 our laboratory.
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= Print this page Key to your results

Your estimated lifetime risk

Click anywhere on the colored boxes below 10 access in-depth information about each heaith
@ condition, your genetic predispositions, what you can do, your specific genetic markers, and much
more.

Condition name

0-1% >1-10% >10 - 25% >25-50% >50 - 100%

» Why orange & gray boxes?
Brain aneurysm  Alzheimer's Heart attack You have no e
disease results in this
You: 0.91% You: 10% You: 22% range Tutorial: Review the tutorial

Avg: 090% » Avg: 17% » Avg: 26% »

More: How we estimate your
risk

Rheumatoid Breast cancer
arthritis
You: 0.88% You: 14% Your genetic counselor
Avg: 33% » Avg: 13% »
Counsedors are available

M woekdays from Sam 1o S5pm PST,

! of you ¢an schedule another time
You: 0.55% DR o Yoo,
Avg: 1.0% » i o S

Intermational:
Macutar *1 (650) S85-7743
You: 0.44%
Avg: 3.1% »
AT
m m @) Sharing results
You: 0.28% You: 2.9% with your doctor
L et AT . A ARG S
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The 23andMe story

e Woijcicki founded 23andme in 2006 with Linda Avey and Paul Cusenza
with a goal of upending conventional models of health care:
- put sophisticated DNA analyses into the hands of consumers,
- giving them information about health, disease and ancestry,
- and allowing the company to sell access to the genetic data to fuel
research.

e In 2013, that vision hit a snag. Wojcicki didn't think she needed regulatory
approval to provide information about her customers' health risks. The
US Food and Drug Administration (FDA) disagreed, and ordered the
company to stop.

(source: https://www.nature.com/news/the-rise-and-fall-and-rise-again-of-23andme-1.22801)
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NewStatesman

SCIENCE & TECH 15 JANUARY 2015

23andMe: Why bother with predictions
about yourself when you are almost
certainly average?

Want to understand your genes? Call your parents.
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SIGN IN REGISTERKIT  HELP Vv
23andMe-
OURSERVICE HOWITWORKS v STORIES BUY U

NOWWITH * 3 We are

150+ | reinventing the

REGIONS & - : Way you see your
ancestry —

through science.

<& {
,:, @® 47.1% Northwest European [

@ 26.2% Chinese Your DNA can tell you more
' 21.2% Filipino & Austronesian ‘\"' o : abo Ut your family hiStO ry.

@® 2.6% Southern European
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Routledge

Taylor & Francis Group

VOL. 39, NO. 2, 142-161

ETHNIC AND RACIAL STUDIES, 2016 E
http://dx.doi.org/10.1080/01419870.2016.1105990

In the blood: the myth and reality of genetic markers
of identity

Mark A. Jobling®, Rita Rasteiro®” and Jon H. Wetton®®

“Department of Genetics, University of Leicester, Leicester, UK; bSchool of History, University of
Leicester, Leicester, UK

ABSTRACT

The differences between copies of the human genome are very small, but tend
to cluster in different populations. So, despite the fact that low inter-population
differentiation does not support a biological definition of races statistical
methods are nonetheless claimed to be able to predict successfully the
population of origin of a DNA sample. Such methods are employed in
commercial genetic ancestry tests, and particular genetic signatures, often in
the male-specific Y-chromosome or matemally-inherited mitochondrial DNA,
have become widely identified with particular ancestral or existing groups,
such as Vikings, Jews, or Zulus. Here, we provide a primer on genetics, and
describe how genetic markers have become associated with particular groups.
We describe the conflict between population genetics and individual-based
genetics and the pitfalls of over-simplistic genetic interpretations, arguing that
although the tests themselves are reliable, the interpretations are unreliable
and strongly influenced by cultural and other social forces.

Van Steen K



GBIO0002 - Bioinformatics theory & case studies

The 23andMe story

e After years of effort, the pay-off came in April 2017,

!_n“” AR LRI AR L)
when the FDA agreed to allow 23andme to tell

! consumers their risks of developing ten medical
conditions, including Parkinson's disease and late-onset

Alzheimer's disease.

e With more than 2 million customers, the company hosts by far the largest
collection of gene-linked health data anywhere

(source: https://www.nature.com/news/the-rise-and-fall-and-rise-again-of-23andme-1.22801)
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Can you handle the truth?

Identifying Genetic Markers

Service Provider: 23andMe deCODEme Navigenics

Arthritis & s
Asthma %
Bipolar/Depression

Cardiovascular Disease

Multiple Sclerosis

Osteoporosis

Parkinson’s Disease

Schizophrenia

Thrombosis

Type 1/2 Diabetes
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Focused genetic testing

e There are >2000 genetic tests available to physicians to aid in the diagnosis
and therapy for >1000 different diseases. Genetic testing is performed for
the following reasons:

— conformational diagnosis of a symptomatic individual

— presymptomatic testing for estimating risk developing disease
— presymptomatic testing for predicting disease

— prenatal screening

— newborn screening

— preimplantation genetic diagnosis

— carrier screening

— forensic testing

— paternal testing
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How is genetic testing used clinically?

Diagnostic medicine: identify whether an individual has a certain genetic
disease. This type of test commonly detects a specific gene alteration but is
often not able to determine disease severity or age of onset. It is estimated
that there are >4000 diseases caused by a mutation in a single gene.
Examples of diseases that can be diagnosed by genetic testing includes
cystic fibrosis and Huntington's disease.

Predictive medicine: determine whether an individual has an increased risk
for a particular disease. Results from this type of test are usually expressed
in terms of probability and are therefore less definitive since disease
susceptibility may also be influenced by other genetic and non-genetic (e.g.
environmental, lifestyle) factors. Examples of diseases that use genetic
testing to identify individuals with increased risk include certain forms of
breast cancer (BRCA) and colorectal cancer.
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How is genetic testing used clinically?

e Pharmacogenomics: classifies subtle variations in an individual's genetic
makeup to determine whether a drug is suitable for a particular patient,
and if so, what would be the safest and most effective dose. Learn more
about pharmacogenomics. = DNA passports ... are no science fiction!

e Whole-genome and whole-exome sequencing: examines the entire
genome or exome to discover genetic alterations that may be the cause of
disease. Currently, this type of test is most often used in complex
diagnostic cases, but it is being explored for use in asymptomatic
individuals to predict future disease. See also “The promise and challenges
of next-generation genome sequencing for clinical care” (JAMA Intern Med.
2014)
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The basics of SNP-based genetic tests

e As we will see, we can measure (genetic) variation between individuals at
several positions on the genome, using so-called molecular markers such as
Single Nucleotide Polymorphisms (SNPs)

e To run a SNP test, scientists can embed a subject's DNA into for instance a
small silicon chip containing reference DNA from both healthy individuals
and individuals with certain diseases.

e By analyzing how the SNPs from the subject's DNA match up with SNPs
from the reference DNA, the scientists can determine if the subject might
be predisposed to certain diseases or disorders.

Van Steen K



GBIO0002 - Bioinformatics theory & case studies

Talking about reference: reference genome

e A reference genome (also known as a reference assembly) is a digital
nucleic acid sequence database, assembled by scientists as a representative
example of a species' set of genes.

e As they are often assembled from genome (build 37) is derived from
the sequencing of DNA from a thirteen anonymous volunteers
number of donors, reference from Buffalo, New York

genomes do not accurately
represent the set of genes of any
single person. Instead a reference
provides a haploid mosaic of
different DNA sequences from

each donor. |
® For example GRCh37’ the Genome "Wellcome genome bookcase" by Russ London at en.wikipedia.
Reference Consortium human Licensed under CC BY-SA 3.0 via Commons -

https://commons.wikimedia.org/wiki/File:Wellcome_genome_bookc
ase.png#/media/File:Wellcome_genome_bookcase.png
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Talking about references: reference genomeS

G PLOS | one

()

Check for

updates

E OPEMN ACCESS

Citation: deVries PS, Sabater-Lleal M, Chasman
DI, Trompet S, Ahluwalia TS, Teumer A, etal.
(2017) Comparison of HapMap and 1000
Genomes Reference Panels in a Large-Scale
Genome-Wide Association Study. PLoS ONE12
(1): eB7742. doi:10.1371joumal .pone. 0167742

RESEARCH ARTICLE

Comparison of HapMap and 1000 Genomes
Reference Panels in a Large-Scale Genome-
Wide Association Study

Paul S. de Vries'?, Maria Sabater-Lleal®, Daniel . Chasman®?®, Stella Trompel'ﬁ'T,
Tarunveer S. Ahluwalia®®, Alexander Teumer'?, Marcus E. Kleber'", Ming-Huei Chen'®",
Jie Jin Wang'*, John R. Attia'®"®, Riccardo E. Marioni''® ', Maristella Steri®,

Lu-Chen Wengﬂ, Rene Poolﬁ'zs, Vera Gmssmannﬂ,dennifer A. Brodyzs,

Cristina Venturini?®??, Toshiko Tanaka®, Lynda M. Rose*, Christopher Oldmeadow'*'®,
Johanna Mazur®, Saonli Basu®®, Mattias Franberg®®, Qiong Yang ', Symen Ligthart',
Jouke J. Hottengaﬁ, Ann Humley‘gs, Antonella Mulas®, Anton J. M. de Craen’,

Anne Grotevendt®®, Kent D. Taylorss'sﬁ, Graciela E. Delgado", Annette Kifley", Lorna

M. Lopez'T'ST'sa,Tina L. Berentzen‘aﬁ, Massimo Manginuﬂ'm, Stefania Bandinelli", Alanna
C. Morrison', Anders Hamsten®, Geoffrey Tofler*?, Moniek P. M. de Maat*®, Harmen H.

M. Draisma®%**, Gordon D. Lowe®®, Magdalena Zoledziewska™, Naveed Sattar®®, Karl

J. Lackner¥, Uwe Volker*®, Barbara McKnight*®, Jie Huang®®, Elizabeth G. Holliday®',
Mark A. McEvoy'®, John M. Starr'%, Pirro G. Hysi®, Dena G. Hernandez"?,

Weihua Guan®, Fernando Rivadeneira'**, Wendy L. McArdle®®, P. Eline Slagboom®®,
Tanja Zeller®™*%, Bruce M. Psaty®®#°, André G. Uitterlinden'**, Eco J. C. de Geus®%,
David J. Stott®, Harald Binder®2, Albert Hofman'®, Oscar H. Franco', Jerome

I. Rotter®®%, Luigi Ferrucci®, Tim D. Spector®”, lan J. Deary'"®%, Winfried Mérz'!575%,
Andreas Greinacher®®, Philipp S. Wild™""72 Francesco Cucca®®, Dorret|. Boomsma®,
Hugh Watkins™, Weihong Tang®', Paul M. Ridker®®, Jan W. Jukema®™ ™, Rodney

J. Scott™ 7, Paul Mitchell'*, Torben Hansen’®, Christopher J. O’Donnell’®", Nicholas

L. Smith®*#%¥ Dayid P. Strachan®?, Abbas Dehghan"®*
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1.b Speaking the language

Types of molecular markers (Schistterer 2004)

OPINION

The evolution of molecular markers
— just a matter of fashion?

Christian Schlotterer

In less than half a century, molecular
markers have totally changed our view of
nature, and in the process they have
evolved themselves. However, all of the
molecular methods developed over the
years to detect variation do so in one of only
three conceptually different classes of
marker: protein variants (allozymes), DNA
sequence polymorphism and DNA repeat
variation. The latest techniques promise to
provide cheap, high-throughput methods
for genotyping existing markers, but might
other traditional approaches offer better
value for some applications?

Being able to distinguish between genotypes
that are relevant to a trait of interest is a key
goal in genetics. Often, this distinction is no
based directly on the trait of interest, but
on informative marker systems. A genetic
marker provides information about allelic
variation at a given locus. The first genetic
map of Drosophila melanogaster was built by

Sturtevant using phenotypic markers'. How-

continuous improvement in the way in which
we assay genetic variation; that is, the latest
marker systems are the most informative ones,
Nevertheless, in reviewing the history of molg
cular markers and their pros and cons, I argife
that there are only a few conceptually differen
classes of marker and that recently devel-
oped high-throughput methods might not be
unconditionally superior to more traditional
approaches.

Allozymes

The first true molecular markers to be estab-
lished were allozymes (a term that orlgmates
from geeerttraction of the phrase alfehs
wfits of enzymes’). The principle of allozymé
markers is that protein variants in enzymes can
be distinguished by native gel electrophoresis
according to differences in size and charge
aused by amino-acid substitutions. To visual-

contain substrate for the enzyme, cofaclors and
an oxidized salt (for example, nitro-blue tetra-

sample sizes are typically studied in allozyme
surveys. Nevertheless, the number of informa-
tive marker loci is too small to use allozymes
for mapping and association stupies®. Further-
more, surveys of natural variation based
on allozymes were often challenged by non-
neutral evolution of some of the markers used
(see, for example, REFs 9-11).

The arrival of DNA-based markers

One of the criticisms levelled at allozyme
marke st 7 satgnd insen-
e method of detectmgvarlatlon in N4
A more direct molecular marker would sur-
vey DNA variation itself, rather than rely on
variations in the electrophoretic mobility of
protems that the DNA encodes. Another
ort'mt'ldvanhge tl’l']t DNA-based mpsie?

number of mutations between different alleles
to be quantified. Given these unambiguous
advantages, the arrival of DNA manipulation
techniques promoted a shift from enzyme-

based to DNA-based markers.

‘...the arrival of DNA
nanipulation techniques
pbromoted a shift from
enzyme-based to
DNA-based markers.”
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Types of molecular markers

e Enzyme based:

- Enzymes are biological molecules (typically proteins) that act as

catalysts and help complex reactions occur everywhere in life.
e DNA sequence-based:

- Nowadays, genetic markers represent sequences of DNA which have
been traced to specific locations on the chromosomes and associated
with particular traits (i.e., coded phenotype = coded subject’s/object’s
characteristic).

- They demonstrate polymorphism, which means that the genetic
markers in different organisms of the same species are different.
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Marker
SNPs

Microsatellites

A microsatellite is a tract of repetitive
DNA in which certain DNA motifs (ranging
in length from one to six or more base
pairs) are repeated, typically 5-50 times

Allozymes

RAPDs and
derivatives

" DNA sequencing

Advantages

¢ | ow mutation rate

¢ High abundance

e Fasy to type

¢ New analytical approaches are
being developed at present

¢ Cross-study comparisons
are easy; data repositories
already exist

¢ Highly informative (large number
of alleles, high heterozygosity)

¢ | ow ascertainment bias

¢ Fasy to isolate

* Cheap
¢ Universal protocols

e Cheap

* Produces a large number of
bands, which can then be
further characterized individually
(for example, converted into
single locus markers)

¢ Highest level of resolution
possible

¢ Not biased

¢ Cross-study comparisons are

[P [ I I S

Disadvantages

¢ Substantial rate heterogeneity
among sites

* Expensive to isolate

¢ Ascertainment bias

¢ | ow information content
of a single SNP

¢ High mutation rate

¢ Complex mutation
behaviour

¢ Not abundant enough

e Difficult to automate

¢ Cross-study comparisons
require special preparation

¢ Requirement for fresh
or frozen material

¢ Some loci show protein
instability

¢ |_imited number of available
markers

¢ Potentially direct target
of selection

e | ow reproducibility

* Mainly dominant

e Difficult to analyse

e Difficult to automate

e Cross-study comparisons
are difficult

e Still significantly more
expensive than the other
techniques

Be critical

(date of
publication =
2004)

Hence, it is
important to
keep the
historical time
lines and
achievements in
mind
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Types of genetic markers: single nucleotide polymorphisms

Base Pairs

I |

Adenine Thymine

—— )

Guanine  Cytosine

Sugar phosphate
backbone

Single Frequency in
Nucleotide general
Polymorphisms | population
(SNPs)
\
®
A 5% > 1%
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Types of genetic markers: single nucleotide polymorphisms or SNPs

e Variations in single base, i.e., one base substituted by another base
e |In theory: four different nucleotides possible at base

e |In practice: generally only two different nucleotides observed

e Definition strict and loose:

o Strict: minor allele frequency 2 1%
o Loose: 2 2 nucleotides observed in two individuals at position
e Nomenclature:

o ss-number (submitted SNP number)
o rs-number: searchable in dbSNP, mapped to external resources, unique
o rs-numbers do not provide information about possible function of SNP

o Alternative: nomenclature of Human Genome Variation Society

(Ziegler and Van Steen, Brazil 2010)
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Types of genetic markers: single nucleotide polymorphisms

*Submissions received after reclustering of current build will appear as new rs# clusters in the next build.

BUILD STATISTICS:

Number of Number of

. dbSNP Genome Num_ber_ o] LT P O] IO (ss#'s) (ss#'s) Number of Number of
Organism . N Submissions RefSNP Clusters (rs#'s) . . _ ;
Build Build . \ _ . with with weight 1 SNPs weight 2+ SNPs
(ss#'s) (rs#'s) ( # validated) in gene
genotype frequency
Homo sapiens 150 38.3 907,237,763 325,658,303 (135,967,291) 191,585,061 73,917,935 129,875,536
Bos taurus 150 1.2 332,061,559 104,286,568 (12,102,319) 46,308,631 10,202 968
O ass  DIV:80165
Mus musculus 150 38.5 189,214,027 84,152,707 (6,466,270) 40,278,667 24,843,897 77 : MNV:2259
Named:6779  g\\/.1647286
SNV:67883617 |
Sus scrofa 150 51 195,656,177 67,116,509 (8,107,358) 36,126,981 52 184
Ovis aries 150 21 147,584,937 63,745,118 (3,570,277) 30,029,327 65 173
DIV:9 ]
Macaca mulatta 150 21 95,808,453 53,929,680 (2,760,325) 23,087,008 29 8,072 SNV:32708877 SNV:38416
Zea mays 150 11 86,608,237 58,915,360 (14,672,946) 13,436,128 90
Gallus gallus 150 4.1 73244003 24,277,657 (15,305,602) 14,926,051 3,624,831 203
Bos indicus 150 11 30,533,959 17,758,946 (621) 5,131,669 223
DIV:4 MNV-1
Arabidopsis thaliana 150 9.2 15,307,574 13,412,809 (5,947) 9,174,636 299 MNV:5 SNV'31§8
SNV:1069121 )
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Genes

e The gene is the basic physical unit
of inheritance.

e Genes are passed from parents to
offspring and contain the
information needed to specify
traits.

e They are arranged, one after
another, on structures called
chromosomes.

e A chromosome contains a single,
long DNA molecule, only a portion

of which corresponds to a single
gene.
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gt B0 43 B3 41

A4 SR B 7E 4 8
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s 3 3

i u 14
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21 22 X
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?5 3¢ 88 B3 88 30

14 15 16 17 18

IR R r
19 XY

20 21 22

(Figure : Human chromosomes)
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Gene Annotation

e An annotation (irrespective of the context) is a note added by way of
explanation or commentary.

e Genome annotation is the process of identifying the locations of genes and
all of the coding regions in a genome and determining what those genes do.

e Once a genome is sequenced, it needs to be annotated to make sense of it

- links to giving an “interpretation”

Van Steen K
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Alleles

e Allele: one of several alternative forms of DNA sequence at specific
chromosomal location

e Polymorphism: often used to indicate the existence of at least 2 alleles at a
single “locus”

e Homozygosity (homozygous): both alleles identical at locus
e Heterozygosity (heterozygous): different alleles at locus

e Genetic marker (in this course): polymorphic DNA sequence at single locus

[Mutations ~polymorphisms (see later)]
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Hunting for genes to answer relevant questions

e Developing new and better tools to make gene hunts faster, cheaper and
practical for any scientist was a primary goal of the Human Genome Project
(HGP).

e One of these tools is genetic mapping, the first step in isolating a gene.
Genetic mapping — in the early days - can offer firm evidence that a disease
transmitted from parent to child is linked to one or more genes. It also
provides “clues” about where the gene lies.

e Genetic maps have been used successfully to find the single gene
responsible for relatively rare inherited disorders, like cystic fibrosis, but
have also been useful as a guide to identify the possible many genes
underlying more common disorders, like asthma.
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How to generate a genetic map?

e To produce a genetic map, researchers collect blood or tissue samples from
family members where a certain disease or trait is prevalent.

e Using various laboratory techniques, the scientists isolate DNA from these
samples and examine it for the unique patterns of bases seen only in family
members who have the disease or trait. These characteristic molecular
patterns are referred to as polymorphisms, or markers.

e Before researchers identify the gene responsible for the disease or trait,
DNA markers can tell them roughly where the gene is on the chromosome.

How is this possible?
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How to generate a genetic map? (continued)

e This is possible because of a genetic process known as recombination.

As eqggs or sperm develop within a person’s body, the 23 pairs of
chromosomes within those cells exchange - or recombine - genetic
material. If a particular gene is close to a DNA marker, the gene and
marker will likely stay together during the recombination process, and
be passed on together from parent to child. So, if each family member
with a particular disease or trait also inherits a particular DNA

marker, chances are high that the gene responsible for the disease lies
near that marker.
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How to generate a genetic map? (continued)

Linkage Within A Family Linkage Disequilibrium Within A Population
Recombination Point
| | | Initial
! | Generation I m | m
| | T | WmeTTN0 ‘ -
Inltlal_
iml |J I l . Generation
LT W W [I1]
] g
| I | Generation 1 '(*:;
[}
c
I | | & NN B N
=
2 [N N B
o 100
§ . l l 1) Generations
@
] _ 3 LTI W T 77 WM
_ j ] %. Generation 2 %
[ I 5
=
| 8
| a AT O T T

1000
Generations

L — ég. seneraten’

h A
Linkage between two points/

markers Population moves from Linkage Disequilibrium to Linkage

Equilibrium over time

(Bush et al. 2012)
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How to generate a genetic map? (continued)

e The more DNA markers there are on a genetic map, the more likely it is that
one will be closely linked to a disease gene - and the easier it will be for
researchers to zero-in on that gene.

e One of the first major achievements of the HGP was to develop dense

maps of markers spaced evenly across the entire collection of human
DNA.

(http://www.genome.gov/100007154al-3)
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1.c “The Human Genome Project”

ional Human Genome Research Institute

National Institutes of Health
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Home > Education > All About The Human Genome Project (HGP)

) All About The Human Genome Project (HGP)

All About The Human
Senome Eroject (Hak) The Human Genome Project (HGP) was one of the great feats of | gee Also:
et 5 Sl N d
Education Archive exploration in history anvlnward voyage of discovery rather Youfll) White House
Fact Sheets than an outward exploration of the planet or the cosmos; an Annohncement

international research effort to sequence and map all of the
Genetic Education Resources for  » ! P June 26, 2000

Teachers genes - together known as the genome - of members of our
species, Homo sapiens. Completed in April 2003, the HGP gave Extramural Research
NHGRI Webinar Series » b vt o Program
us the ability, for the first time, to read nature's complete
National DNA Day % genetic blueprint for building a human being. Other Federal Agencies
Online Genetics Education Resources . X X i . i Involved in Genomics
In this section, you will find access to a wealth of information on the history of the HGP, ——
Smithsonian NHGRI Genome » & OnOther Sites:
Exhibition its progress, cast of characters and future. e St
Taking Glos Access to the full human
alkin SSar .
2 y © Educational Resources sequence
Understanding the Human » .
Genome Project @ General Information

@ Research
© Model Organisms

Educational Resources

* An Interactive Timeline of the Human Genome [unlockinglifescode.org]
An interactive, hyper-linked timeline of genetics that takes the reader from Mendel (1865) to the completion of
the mapping of the human genome (2003).

* The Human Genome: A Decade of Discovery, Creating a Healthy Future
A workshop for science reporters about the 10th anniversary of the completion of the draft sequence of the
human genome and to look at the future of genomic research.

« Understanding the Human Genome Project
NHGRI's Online Education Kit

* An Overview of the Human Genome Project
A brief overview of the HGP.

* 50 Years of DNA: From Double Helix to Health
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Historical overview

Gregor Mendel, the father of ©

modern genetics, presents his
research on experiments in
plant hybridization

Gregor Mendel, a 19th century Augustinian monk, is called the
father of modern genetics. He used a monastery garden for
crossing pea plant varieties having different heights, colors, pod
shapes, seed shapes, and flower positions. Mendel's
experiments, between 1856 and 1863, revealed how traits are
passed down from parents. For example, when he crossed
yellow peas with green peas, all the offspring peas were yellow.
But when these offspring reproduced, the next generation was
/s yellow and Y4 green. Mendel's work, which was presented in
1865, showed that what we now call “genes” determine traits in
predictable ways.
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Historical overview

James Watson and Francis
Crick discover the double
helix structure of DNA

When Francis Crick and James Watson modeled the structure
of DNA, they used paper cutouts of the bases (A, C, G, T) and
metal scraps from a machine shop. Their model represented
DNA as a double helix, with sugars and phosphates forming the
outer strands of the helix and the bases pointing into the
center. Hydrogen bonds connect the bases, pairing A-T and
C-G; and the two strands of the helix are parallel but oriented
in opposite directions. Their 1953 paper notes that the model
“immediately suggests a possible copying mechanism for the
genetic material.”
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Historical overview

Marshall Nirenberg cracks thea
genetic code for protein
synthesis

In the early 1960s, Marshall Nirenberg and National Institutes
of Health colleagues focused on how DNA directs protein
synthesis and the role of RNA in these processes. Their 1961
experiment, using a synthetic messenger RNA (mRNA) strand
that contained only uracils (U), yielded a protein that contained
only phenylalanines. Identifying UUU (three uracil bases in a
row) as the RNA code for phenylalanine was their first
breakthrough. Within a few years, Nirenberg’'s team had
cracked the 60 mRNA codons for all 20 amino acids. In 1968,
Nirenberg shared the Nobel Prize in Physiology or Medicine for
his contributions to breaking the genetic code and
understanding protein synthesis.

1961
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Historical overview

Frederick Sanger develops 9

rapid DNA sequencing
technique

In 1977, Frederick Sanger developed the classical “rapid DNA
sequencing” technique, now known as the Sanger method, to
determine the order of bases in a strand of DNA. Special
enzymes are used to synthesize short pieces of DNA, which end
when a selected “terminating” base is added to the stretch of
DNA being synthesized. Typically, each of these terminating
bases is tagged with a radioactive marker, so it can be
identified. Then the DNA fragments, of varying lengths, are
separated by how rapidly they move through a gel matrix when
an electric field is applied — a technique called electrophoresis.
Frederick Sanger shared the 1980 Nobel Prize in Chemistry for
his contributions to DNA-sequencing methods.

1977
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Historical overview

(X

First genetic disease mapped,
Huntington’s Disease

Huntington's disease (HD) causes the death of specific neurons
in the brain, leading to jerky movements, physical rigidity, and
dementia. Symptoms usually appear in midlife and worsen
progressively. The location of the HD gene, whose mutation
causes Huntington’s disease, was mapped to chromosome 4 in
1983, making HD the first disease gene to be mapped using
DNA polymorphisms — variants in the DNA sequence. The
mutation consists of increasing repetitions of “CAG” in the DNA
that codes for the protein huntingtin. The number of CAG
repeats may increase when passed from parent to child,
leading to earlier HD onset in each generation. The gene was

finally isolated in 1993.
1983
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Historical overview

Invention of polymerase -

chain reaction (PCR)
technology for amplifying
DNA

Conceived in 1983 by Kary Mullis, the Polymerase Chain
Reaction (PCR) is a relatively simple and inexpensive technology
used to amplify or make billions of copies of a segment of DNA.
One of the most important scientific advances in molecular
biology, PCR ampilification is used every day to diagnose
diseases, identify bacteria and viruses, and match criminals to
crime scenes. PCR revolutionized the study of DNA to such an
extent that Dr. Mullis was awarded the Nobel Prize in Chemistry
in 1993.
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Historical overview

® O

0 O

First evidence provided for ©

the existence of the BRCA1l
gene

BRCA1 (BReast CAncer gene 1) is a “tumor suppressor gene,”
which normally produces a protein that prevents cells from
growing and dividing out of control. However, certain variations
of BRCA1L can disrupt its normal function, leading to increased
hereditary risk for cancer. The first evidence for existence of the
BRCAL gene was provided in 1990 by the King laboratory at
University of California Berkeley. After a heated international
race, the gene was finally isolated in 1994. Today, researchers
have identified more than 1,000 mutations of the BRCA1 gene,
many of them associated with increased risk of cancer,
particularly breast and ovarian cancers in women.

1990
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Historical overview

4

3

The Human Genome Project
begins

Beginning in 1984, the U.S. Department of Energy (DOE),
National Institutes of Health (NIH), and international groups
held meetings about studying the human genome. In 1988, the
National Research Council recommended starting a program to
map the human genome. Finally, in 1990, NIH and DOE
published a plan for the first five years of an expected 15-year
project. The project would develop technology for analyzing
DNA; map and sequence human and other genomes —
including fruit flies and mice; and study related ethical, legal,

1990

and social issues.
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Historical overview

The Sequence of the Human Genome
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e InJune 2000 came the announcement that the majority of the human genome had in fact
been sequenced, which was followed by the publication of 90 percent of the sequence of
the genome's three billion base-pairs in the journal Nature, in February 2001

e Surprises accompanying the sequence publication included:

— the relatively small number of human genes, perhaps as few as 30,000-35,000;
Note: 100,000 = 30000-35000 - 24000 - 19000-20000

— the complex architecture of human proteins compared to their homologs - similar
genes with the same functions - in, for example, roundworms and fruit flies;

— the lessons to be taught by repeat sequences of DNA.
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Historical overview
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JM I National Human Genome Research Ins
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News About the Human Genome Project

Links to news releases announcing key moments in the hist

O 1994
O 1996 2004
O 1998 March 24, 2004: International Sequencing Consortium Launches Online Resource
O 1999 The National Human Genome Research Institute announces that the International Sequencing Consortium (ISC) has launched a free, online resource
D — where scientists and the public can get the latest information on the status of sequencing projects for animal, plant and other eukaryotic genomes.
O 2001 March 31, 2004: Scientists Compare Rat Genome With Human, Mouse

An international research team, supported by the National Institutes of Health (NIH), today announced it has completed a high-quality, draft sequence
© 2003 of the genome of the laboratory rat, and has used that data to explore how the rat's genetic blueprint stacks up against those of mice and humans.
O 2004

April 21, 2004: NHGRI Scientists Return to the Classroom For Second Annual National DNA Day
On April 30, dozens of researchers and staff from the National Human Genome Research Institute (NHGRI) will head back to high schools in rural and
urban communities across the country to share with students some of the exciting research taking place at the National Institutes of Health (NIH).

October 14, 2004: NHGRI Seeks Next Generation of Sequencing Technologies
The National Human Genome Research Institute (NHGRI), part of the National Institutes of Health (NIH), today announced it has awarded more than

%38 million in grants to spur the development of innovative technologies designed to dramatically reduce the cost of DNA sequencing, a move aimed at
broadening the applications of genomic information in medical research and health care.

October 20, 2004: International Human Genome Sequencing Consortium Describes Finished Human Genome Seguence

The I ) ome Sequencing Consortium, led in the United States by the National Human Genome Researc =
Department of Energy (DOE), today published its scientific description of the finished human genome sequence, reducing the estimated number of
reHRan protein-coding genes from 35,000 to only 20,000-25,000, a surprisingly low number for our species. "
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Historical overview
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Online Education Kit: 2004-The Future

2004a: Rat and Chicken Genomes Sequenced

2004b: FDA Approves First Microarray

2005: HapMap Project Completed £ share | erin

The International HapMap Consortium published a catalog of human genetic variation that is expected

2 L : : : See Also:
b= anttiaad g il | Seemachas acthma cancer,

2004c: Refined Analysis of n
Genome Sequenc

2004d: Surgeon General Stress

2005 3
Consortium Completes Ma

diabetes, and heart disease. While the Human Genome Project focused on the DNA sequence from a
single individual, the HapMap project focused on variation in the genome and on human populations.

International Ha

of Family History

2005a: Chimpanzee Genomes Sequenced
2005b: HapMap Project Completed
2005c: Trypanosomatid Genomes Sequenced
2005d: Dog Genomes Sequenced

2006a: The Cancer Genome Atlas (TCGA)
Project Started

2006b: Second Non-human Primate Genome
is Sequenced

2006¢: Initiatives to Establish the Genetic and
Environmental Causes of Common Diseases
Launched

The Future

The $138 million project was a three-year collaboration between more than 200 researchers from

= paNicgeria and the |nited State he new naner doccobod th

- sereroa :
g s 3 o 3 On Other Sites:
Phase I HapMap that contains more than 1 milion markers of genetic variation. At the time of the

publication, the consortium was nearing completion of a Phase II HapMap that would contain more
than 3 million genetic markers.

International HapMap Project
Web page for the International
HapMap Consortium

More Information
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Historical overview

BREAKTHROUGH OF THE YEAR

Human

Senetic |

Variation

Equipped with faster, cheaper technologies for sequencing

DNA and assessing variation in genomes on scales ranging /«
from one to millions of bases, researchers are finding out > N
how truly different we are from one another ;

THE UNVEILING OF THE HUMAN GENOME ALMOST 7 YEARS AGO

cast the first famt ight on our complete genetic makeup. Since then, each
new gemme sequenced and each new ndividual studied has luminated

Inversion Insertion

our genomic landscape mever more detail. In 2007, researchers cameto

apprecide the extent to which our genomes differ from person to person
andthe implications of this vanation fordeaphenng the genetes of com- Deletion

plex diseases and personal traits.

Less than a year ago, the big news was triangulating variation
between us and our pimate cousins to get a better handle on genetic
changes along the evolutionary tree that led to humans. Now, we have
moved from asking what in our DNA makes us human to striving to

know what in my DNA makes me me.

What makes us unique. Changes in
the number and order of genes (A-D)
add variety to the human genome.

Pennisi 2007 Science 318:1842-3

(806>

Copy number variation
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2007 SCIENTIFIC BREAKTHROUGH OF THE YEAR

Science Magazine, December 21, 2007

“It’s all about me!”

Single Nucleotide Polymorphisms
(SNPs)

SNP SNP
v v

Chromosome1 AACACGCCA.... TTCGGGGTC....
Chromosome2 AACACGCCA.... TTCGAGGTC....
Chromosome3 AACATGCCA.... TTCGGGGTC....
Chromosome4 AACA GCCA....TTCG GGTC....
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Historical overview: associating genetic variation to disease outcomes

BREAKTHROUGH OF THE YEAR: The Runners-Up

Science 314, 1850a (2006);
DOI: 10.1126/science.314.5807.1850a

AYAAAS

Areas to Watch in 2007

Whole-genome association studies. The trickle of studies comparing the
genomes of healthy people to those of the sick is fast becoming a flood.
Already, scientists have applied this strategy to macular degeneration,
memory, and inflammatory bowel disease, and new projects on schizo-
phrenia, psoriasis, diabetes, and more are heating up. But will the wave of
data and new gene possibilities offer real insight into how diseases germi-
nate? And will the genetic associations hold up better than those found the
old-fashioned way?
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Historical overview: GWAs as a tool to “map” diseases

2008 third

IKZF4, ERBB3
CDK2, ERBB3
Type 1 Diabetes.

KIFSA-PIP4K2C
Rheumatoid athritis.

OPG, TNFRSF118
Bone Density

TRAF1-C5
Rheumatoid athritis
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Historical overview: 210 traits — multiple loci (sites, locations)

Published Genome-Wide Associations through 12/2010,
1212 published GWA at p<5x10-8 for 210 traits

NHGRI GWA Catalog
www.genome.gov/IGWAStudies "
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Historical overview: trait categories

Published Genome-Wide Associations through 12/2013

Published GWA at ps5X10°< for 17 trait categories Digestive system disease

Cardiovascular disease

Metabolic disease

Immune system disease

Nervous system disease

Liver enzyme measurement

Lipid or lipoprotein measurement
Inflammatory marker measurement
Hematological measurement
Body measurement
Cardiovascular measurment
Other measurement

Response to drug

Biological process

Cancer

Other disease

Other trait

0000000000000 0OO®

Uit
N
o
4
§

NHGRI GWA Catalog
" eeesmes Www.genome.gov/GWAStudies
2"..‘.'."'.."“"‘ www.ebi.ac.uk/fgpt/gwas/
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Historical overview: inter-relationships (networks)

OCONOOOPLWN =

. Type 1 diabetes (36)

. Multiple sclerosis (36)

. ADHD and conduct disorder (33)
. Crohn’s disease (27)

. Type 2 diabetes (22)

. Celiac disease (19)

. Ulcerative colitis(17)

. Systemic lupus erythematosus (17)
. Prostate cancer (17)

. Rheumatoid arthritis (13)

. Breast cancer (12)

. Lung cancer (11)

(Barrenas et al 2009: complex disease network — nodes are diseases)

m Cardiovascular diseases (Cv)

~= Digestive system diseases

== Endocrine system diseases

I Eye diseases

=2 Immune system diseases (Is)

® Mental disorders

== Multiple diseases

® Musculoskeletal diseases (Ms)

= Ms, Sc, Is

™ Neoplasms

= Nervous system diseases (Ns)

== Ns, Cv

™ Ns |s

= Ns, Ms

== Nutritional and metabolic diseases |
™ Nm, Es, Is

== Skin and connective tissue disease
B Sc, Is

™= Urogenital diseases
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Historical overview: inter-relationships (networks)

B v °® A Intracranial aneurysm

1. HLA-DQAT1 (5)

2, Coronary 2. HLA-DRB1 (4)
o A\ . : =3y disease 3. CDKN2A (4)
Celiac disease ‘ /.\L\\ £ ! 4. CDKN2B (4)
o 5. IL23R (3)
R > 1 6. HLA-E (3)
Alzheimer’ il —E0 @’/ EIANN
disease S 2" W/%o disease
. ,A' _'. 4
Parkinson’s = %/c :
disease 7585
[ o ,'::“"“"“, . ;
@ o Bipolar reast cancer
£ Secedisorder
Schizophrenia

Chronic lymphocytic
leukemia

(Barrenas et al 2009: complex disease GENE network — nodes are genes)
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Historical overview: monitoring the progress

& NCBI  Resources ¥ HowTo ™

OMIM OMIM v

Limits Advanced

Using OMIM

Getting Started
FAQ

Last updated on: 05 Oct 2014

OMIM

OMIM is a comprehensive, authoritative compendium of human genes and genetic phenotypes that is freely available and
updated daily. OMIM is authored and edited at the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins

University School of Medicine, under the direction of Dr. Ada Hamosh. Its official home is omim.org.

OMIM tools Related Resources
OMIM API ClinVar

Gene

GTR

MedGen

Sign in to NCBI

Help
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OMIM: molecular dissection of human disease

e Online Mendelian Inheritance in Man (OMIM®) is a continuously updated
catalog of human genes and genetic disorders and traits (i.e. coded
phenotypes, where phenotype is any characteristic of the organism), with particular
focus on the molecular relationship between genetic variation and
phenotypic expression.

e |t can be considered to be a phenotypic companion to the Human Genome
Project. OMIM is a continuation of Dr. Victor A. McKusick's Mendelian
Inheritance in Man, which was published through 12 editions, the last in
1998.

e OMIM is currently biocurated at the McKusick-Nathans Institute of Genetic
Medicine, The Johns Hopkins University School of Medicine.

e Frequently asked questions: http://www.omim.org/help/faq
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Accessing OMIM

€& ® @ https://www.ncbi.nlm.nih.gov

ﬂ Most Visited @ Getting Started

SNCBI

National Center for
Biotechnology Information

NCBI Home

¢ Q Search

wB 93 a0 6 &

All Databases ‘V‘ ‘

Genome
GEO DataSets
GEO Profiles

Resource List (A-Z)

All Resources

GSS
GTR

Chemicals & Bioassays

HomoloGene

Data & Software Identical Protein Groups
DNA & RNA MedGen
Domains & Structures MeSH
Genes & Expression NCBI Web Site
) o NLM Catalog

Genetics & Medicine

Nucleotide
Genomes & Maps

OMIM
Homolo

% PMC

Literature PopSet
Proteins Probe
Sequence Analysis Protein
Taxonomy Protein Clusters

Training & Tutorials

PubChem BioAssay

Variation

to NCBI

enter for Biotechnology Information advances science and health by providing access to
i genomic information.

CBI | Mission | Organization | NCBI News & Blog

submit Download Learn
or manuscripts
atabases

Transfer NCBI data to your
computer

Find help documents, attend a
class or watch a tutorial

)evelop Analyze Research

Identify an NCBI tool for your
data analysis task

Pls and code
uild applications

Explore NCBI research and
collaborative projects

| PubChem Compound V|

Popular Resources
PubMed
Bookshelf
PubMed Central
PubMed Health
BLAST
Nucleotide
Genome

SNP

Gene

Protein
PubChem

NCBI News & Blog

PubMed Labs is now part of NCBI Labs
03 Oct 2017

About two years ago, NCBI launched

PubMed Labs, a gathering place for

disrnverinn and exnerimentinn with new

October 11 NCBI Minute: Introducing the
New RefSeq Functional Elements Project

Van Steen K



GBIO0002 - Bioinformatics theory & case studies

Historical overview: exome sequencing, full genome sequencing
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2 The rise of GWAs

(slide Doug Brutlag 2010)
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What are GWASs?

o A genome-wide association study is an approach that involves rapidly
scanning markers across the complete sets of DNA, or genomes, of many
people to find genetic variations associated with a particular trait.

e Recall: a trait can be defined as a coded phenotype, a particular

characteristic such as hair color, BMI, disease, gene expression intensity
level, ...

Van Steen K



GBIO0002 - Bioinformatics theory & case studies

Genome-wide association studies: basic principles

The genome-wide association study is typically (but not solely!!!) based on a

case-control design in which single-nucleotide polymorphisms (SNPs) across

the human genome are genotyped ...

(Panel A: small fragment)

A

Chromosome 9 - :ﬂ—‘~

— Personl

— Person2

— Person3
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Genome-wide association studies: basic principles

B SNP1 SNP2
Cases Initial discovery study .4l e Initial discovery study 1
vy P=1x10-12 . L8 2o P=1x10% aasa

Common Variant

homozygote i Heterozygote homozygote

e Panel B, the strength of association between each SNP and disease is
calculated on the basis of the prevalence of each SNP in cases and
controls. In this example, SNPs 1 and 2 on chromosome 9 are associated
with disease, with P values of 10712 and 1078, respectively

(Manolio 2010)
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Genome-wide association studies: basic principles

Position on chromosome 9

Chromosome 16 18 20 22

e The plot in Panel C shows the P values for all genotyped SNPs that have
survived a quality-control screen (each chromosome, a different color).

e The results implicate a locus on chromosome 9, marked by SNPs 1 and 2,
which are adjacent to each other (graph at right), and other neighboring
SNPs. (Manolio 2010)
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How can we use genome-wide association studies results?

e Once new genetic associations are identified, researchers can use the
information to develop better strategies to detect, treat and prevent the
disease.

U.S.Department of Health & Human Services £ www.hhs.gov

Contact Us | Print Version

Office of

OER’ - Sean:h:i |
‘\)/ Extramural Research = 4%, ‘. Sovanceg Searh | S Mag
National Institutes of Health N\ e m
Home About Grants Funding Forms & Deadlines Grants Policy News & Events About OER NIH Home
Funding Opportunities Genome-Wide Association Studies (GWAS)

Funding Opportunities (RFAs,

: !
PAs) & Notices The NIH is interested in advancing genome-vide association studies (GWAS) to identify common genetic factors that influence health and

Unsolicited Applications (Parent disease. For the purposes of this policy, 2 genome-vide association study is defined as any study of genetic variation across the entire
Announcements) human genome that is designed to identify genetic associations with observable traits (such as blood pressure or weight), or the presence or
= absence of a disease or condition. Whole genome information, when combined vith clinical and other phenotype data, offers the potential for
Research Training & Career increased understanding of basic biological processes affecting human health, improvement in the prediction of disease and patient care,
Development and ultimately the realization of the promise of personalized medicine. In addition, rapid advances in understanding the patterns of human
Small Business (SBIR/STTR) genetic variation and maturing high-throughput, cost-effective methods for genotyping are providing powerful research tools for identifying

genetic variants that contribute to health and disease. The purpose of this Website is to support the implementation of the GWAS Policy.
Centract Opportunities
The NIH vill continue to release additional guidance information on this site. Please e-mail GWAS@mail.nih.gov vith any questions.

NIH-Wide Initiatives Recent News

Stem Cell Information
e NIH Background Fact Sheet on GWAS Policy Update - (08/28/2008) (PDF - 40 KB)

New and Early Stage

Investigators . ’ e . ¢ N
« NIH Modifications to Genome-Wide Association Studies (GWAS) Data Access - (08/28/2008) (PDF - 43 KB)

Genome-Wide Association
Studies (GWAS)
NIH Roadmap for Medical Data Access Information
Research

« Senior Oversight Committee {SOC) Charge and Roster - (07/10/2008) (PDF - 103 KB)
Global OER Resources . Data Access Committees (DACs) Charge and Roster - (07/10/2008) (PDF - 50 KB)
Glossary & Acronyms
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View the GWAs catalogue (http://www.genome.gov/gwastudies/

- 2317 studies (6/10/2014)

Page 10of 47 Next> Last>>

(Entries 1-50 of 2317)

Date First Disease/Trait Initial Replication Region Reported Gene(s) Mapped Strongest Context Risk Allele P-value OR or Platform CNV
Added to Author/Date/ Sample Sample Gene(s) SNP-Risk Frequency beta-coefficient |[SNPs passing QC]

Catalog Journal/Study Description Description Allele in and [95% CI]
(since Controls

11/25/08)

04/16/14 Chung CM Resistin levels | 382 Han 559 Han 19p13.2 RETN RETN - rs1423096-G 0.78 1x107 .322 [0.25-0.40] Hlumina N
March 03, 2014 Chinese Chinese C190rf59 ug/mL increase [NR]
Diabetes Metab ancestry ancestry
Res Rev indiviudals indiviudals
Common
Quantitative trait
locus downstream
of RETN gene
identified by
genome-wide
association study
is associated with
risk of tvpe 2
diabetes mellitus
in Han Chinese: a
Mendelian
randomization
effect.

0.145 3x 1071t 1.22 [1.15-1.29] Affymetrix & N
Ilumina
[1,695,815]
(imputed)

10/03/14 Zhang B Colorectal 1,773 East 6,902 East 18q21.1 SMAD7 SMAD7 rs7229639-A intron
January 21, 2014 | cancer Asian ancestry | Asian ancestry
Int J Cancer cases, 2,642 cases, 7,862
Genome-wide East Asian East Asian
association study ancestry ancestry
identifies a new controls controls
SMAD7 risk

variant associated

with colorectal
cancer risk in East

Asians.

Tllumina N

10/06/14 Xie T Amyotrophic 250 Han NA View full set of 175 SNPs
[859,311] (pooled)

January 17, 2014 | lateral sclerosis | Chinese

Neurobiol Aging | (sporadic) ancestry. NA RABSP1 NA kgp22272527-? NR 8x 1071t NR
A genome-wide cases, 250 Han
association study Chinese
combining ancestry
pathway analysis controls _ s
GPR133 GPR133 rs11061269-2 |intron 0.08 8x10°10 3.7761 [2.49-5.74]

12q24.33
for typical
sporadic 21q22.3 TMPRSS2 IMPRSS2 - £53977018-2 0.05 2102 NR

NA MYo188 NA kgp8087771-? 0.2 2x10°10 3.0327
[2.212039-4.157817]
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Genome-wide association studies: key components

* |ndividuals
Input Data * Genetic markers

* Adjust for confounders (e.g.,
genetic ancestry, smoking)

* Add levels of complexity (e.g.,

GxG, GxE interactions)

Association
Method

* Same conditions
* Dissimilar conditions

Validation
Replication

* Functional analysis

Interpretation .
P * Follow-up studies
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Genome-wide association studies: key components

e To carry out a GWAs, several tools are needed, which include those that
deal with data generation and data handling:

- Computerized data bases with reference human genome sequence

- Map of human genetic variation

- Technologies that can quickly and agcurately analyze (whole genome)

samples for genetic variations that c ibute to disease

(http://www.genome.gov/pfv.cfm?pagelD=20019523)
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Detailed flow of a genome-wide association study

Biological question Sampling —p= Selection of DNA chip
Laboratory DNA preparation | Chip hybridization Chip scan
Low level analysis Image analysis —» Normalization —»  Genotype calling ]—D{Standard quality control

~

High level analysis

Statistical analysis D’[Replication [ Validation

.

“ -
pulation ],

-
—%Impactonpo

A

—% Replication ;‘ValidationH Impact on population ‘

- T a
Imputation H Statistical analysis
/

— [

- "

N
Replication / Validation

Data -n-wining

/ép[ Impact on population l

.—"

(Ziegler 2009)
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APPLICATIONS NOTE * 515 1005 biomiomatcsintmios

Genetics and population analysis

GenABEL: an R library for genome-wide association analysis

Yurii S. Aulchenko'*, Stephan Ripke?, Aaron Isaacs' and Cornelia M. van Duijn’

'Department of Epidemiology and Biostatistics, Erasmus MC Rotterdam, Postbus 2040, 3000 CA Rotterdam,
The Netherands and “Statistical Genetics Group, Max-Planck-Institute of Psychiatry, Kraepelinstr. 10, D-80804

Munich, Germany

Received on December 3, 2006; revised on February 14, 2007; accepted on March 13, 2007

Advance Access publication March 23, 2007
Associate Editor: Martin Bishop

ABSTRACT

Here we describe an R library for genome-wide association
(GWA) analysis. It implements effective storage and handling of
GWA data, fast procedures for genetic data quality control, testing of
association of single nucleotide polymorphisms with binary or
quantitative traits, visualization of results and also provides easy
interfaces to standard statistical and graphical procedures imple-
mented in base R and special R libraries for genetic analysis. We
evaluated GenABEL using one simulated and two real data sets. We
conclude that GenABEL enables the analysis of GWA data on
desktop computers.

Availability: http://cran.r-project.org

Contact: i.aoultchenko@erasmusmc.nl

With these objectives in mind, we developed the GenABEL
software, implemented as an R library. R is a free, open
source language and environment for statistical analysis
(http://www.r-project.org/). Building upon existing statistical
analysis facilities allowed for rapid development of the package.

2 IMPLEMENTATION

2.1 Objective (1)

GWA data storage using standard R data types is ineffective.
A SNP genotype for a single person may take four values
(AA, AB, BB and missing). Two bits, therefore, are required to
store these data. However, the standard R data types occupy
32 bits, leading to an overhead of 1500%, compared to the
theoretical optimum. Use of the raw R data format. occupving

OJX0"SONRULIOJuIOlq//: Y WOy PIpROjuUMO
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Vol. 26 ISMB 2010, pages i208-i216
doi:10.1093/bioinformatics/btq191

Multi-population GWA mapping via multi-task regularized

regression

Kriti Puniyani, Seyoung Kim and Eric P. Xing*

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA

ABSTRACT

Motivation: Population heterogeneity through admixing of different
founder populations can produce spurious associations in genome-
wide association studies that are linked to the population structure
rather than the phenotype. Since samples from the same population
generally co-evolve, different populations may or may not share the
same genetic underpinnings for the seemingly common phenotype.
Our goal is to develop a unified framework for detecting causal
genetic markers through a joint association analysis of multiple
populations.

Results: Based on a multi-task regression principle, we present a
multi-population group lasso algorithm using L;/L,-regularized
regression for joint association analysis of multiple populations
that are stratified either via population survey or computational
estimation. Our algorithm combines information from genetic
markers across populations, to identify causal markers. It also
implicitly accounts for correlations between the genetic markers, thus
enabling better control over false positive rates. Joint analysis across
populations enables the detection of weak associations common to
all populations with greater power than in a separate analysis of each
population. At the same time, the regression-based framework allows
causal alleles that are unique to a subset of the populations to be
correctly identified. We demonstrate the effectiveness of our method
on HapMap-simulated and lactase persistence datasets, where we
significantly outperform state of the art methods, with greater power
for detecting weak associations and reduced spurious associations.
Availability: Software will be available at http://www.sailing.cs.cmu
.eduw/

the geographical distribution of the individuals. For example, it has
been shown that such heterogeneity is present in the HapMap data
(The International HapMap Consortium, 2005) across European,
Asian and African populations; and heterogeneity at a finer scale
within European ancestry has been found in many genomic regions
in the UK samples of Wellcome trust case control consortium
(WTCCC) dataset (Wellcome Trust Case Control Consortium,
2007). Although the standard assumption in existing approaches
for association mapping is that the effects of causal mutations are
likely to be common across multiple populations, the individuals
in the same population or geographical region tend to co-evolve,
and are likely to possess a population-specific causal allele for the
same phenotype. For example, Tishkoff ef al. (2006) reported that
the lactase-persistence phenotype is caused by different mutations
in Africans and Europeans. In addition, the same genetic variation
has been observed to be correlated with gene-expression levels with
different association strengths across different HapMap populations.
Our goal is to be able to leverage information across multiple
populations, to find causal markers in a multi-population association
study.

1.1 Highlights of this article

We propose a novel multi-task-regression-based technique that
performs a joint GWA mapping on individuals from multiple
populations, rather than separate analysis of each population, to
detect associated genome variations. The joint inference is achieved
by using a multi-population group lasso (MPGL). with an L /L

015903 £q /B10'sBwInOfproyo'sonBULIONUIONY//:dRY WY ppRojIAmOQ
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APPLICATIONS NOTE

Vol. 24 no. 1 2008, pages 140-142
doi:10.1093/bioinformatics/btm549

Genetics and population analysis

GWAsimulator: a rapid whole-genome simulation program

Chun Li"* and Mingyao Li?

'Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN 37232 and “Department of
Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA

Received on July 20, 2007; revised on October 10, 2007; accepted on October 29, 2007

Advance Access publication November 15, 2007
Associate Editor: Martin Bishop

ABSTRACT

Summary: GWAsimulator implements a rapid moving-window
algorithm to simulate genotype data for case-control or population
samples from genomic SNP chips. For case-control data, the
program generates cases and controls according to a user-specified
multi-locus disease model, and can simulate specific regions if
desired. The program uses phased genotype data as input and has
the flexibility of simulating genotypes for different populations and
different genomic SNP chips. When the HapMap phased data are
used, the simulated data have similar local LD patterns as the
HapMap data. As genome-wide association (GWA) studies become
increasingly popular and new GWA data analysis methods are being
developed, we anticipate that GWAsimulator will be an important
tool for evaluating performance of new GWA analysis methods.
Availability: The C++ source code, executables for Linux, Windows
and MacOS, manual, example data sets and analysis program are
available at http://biostat.mc.vanderbilt.edu/GWAsimulator
Contact: chun.li@vanderbilt.edu

Supplementary information: Supplementary data are available at
Bioinformatics online.

2 METHODS

The program can generate unrelated case-control (sampled retro-
spectively conditional on affection status) or population (sampled
randomly) data of genome-wide SNP genotypes with pattemns of LD
similar to the input data.

2.1 Phased input data and control file

The program requires phased data as input. If the HapMap data are
used, the number of phased autosomes and X chromosomes are 120
and 90 for both CEU and YRI, 90 and 68 for CHB, and 90 and 67 for
JPT. Additional parameters needed by the program should be provided
in a control file, including disease model (see Section 2.2), window size
(see Section 2.3), whether to output the simulated data (see Section 2.4),
and the number of subjects to be simulated.

2.2 Determination of disease model

For simulations of case-control data, a disease model is needed.
The program allows the user to specify disease model parameters,
including disease prevalence, the number of disease loci, and for each
disease locus, its location, nisk dllele and genolyplc relative risk. If the

e st b ctemsdata cmanlifia caimans tha daet wemd aemd i aslibiaems waad
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Vol. 25 no. 5 2009, 662-663
APPLICATIONS NOTE 10 10 mioinformatics/eieo17

Genome analysis

AssociationViewer: a scalable and integrated software tool for
visualization of large-scale variation data in genomic context
Olivier Martin®-T, Armand Valsesia’-2-t, Amalio Telenti®, loannis Xenarios’

and Brian J. Stevenson':2:*

1Swiss Institute of Bioinformatics, 2Ludwig Institute for Cancer Research, 1015 Lausanne and 3Institute of
Microbiology, University Hospital, University of Lausanne, 1011 Lausanne, Switzerland

Received on September 16, 2008; revised on December 16, 2008; accepted on January 5, 2009

Advance Access publication January 25, 2009
Associate Editor: John Quackenbush

ABSTRACT

Summary: We present a tool designed for visualization of large-scale
genetic and genomic data exemplified by results from genome-wide
association studies. This software provides an integrated framework
to facilitate the interpretation of SNP association studies in genomic
context. Gene annotations can be retrieved from Ensembl, linkage
disequilibrium data downloaded from HapMap and custom data
imported in BED or WIG format. AssociationViewer integrates
functionalities that enable the aggregation or intersection of data
tracks. Itimplements an efficient cache system and allows the display
of several, very large-scale genomic datasets.

Availability: The Java code for AssociationViewer is distributed
under the GNU General Public Licence and has been tested on
Microsoft Windows XP, MacOSX and GNU/Linux operating systems.
It is available from the SourceForge repository. This also includes
Java webstart, documentation and example datafiles.

Contact: brian.stevenson@licr.org

Supplementary information: Supplementary data are available at
http://sourceforge.net/projects/associationview/ online.

represented in BED or WIG format and implements aggregation
(union) or intersection of data tracks.

2 PROGRAM OVERVIEW

2.1 Cache and memory management

With increasing data volumes, efficient resource management is
essential. One approach is to store the data in a cache with fast
indexing mechanisms to retrieve the data, and to keep in memory
only the information that is visualized. We implemented such a
system in AssociationViewer. For comparison, loading a single
dataset with 500 K SNPs in WGAViewer needs about 224 MB of
RAM., whereas loading 10 different datasets (a total of 10M data
points) and displaying all genes on chromosome 1 needs only 50 MB
in AssociationViewer.

2.2 Data import and export

A typical GWA dataset consists of a list of SNPs with P-values
derived from an association analysis. In AssociationViewer, such
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3 Study Design
Components of a study design for GWA studies

e The design of a genetic association study may refer to
- study scale:
* Genetic (e.g., hypothesis-drive, panel of candidate genes)
" Genomic (e.g., hypothesis-free, genome-wide)
- marker design:
= Which markers are most informative in GWAs? Common variants-
SNPs and/or Rare Variants (MAF<1%)
= Which platform is the most promising? Least error-prone? Marker-
distribution over the genome?
- subject design

Van Steen K



GBIO0002 - Bioinformatics theory & case studies

3.a Marker Level

e Costs may play arole, but a
balance is needed between costs
and chip/sequencing platform
performance

e Coverage also plays a role (e.g.,

exomes only or a uniform spread).

e When choosing Next Generation
Sequencing platforms, also rare
variants can be included in the
analysis, in contrast to the older
SNP-arrays (see right panel).

Amplification
Digestion

Probe Iabeliny

Patient DNA

B

SNP array

S <‘ e
gﬁ.+i?e§e$

e Allele A

3\ > Allele

l Hybridization

Allele A

Allele B

@ Normal
@ Deletion

@ Duplication
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From common variants towards including rare variants

e Hypothesis 1 for GWAs: Common Disease — Common Variant (CDCV):

- This hypothesis argues that genetic variations with appreciable
frequency in the population at large, but relatively low penetrance (i.e.
the probability that a carrier of the relevant variants will express the
disease), are the major contributors to genetic susceptibility to common
diseases (Lander, 1996; Chakravarti, 1999; Weiss & Clark, 2002; Becker,
2004).

- The hypothesis speculates that the gene variation underlying
susceptibility to common heritable diseases existed within the founding
population of contemporary humans — explains the success of GWAs?

Van Steen K
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From common variants towards including rare variants

e Hypothesis 2 for GWAs: Common Disease — Rare Variant (CDRV):

- This hypothesis argues that rare DNA sequence variations, each with
relatively high penetrance, are the major contributors to genetic
susceptibility to common diseases.

- Some argumentations behind this hypothesis include that by reaching an
appreciable frequency for common variations, these variations are not as
likely to have been subjected to negative selection. Rare variations, on
the other hand, may be rare because they are being selected against due
to their deleterious nature.

There is room for both hypothesis in current research !
(Schork et al. 2009)
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Identified # of traits for which a molecular basis exists: importance of SNPs

%91 (Glazier et al 2002 e . L.
o0} ( ) { Complex disease (definition):
ﬁg 1400 1+ H - .
§§ % The term complex trait/disease
§§ e | %51 refers to any phenotype that
ZE 1 5
32 7 ¥ does NOT exhibit classic Mendelian
§_§ 400 + -
| inheritance attributable to a single
(:980 1985 1990 19'95 20l00 gene;

Year

PINK : Human Mendelian traits although they may exhibit familial

_ , , tendencies (familial clustering,
BLUE middle line : All complex traits

concordance among relatives).
BLUE bottom line + red extension:

Human complex traits
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Distribution of SNP “effects”
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Arking & Chakravarti 2009 Trends Genet

Food for thought:

e The higher the MAF, the lower the effect size

e Rare variants analysis is in its infancy in 2009 ....
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3.b Subject Level

Aim Selection scheme

Increased effect size Extreme sampling: Severely affected cases vs. extremely

normal controls

Genes causing early Affected, early onset vs. normal, elderly

onset

Genes with large / Cases with positive family history vs. controls with
moderate effect size negative family history

Specific GXE interaction Affected vs. normal subjects with heavy environmental

exposure

Longevity genes Elderly survivors serve as cases vs. young serve as controls

Control for covariates Affected with favorable covariates vs. normal with
with strong effect unfavorable covariate

Morton & Collins 1998 Proc Natl Acad Sci USA 95:11389
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Popular design 1: cases and controls

Avoiding bias — checking assumptions:

1. Cases and controls drawn from same population
2. Cases representative for all cases in the population
3. All data collected similarly in cases and controls

Advantages: Disadvantages:
1. Simple 1. Population stratification
2. Cheap 2. Prone to batch effects and other biases
3. Large number of cases and controls 3. Case definition / severity
available 4. Overestimation of risk for common

4. Optimal for studying rare diseases diseases

Van Steen K
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Popular design 2: family-based

Avoiding bias — checking assumptions:

1. Families representative for population of interest
2. Same genetic background in both parents

Advantages:

4. Simple logistics for diseases in children

1. Controls immune to population 5. Allows investigating imprinting (“bad

stratification (no association without allele” from father or mother?)

linkage, no “spurious” (false positive) _
Disadvantages

association)

2. Checks for Mendelian inheritance 1. Cost inefficient
possible (fewer genotyping errors) 2. Sensitive to genotyping errors
3. Parental phenotyping not required (late “Lower power when compared wit

onset diseases) case-control studies
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Some more power considerations

e Rare versus common diseases (Lange and Laird 2006)

a Rare disease (prevalence 0.1%) b Common disease (prevalence 14%)
0.8 — 0.7 —
— i P L s T Y
0.7 nﬂﬂ“““m“““'ﬂnnu 0.6 — #”HME:': . L
nu’"“ g.'.# u'n“u BEOBO N nnnny
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4 Pre-analysis steps

4.a Quality control

Standard file format for GWA studies

Standard data format: tped = transposed ped format file

FamiD PID FID MID SEX AFF SNP1; SNP1, SNP2; SNP2,

ped file

1 1 0 O 1 1 A A G T
2 1 0 O 1 1 A C T G
3 1 0 O 1 1 C C G G
4 1 0 O 1 2 A C T T
5 1 0 O 1 2 C C G T
6 1 0 O 1 2 C C T T

Chr SNP name Genetic distance Chromosomal position

1

SNP1

0

123456

1

SNP2

0

123654

map file

Van Steen K
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Standard file format for GWA studies (continued)

Chr SNP

Gen. dist. Pos

PID1 PID2 PID3 PID4 PID5 PID6

1 SNP1 O

123456 A A A C C C A C C C C C

1 SNP2 O

123654 G T G T G G T T G T T T

tfam file: First 6 columns of standard ped file

FamIiD PID FID MID SEX AFF

1

0

0

1

1

tped file

tfam file

Gl W N
N S = B

o|jlo OO O

ol OO )| O

1
1
1
1
1

NN NP -
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Why is quality control (QC) important?

BEFORE QC - true signals are lost in false positive signals

10 - e S ST e T
. Tea - PR 1 . %
. £ T T T e
: “ty b ;_'.-:!. .:E : . P
g ""; ':"-'-_.,t; ';. R g T
] 2 -~ P UY R S
*o (4 L L S
?‘.'-_ ’:'.-s"t.‘,; wrranl g
RN W Y5 T N e g, TR
‘- PRI IR
—_ . ..' ry 5_;::"-‘ oy 1_:-\._ ”\:-__ * :-F
5 3 e L&r RS- g Ty
» % » " -b'_ -
- T B Aoy
4 - F g oy ;’ 3.
s .o £,
2 —
0 i
1 2 3 4 5 6 7 8 g 10 11 12 13 14 15 16 17 19 2

chromosome

Ger MI FS |, Affymetrix 500k array set, SNPs on chip: 493,840

(Ziegler and Van Steen 2010)
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Why is quality control important?

AFTER QC - skyline of Manhattan (= name of plot: Manhattan plot):

-log(P]

1 2 3 4 5 6 7 10 11 12 13 14 18 16 17 19 21

chromosome

Ger MI FS |, Affymetrix 500k array set, SNPs on chip: 493,840
SNPs passing standard quality control: 270,701

(Ziegler and Van Steen 2010)
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What is the standard quality control?

e Quality control can be performed on different levels:

— Subject or sample level
— Marker level (in this course: SNP level)
— X-chromosomal SNP level (in this course not considered)

e Consensus on how to best QC data has led to the so-called “Travemiinde
criteria” (obtained in the town Travemiinde) — see later

Van Steen K
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Marker level QC thresholds may be genotype calling algorithm dependent

" Brdeed=AA  * Brdhend=AD " Sded=AA % Drdsed=A8 Allele signal intensity genotype
® Grdseed =B 8 * Brdseed = NoCall ¥ .l frdiced =B B * Birdseed = NoCal .
Pl - calling cluster plots for two
1,000 - d
% """ g - different SNPs from the same study
800 4
E 5 o] population.
3 3
T =] T 7 Upper panels: Birdseed genotypes
am R . o
e Lower panels: BEAGLECALL
200 300 400 S0 600 200 400 600 €00 1,000 1,200 1,400
Allele A intensity Allele A Intensity g en Otyp es
= BoagheCal = A A » BeageCal=A B » BeagheCall= A A " BeageCal=A B
= BeageColl =B B X BoagheCall = NoCal . BB X -
o i The plots on the left show a SNP
1,000 om0 7 . .
oy s s 1& with poor resolution of A_B and
z ] -y
§ é B_B genotype clusters and the
@ 600 ] 600 ] . .
2 j§ increased clarity of genotype calls
T 0] T w1 H
e E that comes from using BEAGLECALL
B Rt ® = Sy we | (Golden Helix Blog)
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Quality control at the marker level

e Minor allele frequency (MAF):
— Genotype calling algorithms perform poorly for SNPs with low MAF
— Power is low for detecting associations to genetic markers with low
MAF (with standard large-sample statistics)
e Missing frequency (MiF)
— 1 minus call rate
— MiF needs to be investigated separately in cases and controls because
differential missingness may bias association results
e Hardy-Weinberg equilibrium (HWE)
— SNPs excluded if substantially more or fewer subjects heterozygous at a
SNP than expected (excess heterozygosity or heterozygote deficiency)

Van Steen K
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What is Hardy-Weinberg Equilibrium (HWE)?

Consider diallelic SNP with alleles A and a

Van Steen K
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What is Hardy-Weinberg Equilibrium (HWE)?
Consider diallelic SNP with alleles A; and A,

¢ Genotype frequencies
P(A1A) = pi1, P(A1A2) = pi2, P(A2A) = po
o Allele frequencies P(A;) = p = pii + 3p12, P(A) =q =pn+2p

%Pl;z
If
o P(A1A)) = pi = p°
e P(A1As) = p1o = 2pq
o P(A2Ar) = po = ¢°

the population is said to be in HWE at the SNP

(Ziegler and Van Steen 2010)

Van Steen K
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Distorting factors to HWE causing evolution to occur

1.Non-random mating

2.Mutation - by definition mutations change allele frequencies causing
evolution

3.Migration - if new alleles are brought in by immigrants or old alleles are
taken out by emigrants then the frequencies of alleles will change causing
evolution

4.Genetic drift - random events due to small population size (bottleneck
caused by storm and leading to reduced variation, migration events leading
to founder effects)

5.Natural selection — some genotypes give higher reproductive success
(Darwin)

Van Steen K
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The Travemiinde criteria

Filter criterion

Standard value for filter

Sample level Call fraction > 97%
Cryptic relatedness Study specific
Ethnic origin Study specific; visual inspection of
principal components
Heterozygosity Mean £ 3 std.dev. over all samples
Heterozygosity by gender Mean £ 3 std.dev. within gender group
SNP level MAF >1%
MiF < 2% in any study group, e.g., in both

MiF by gender
HWE

cases and controls
< 2% in any gender
p < 10

(Ziegler 2009)

Van Steen K
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The Travemiinde criteria

Filter criterion Standard value for filter
SNP level Difference between control groups p > 10" in trend test

Gender differences among controls p>10"in trend test
X-Chr SNPs Missingness by gender No standards available

Proportion of male heterozygote calls No standards available

Absolute difference in call fractions for No standards available
males and females

Gender-specific heterozygosity No standard value available

(Ziegler 2009)

Van Steen K
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4.b Linkage disequilibrium

e Linkage Disequilibrium (LD) is a measure of co-segregation of alleles in a
population — linkage + allelic association

Two alleles at different loci that occur together on the same chromosome
(or gamete) more often than would be predicted by random chance.

® |t is a very important concept for GWAs, since it gives the rational for
performing genetic association studies

IndiecE. s > [Disease ]
association _e=""" phenotype
T
-
’ Direct Direct
» association association
: - —Haplotype

Typed marker locus Unobserved causal locus
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4.c Confounding by shared genetic ancestry — “population

stratification”

Two necessary — albeit not sufficiemt —
conditions for an extraneous factor ("confounder™)
to produce such a bias are (Figure 1a):

1. the confounder i1z a risk factor for the
outcome;

If successful, the random allocation of subjects to the confounder is associated with the

b e e e KCT e
confounding factors berween exposed and non- among individuals with different exposure
exposed subjects. This 1s equivalent of removing status.
the association between the exposure and all
potential confounders (Figure 1b). and therefore,
the possibility of confounding itself In this case, C
the effect of the exposure on the outcome can be (a) '
directly estimated by simply comparing outcomes
between exposed and unexposed subjects (1).

[

(Cois 2014) E > 0O

Regression uses mathematical modelling to (b) C (C) C

estimate the effect of confounders on the outcome. ’ i

and to "remove” this effect statistically. This 1s N W
equivalent of remowving (or, more realistically, N o _K'::_
reducing) the association between confounder and L - |
outcome, thus elmunating the second necessary

condition for confounding (Figure 1c). E > 0 E > 0O

Figure 1: Schematic illustration of confounding control. Arrows represent causal effects, double arrows associations of any natuie.
E = exposure, C = confounder, O = outcome.
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What is spurious association in GWAS?

e Spurious association refers to false positive association results due to not
having accounted for population substructure as a confounding factor in

the analysis

Case Control

0000...0000

Population
2

0000
Q0 00
Q000
0000
000 O
000 O
000 O
Q00O
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What is spurious association?

e Typically, there are two characteristics present:
- A difference in proportion of individual from two (or more)
subpopulation in case and controls

- Subpopulations have different allele frequencies at the locus.

Population 1 Cases Population 2

Y

A

Y

_—
-

Controls

Genotype .aa .Aa .AA

Van Steen K
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What are typical methods to deal with population stratification?

e Methods to deal with spurious associations generated by population
structure generally require a number (at least >100) of widely spaced null
SNPs that have been genotyped in cases and controls in addition to the
candidate SNPs.

e These methods large group into:

— Principal components: finding continuous axes of genetic variation

— Structured association methods: “First look for structure (population
clusters) and second perform an association analysis conditional on the
cluster allocation”

— Genomic control methods: “First analyze and second downplay
association test results for over optimism”

Van Steen K
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Principal components

score matrix S -omics data matrix X
loading matrix L
T
g
]
£
=]
= —
a = *
Q.
3
@ —
o
PCs
v nxd
PCs >

n -omic item measured

pxd pXnN

a1 = Xgplig ¥ X000 X3 l50 + X 0001 + Xy 5.15 1 + X0 6161

e Mathematical derivation:
https://courses.cs.ut.ee/MTAT.03.227/2017 spring/uploads/Main/lecture-notes-9.pdf

e Applications in omics: http://cdn.intechopen.com/pdfs-wm/30002.pdf

Van Steen K
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Principal components

Figure 1: PCA for Data Representation

“2) @ P1

I‘LIQ _______ T -6 I
{03 o PN — (i i
| (171:552) = (¢1>¢52)

> I

ol

Figure 3: The PCA Transformation

>
X

Figure 2: PCA for Dimension Reduction

e Find eigenvectors of the covariance matrix
for standardized (x1, x2, ...) [2SNPs]

e These will give you the direction vectors
indicated in Fig3 by phi_1 and phi_2

e These determine the axes of maximal

variation

Van Steen K
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Principal components in genetics studies

e Cavalli-Sforza et al. pioneered the use of PCA to summarise data on
variation in human gene frequencies across continental regions (Menozzi et
al. 1978).

e These results have been highly controversial but also highly influential;, PCA
has become heavily used in population genetics:

e The EIGENSOFT package combines functionality from population genetics
methods (Patterson et al. 2006) and the EIGENSTRAT stratification
correction method (Price et al. 2006)

e Novembre et als (2014) were among the first to study the behaviour of PCA
with data exhibiting continuous spatial variation, such as might exist within
human continental groups.

e Our group has also contributed: PCA in statistical genetics (Abegaz et al.
2019).

Van Steen K
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Principal components in statistical genetics

In European data, the first 2 principal components “nicely” reflect the N-S and

E-W axes ! Y-axis: PC2 (6% of variance); X-axis: PC1 (26% of variance)
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A
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—
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French
Spanish
Slovak

Hungarian
Polish
Romanian
Norway

800
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0.05 0.10 0.15

Principal components in statistical genetics: the more SNPs the better?

500 rSNPs

e CEU Subjects with both parents
* CHB 30 4 from the same group
7 * YRI .
e (Sabatti et al.
t gﬂ p 20 - - 2009)
& g .
N =
. % 10 4
a :
og é
o
” w O
1 10,000 rSNPs 5
3 ‘
* O
oail | T T T T t _10 7
-0.2 -0.1 0.0 0.1 0.2 . ®m West Lapland @ South Oulu
PC1 @ Central Lapland = North Oulu
Q L ] -20 -{ @ East Lapland ® Kainuu
8 | -40 -20 0 20
(Pardo-Seco et al. 2014) ? * First coordinate MDS
[T}
5 1 , ' r , Van Steen K
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SmartPCA vs Smart PCA

Smart PCA

Yi Zhang
Machine Learning Department
Carnegie Mellon University
yizhangl(@cs.cmu.edu

Abstract as a specific case of factor analysis with isotropic Gaussian
noise, and the use of the inverse Wishart distribution as the

ot In thi art PCA natural conjugate prior for the covariance matrix in multivari-
Jections. In this paper, We propose sm » an ate normal distribution [Gelman ez al., 2003 ], which has been

extension to standard PCA to regularize and inc;or- recently investigated by researchers in statistics [Brown et
porate external know!gdge Into mode! estimation. al., 2000; Press, 2005], machine learning [Klami and Kaski,
Ban:d on the 'probab.lhs‘.uc nierpretation of PCA, 2007], image processing and computer vision [Smidl er al.,
the inverse Wishart distribution can be used as the 2001; Wood et al., 2006]. Based on previous work, a natu-
}gf?_rr_n_gtw_e”cio_nj ugate prior for th? pop ulatmn co- ral way to improve PCA 1s to incorporate external knowledge

IR LD D [ . BENE B BEA .

PCA can be smarter and makes more sensible pro-

https://www.cs.cmu.edu/~yizhang1/docs/SmartPCA.pdf

https://github.com/chrchang/eigensoft/blob/master/POPGEN/README
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5 Analysis Steps
5.a Testing for Associations
The role of regression analysis

e Galton used the following equation to explain the phenomenon that sons of
tall fathers tend to be tall but not as tall as their fathers while sons of short
fathers tend to be short but not as short as their fathers:

y— vy  (x— x]

SD, | SDy

This effect is called the regression effect.

Van Steen K



GBIO0002 - Bioinformatics theory & case studies

The use of regression analysis

e regression line goes through (mean Y, mean X)

Father-son Height Data

75+

~
o
1

Height of son

(2]
[$)]
|

60-

60 65 70 75
Height of father

(https://rstudio-pubs-static.s3.amazonaws.com/204984 dd2112475db84af2a03260c4a4f830ac.html)
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The use of regression analysis

e Regression analysis is used for explaining or modeling the relationship
between a single variable Y, called the response, output or dependent
variable, and one or more predictor, input, independent or explanatory
variables, Xy, ..., Xp.

e When p=1itis called simple regression but when p > 1 it is called multiple
regression or sometimes multivariate regression.

e When there is more than one Y, then it is called multivariate multiple
regression

e Regression analyses have several possible objectives including

- Prediction of future observations.

- Assessment of the effect of, or relationship between, explanatory
variables on the response.

- A general description of data structure

Van Steen K
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The linear regression model

= G0+ Bix1 + ...+ Brxk + €

@ y: response variable.

@ Xi,...,Xk. regressor variables, independent variables.

@ 0o.1,..., Bk regression coefficients.
@ ¢: model error.

» Uncorrelated: cov(e;,ej) = 0,7 # J.
» Mean zero, Same variance: var(¢;) = o®. (homoscedasticity)
» Normally distributed.

Van Steen K
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Linear vs non-linear

Linear Models Examples:

y = B0+ Bix + Box? + €
y = ,.30 + .,31)(1 4+ .,532)(2 —+ |,312X1 Xo + €
y = o+ Pilogxy + Bologxo + €

. , 1 , 1
|Og_}/ = I,fj)[;. + :31 () —+ Iﬁg () + €
X1 X2

Nonlinear Models Examples:

y = Bo+ Bix{t + Baxy? + €
IS
1 + e;’3’1X1 + €

y:

Van Steen K
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Regression inference

— Bo + OB1x1 + ...+ Bixk + €

@ Least square estimation of the regression coefficients.
b= (XTX)"1XTy.

e Variance estimation for o2 (see later)

o Coefficient of Determination. RZ.
o Partial F test or t-test for Hy : 3; = 0.

Van Steen K
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What is R-squared?

e R-squared is a statistical measure of how close the data are to the fitted
regression line. It is also known as the coefficient of determination, or the
coefficient of multiple determination for multiple regression.

e The definition of R-squared is fairly straight-forward; it is the percentage of
the response variable variation that is explained by a linear model:

R-squared = Explained variation / Total variation

e R-squared is always between 0 and 100%:
- 0% indicates that the model explains none of the variability of the
response data around its mean.
- 100% indicates that the model explains all the variability of the
response data around its mean.

Van Steen K
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Graphical representation of R-squared

e Plotting fitted values by observed values graphically illustrates different R-
squared values for regression models.

Plots of Observed Responses Versus Fitted Responses for Two Regression Models

Fitted
responses

Observed responses Observed responses

e The regression model on the left accounts for 38.0% of the variance while
the one on the right accounts for 87.4%. The more variance that is
accounted for by the regression model the closer the data points will fall to
the fitted regression line.

Van Steen K
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Coefficient of determination ~ squared correlation coefficient r?

e An R?value of 0.0 means that knowing X does not help you predict Y.
There is no linear relationship between X and Y, and the best-fit line is a
horizontal line going through the mean of all Y values.

e When R? equals 1.0, all points lie exactly on a straight line with no scatter.
Knowing X lets you predict Y perfectly.

= 0.0 =05 r=1.0
- 3 s --'. - .

- " o - [N a'y -
[ . ".l'l . L
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General linear test approach

e The full model (continuous response, say “BMI”):

Y= fo+ B1X1+ BX; + €

e Fit the model by f.i. the method of least squares (this leads to estimations b

for the beta parameters in the model)

e It will also lead to the error sums of squares (SSE): the sum of the squared

deviations of each observation Y around its estimated expected value

e The error sums of squares of the
full model SSE(F):

DIV = by = biX; = byX,]?

= > -1

| ® ®Data
t| = curve fit |

Van Steen K
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General linear test approach

e Next we consider a null hypothesis Hp of interest:
Hy: 51 =0
Hl: 181 * O
e The model when HO holds is called the reduced or restricted model. When
1 = 0, then the regression model reduces to
Y —_ ﬁo + ﬁz X2 + £
e Again we can fit this model with f.i. the least squares method and obtain an
error sums of squares, now for the reduced model: SSE(R)

e Question: which error sums of squares will be smaller? SSE(F) or SSE(R)

Van Steen K
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General linear test approach

e The logic now is to compare both SSEs. The actual test statistic is a
function of SSE(R)-SSE(F):

e _ SSE(R) — SSE(F)  SSE(F)
- dfg — dfe  dfy

which follows an F distribution when Hg holds

e The decision rule (for a given alpha level of significance) is:
If F* < F(1—a; dfg — dfs, dfr), you cannot reject Hg
If F* > F(1 —a; dfg — dfg, dfr), conclude H,

Van Steen K
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Why F test?
Hy nf :--n':: Hy r;',3 'f-n:;
a
o
(a) (b)
0 f.¢ 5 0 Fia F
Reject Hy : Reject /ﬁ :
Hy: nlz :-'rx::
(c) 5
0 Fran Forz F
_ 3 = i
Reeer Ho' Reject H, g
Terminology | Alternative Hypothesis Rejection Region
Right-tailed H, : crf > crg F > F,
Left-tailed H, : crf < cr% F<F .,
Two-tailed H, : crf + cr% F<F _,9o0rF > F,,
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Tests in GWAS using the regression framework

e Example 1:
Y = ﬁo"‘ ,315NP+ &E
-Hy: 5, =0
_Hl:ﬁl * O

— dfg = n — 2 (this links to df in variance estimation)
— dfg = n — 1 (this links to df in variance estimation)

It can be shown that for testing f; = O versus f; # 0
__ SSE(R)-SSE(F) . SSE(F) _ b _ (t*)z
dfg—dfr dfF s2(by)
Why is the t-test more flexible?

- F*

Van Steen K
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Tests in GWAS using the regression framework

e Example 2:
Y= py+ BiSNP + [,PC; + (3PC, + ¢
-Hy: 5, =0
-Hi:B; #0
-dff =n—4
- dfg =n-—3

How many dfs would the corresponding F-test have?

Van Steen K
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The impact of different encoding schemes for SNPs

Coding scheme for statistical modeling/testing

Indiv. X1 X1 X2 X1 X1 X1
genotype
Additive Genotype Dominant |Recessive |Advantage
coding coding coding (for | coding (for | Heterozygous
(general mode ||a) a)
of inheritance)
AA 0 0 0 10 0 0
Aa 1 1 0 1 0 1
aa 2 0 1 1 1 0

Van Steen K
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Which encoding scheme provides a good fit to the data?

cholesterol

et

P e e e e o e e e e e e e e . —— —

Aa aa
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Which encoding scheme provides a good fit to the data?

1
° ' [
« | S = W _ i 1
3 : ' '
° - [
2 Baa b > :
] 1 '
R & B F F RE O - B B ENEEE R E E :| WA o = - -_—_—_-_—_—_-._—_-_-_' ______ = =]

0 0 1

§ 1 0

1 ] 1

AA Aa aa

Robust vs overkill ?
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Which encoding scheme provides a good fit to the data?

cholesterol

Aa aa

Most commonly used
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Regression analysis in R

e Main functions
- The basic syntax for doing regression in R is Im() to fit linear models
- The R function glm() can be used to fit generalized linear models (i.e.,
when the response is not normally distributed)
e General syntax rules in R model fitting are given on the next slide.
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Regression analysis in R

Syntax Model Comments
Y ~A Y =0,+[A Straight-line with an implicit y-
intercept
Y~-1+A Y =pA Straight-line with no y-intercept:

that 1s. a fit forced through (0.0)

Y ~A+1(A%2)

Y= BD_ EJIA N BZAE

Polynomial model: note that the
identity function I( ) allows terms
in the model to include normal
mathematical symbols.

Y~A+B Y =p(,+pA+ BB A first-order model in A and B
without interaction terms.

Y ~AB Y =p,+ p;AB A model containing only first-order
interactions between A and B.

Y ~ A*B Y =B+ BiA+ BB+ p;AB | A full first-order model with a term:

an equivalent code s Y ~A+B +
A:B.

Y~(A+B+0)2

Y =Pt 1A+ BB+ B3C +
BsAB = BsAC + PsAC

A model including all first-order

effects and interactions up to the n™

order, where n 1s given by ( )"n.
An equivalent code 1n this case 1s
Y ~ A*B*C - A:B.C.
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Model diagnostics are model-dependent ...

e There are 4 principal assumptions which justify the use of linear regression
models for purposes of prediction:
- linearity of the relationship between dependent and independent
variables

- independence of the errors (no serial correlation)

- homoscedasticity (constant variance) of the errors
= versus time (when time matters)
= versus the predictions (or versus any independent variable)

- normality of the error distribution. (http://www.duke.edu/~rnau/testing.htm)

e To check model assumptions: go to quick-R and regression diagnostics
(http://www.statmethods.net/stats/rdiagnostics.html)
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QQ plots for model diagnostics — Q for Quantile

e Quantiles are points in your data below which a certain proportion of your
data fall.
What is the 0.5 quantile for normally distributed data?
e Here we generate a random sample of size 200 from a normal distribution
and find the quantiles for 0.01 to 0.99 using the quantile function:

quantile(rnorm(200),probs = seq(0.01,0.99,0.01))

e Q-Q plots take your sample data, sort it in ascending order, and then plot
them versus quantiles calculated from a theoretical distribution.
The number of quantiles is selected to match the size of your sample data.
The quantile function in R offers 9 different quantile algorithms!
See help(quantile)
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QQ plots for model diagnostics — Q for Quantile

e A Q-Q plot is a scatterplot created by plotting two sets of quantiles against
one another.

e If both sets of quantiles come from the same distribution, we should see
the points forming a line that’s roughly straight.

e Here’s an example of a Normal Q- Normal G- Plot

Q plot when both sets of quantiles

truly come from Normal

distributions.
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Examples of QQ plots: no straight line

e QQ plot of a distribution that’s skewed right; a Chi-square distribution with

3 degrees of freedom against a Normal distribution
ggplot(gnorm(ppoints(30)), gchisq(ppoints(30),df=3))

qchisq(ppoints(30), df = 3)

gnorm(ppoints(30))

Van Steen K



GBIO0002 - Bioinformatics theory & case studies

Examples of QQ plots: some frequent scenarios

b. Skewed to the c. Skewed to the
gorial Left Right

d. Thick Tails e.Thin Tails
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Testing for association between case/control status and a SNP

e Fill in the table below and perform a chi-squared test for independence

between rows and columns > genotype test 2 2 df

AA

Aa

dd

Cases

Controls

Sum of entries =
cases+controls

e Fill in the table below and perform a chi-squared test for independence
between rows and columns > allelic test (ONLY valid under HWE) = 1df

A

d

Cases

Controls

Sum of entries is
2 X (cases + controls )
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Testing for association between case/control status and a SNP

e The genotype test involves a 2df test (note that two variables X1 and X2
were needed for genotype coding).

e |t has been shown that usually, the additive coding gives adequate power,
even when the true underlying mode of inheritance is NOT additive (note
that the additive coding can be achieved by only using 1 variable (X1)).

e For large sample sizes, a “test for trend” (risk for disease, or average trait
increases/decreases with increasing number of “a” copies) theoretically
follows a chi-squared distribution with 1df.
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Instead of
Y = o+ BiSNP + ¢€;Y continuous
and modelling
E|Y|SNP]| = By + [;SNP (without error term!)
consider
Po + B1SNP = nrepresenting the linear combination as it can never be
equal to a binary variable (0/1 response; control/case status)

and model
g(E[Y|SNP]) = By + BSNP =17
where g() is called a link function

and thus
E|Y|SNP] = g_inv(n)
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For a binary trait Y:
E[Y|SNP] = Prob(Y = 1|SNP)
exp(n) 1

T A +exp())  (1+exp(—n)
where

= g_inv(n)

g_inv is the logistic function (sigmoid function)
(squashing the linear predictor to an acceptable range)

> Z <- rnorm(10000)

> g.of.Z <- (1/(1+exp(-2)))

> plot(Z,g.of.Z)

\\\\\\\
7777777777
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Since
B _ _exp(m)
Prob(Y = 1|SNP) (1+exp(n))
we have
Prob(Y = 1|SNP)
= exp (n)

1 — Prob(Y = 1|SNP)
and thus

Prob(Y = 1|SNP)

gELYVISNPD = fo + F1SNP = log (o ores) =

n

(g is called the logit function)
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5.b Replication and validation

Random variation
'

Original
study

Systematic variation

Original , Different

population

population

Validation

Replication

(Igl et al. 2009)

Van Steen K



GBIO0002 - Bioinformatics theory & case studies

Guidelines for replication studies

e Replication studies should be of sufficient size to demonstrate the effect
e Replication studies should conducted in independent datasets

e Replication should involve the same phenotype

e Replication should be conducted in a similar population

e The same SNP should be tested

e The replicated signal should be in the same direction

e Joint analysis should lead to a lower p-value than the original report

e Well-designed negative studies are valuable

Note that SNPs are most likely to replicate when they
- show modest to strong statistical significance,
- have common minor allele frequency,
- exhibit modest to strong genetic effect size (~strength of
association)
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5.c Causation
“Association does not imply causation”

e Meaning:

Just because two things correlate does not necessarily mean that one
causes the other.

e As a seasonal example, just because people in Belgium tend to spend more
in the shops when it's cold and less when it's hot doesn't mean cold
weather causes high street spending.

Van Steen K



GBIO0002 - Bioinformatics theory & case studies

Establishing causation: study design

e Randomized trials are studies in which human volunteers are randomly
assigned to receive either the agent being studied or an inactive placebo,
usually under double-blind conditions (where neither the participants nor
the investigators know which substance each individual is receiving), and
their health is then monitored for a period of time.

e This type of study can provide strong evidence for a causal effect, especially
if its findings are replicated by other studies.

(https://www.acsh.org)
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Philos Stud (20100 147:59-70
DOT 10CTO07 s T 1098-009-945()-2

What are randomised controlled trials good for?

Nancy Cartwright

Abstract Randomized controlled trials (RCTs) are widely taken as the gold stan-
dard for establishing causal conclusions. Ideally conducted they ensure that the
treatment ‘causes’ the outcome—in the experiment. But where else? This is the
venerable question of external validity. | point out that the question comes in two
importantly different forms: Is the specific causal conclusion warranted by the
experiment true in a target €1tuat1nn‘]' What will I:hc thc result of implementing the
treatment t ?Thisg explatnshow the prekb ausality implies
at RCTs can establish causal cnncluqmne and Ihﬂrﬂh}' provides an account ©
actly that causal conclusion is. Clarifying the exact form of the conclusio

just what 1s necessary forittoholdmramew-settmzand-aiso iow much more is ne::dcd

to see what the actual outcome would be there were the treatment implemented.
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Designing RCTs for testing precision-medicine strategies is an evolving field!
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v (Biankin et al. 2015)
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Establishing causation: wet lab experiments in model organisms

e Gene knock-out experiments
VX e 3 =

RESEARCH & FACULTY ~ EDUCATION & LEARNING v JAXMICE & SERVICES - PERSONALIZED MEDICINE~ ~ NEWS~  ABOUTUS v~  GIVE

decades to uncover anything useful about aging and associated diseases. And, there are myriad ethical issues that prevent researchers from influencing

human inheritance, controlling daily environment or behavior, or fully investigating our biology. Clearly there needs to be a different experimental subject.

The best models — stand-in surrogates for humans and our diseases — are mice.

(https://www.jax.org/about-us/why-mice)

e The findings of animal experiments may not always be directly applicable to
the human situation because of genetic, anatomic, and physiologic
differences or the entity of exposures a human being has experienced
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Establishing causation: dry lab

e Try to mimic in vitro what you would like to do in vivo

e Causal inference is the process of drawing a conclusion about a causal
connection based on the conditions of the occurrence of an effect.

e The main difference between causal inference and inference of association

is that the former investigates the response of the effect variable when the
cause is changed.
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Statistics Surveys
Vol. 3 (2009) 96-146
ISSN: 1935-T516

DOIT: 10.1214/09-83057

Causal inference in statistics:
An overview*'!

Judea Pearl

Computer Science Departmend
University of California, Los Angeles, CA 90095 USA
e-mail: judea@cs.ucla.edu

Abstract: This review presents empirical researchers with recent advances
in causal inference, and stresses the paradigmatic shifts that must be un-
dertaken in moving from traditional statistical analysis to causal analysis of
multivariate data. Special emphasis is placed on the assumptions that un-
derly all causal inferences, the languages used in formulating those assump-
tions, the conditional nature of all causal and counterfactual claims, and
the methods that have been developed for the assessment of such claims.
T'hese advances are illustrated using a general theory of causation based
on the Structural Causal Maodel (SCM) described in Pearl (2000a), which
subsumes and unifies other approaches to causation, and provides a coher-
ent mathematical foundation for the analysis of causes and counterfactuals.
In particular, the paper surveys the development of mathematical tools for
inferring (from a combination of data and assumptions) answers to three
types of causal queries: (1) queries about the effects of potential interven-
Lions, (also called “causal ellects” or “policy evalualion™) (2) queries aboul
probabilities of counterfactuals, (including assessment of “regret,” “attri-
bution” or “causes of effects™) and (3) queries about direct and indirect
ellects (also known as “medialion”). I'inally, the paper delines the [ormal
and conceptual relationships between the structural and potential-outeome
[rameworks and presents Lools [or a symbiolic analysis Lhal uses Lhe strong
[eatures of bolh.

Keywords and phrases: Structural equation models, conflounding, graph-
ical methods, counterfactuals, causal effects, potential-outcome, mediation,
policy evaluation, causes of effects.
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Establishing causation: dry lab

e As opposed to association studies that benefit from LD, the main challenge
in identifying causal variants at associated loci analytically (finemapping)
lies in distinguishing among the many closely correlated variants due to LD
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(Duerr et al 2006)
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5. d Interpretation
Functional genomics analyses: incl transcriptomics

e One of the fundamental needs for the interpretation of the effects of
genome variants is the understanding of the specific biological effect such
variants have in the cell, which provides a handle to the biology of the
disease or organismal phenotype.

e GWAS have demonstrated that the majority of such variants are found in
non-coding regions of the genome and are therefore likely to be involved in
gene regulation. Hence, there should be interpretational advantages in
analyzing these variants in the context of gene expression (in cells/tissues)

e An eQTL is a locus that explains a fraction of the genetic variance of a gene

expression phenotype.
(Nika and Dermitzakis 2013)
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Functional genomics analyses: incl transcriptomics

a Cis (local) m e
=~

( \ D
A( —
b Trans (distal) ‘r;
Py N =
— . o
A
\a =
——

Nature Reviews | Genetics

(Cheung and Spielman 2009)

e (Cis-acting variants are

found close to the
target genes and
trans-acting variants
are located far from
the target genes,
often on another
chromosome.
Different allelic forms
of the cis- and trans-
acting variants have
different influence on
gene expression.
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Functional genomics analyses: incl transcriptomics

OPEN
Functional mapping and annotation of genetic

associations with FUMA

2 Arjen van Bochoven® & Danielle Posthuma® "4

Kyoko Watanabe!, Erdogan Taskesen

E ZBROAD

INSTITUTE
DEPICT

"DEPICT" your
association study

DEPICT is an integrative tool that based on predicted gene
functions systematically prioritizes the most likely causal
genes at associated loci, highlights enriched pathways, and
identifies tissues/cell types where genes from associated loci
are highly expressed

Download DEPICT (2.9 GB) today
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“Colocalization analysis” (not to be confused with protein colocalization)
e Estimates the posterior probability that the same variant is causal in both a
GWAS and eQTL study while accounting for the uncertainty of LD

e Example statistical methods following a Bayesian statistical framework:
eCAVIAR (Hormozdiari et al. 2016), COLOC (Giambartolomei et al. 2014)
e Posterior support for the following hypotheses:
HO: no causal variants for either trait;
H1: a causal variant for disease association (GWAS) only;
H2: a causal variant for gene expression association (eQTL) only;
H3: two distinct causal variants, one for each trait;

H4: a single causal variant common to both traits (co-localization).
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Changing units of analysis: from SNPs to genes

p:\:vpmn Jowrral of Human Genedcs (J019) ITFETI-EX
Frﬂnif.ﬁcl.u"g."lll'l:ﬂ-ﬁ"ﬂm 100315

ARTICLE

i» |

Comparison of methods for multivariate gene-based association
tests for complex diseases using common variants

laeyoon Chung (3™ - Gyungah R. Jur'** - Josée Dupuis® - Lindsy A. Famer' 4457

Berewedt 13 December 27T/ Beried: 30 (riober N2/ Accepted: 4 Decemnber 2ME / Published onlne: 15 Jamary 2019
@ The hhoris) D19 This artde = published with open access

Abstract

Complen disesses are wually asocmied walh muliple comrelated phenalypes, and the analyss of compaosie soones or deesse
Aalus may mod Tully capiure the complexaty (or mulldmensionalily ). Jomi analyss of mulbople disesse-related phenotypes m
el et oould polenbally monesie power 0 delecl asoaahon of 8 deesse wilh common SNPS (or genes . Clene-Ta e
lesis are desagned o adeninly genes contnnmg mulbple nsk vamanis thal mdwvadually sre wealdy assooaked wath & wm vansle
tranl. We combned three mullivanale saasabon e (OFBren method, TATES, and MuoliPhen) walh two gene-lesed
aanciahon s (LATES and Y EGAS) and compered perlomusmos (type | ernor and power) of s mullivanate gene-leaesd
melhods usmg amulsled data. Dela (o = AN for genebc sequence and oome baled phenolypes wene somulaked by vanying
causal vananl proportons and phenolype oomelabons lor vanow scenanas. These amulshons showed thal two mulb vansie

winke the three mulbvansle saoaabon i pEred wath GATES have oomect type | emor. Mol Phen pared wvath GATES
las hagher power than compelmg melhods i the comelalons among phensiypes ane low (r< 057 ) We apphed thess gene
hased smapcabon methad: o oa OWAS dateel Inom the Aldhemer's Disesse Cenebcs Consonmum oontonmg Uhree
mewopatholgical rai need o Aldheimer disese (newne plgue, newolibnllary angles and cerelwal amyload
angoquihy) mesared m 3500 sulopaed brains. Cene-level significant evidence (F <27 = 107%) was identified in a mEgim
conlaimng three conliguows penes (FRAFPPC (2, TRAPPCT2Z-AST, AU ) wang O Bren and VEGAS, Gene-wade significan

aanciahins were nol chégrved 1n mivanale gene-hased e

Van Steen K



GBIO0002 - Bioinformatics theory & case studies

Changing units of analysis: from SNPs to (genes to) pathways

e A biological pathway is an example of a biosystem, that can consist of
interacting genes, proteins, and small molecules.

e A biosystem, or biological system, is a group of molecules that interact in
a biological system.

e Another type of biosystem is a disease, which can involve components
such as genes, biomarkers, and drugs.

e The NCBI BioSystems Database currently contains records from several
source databases: KEGG, BioCyc (including its Tier 1 EcoCyc and MetaCyc
databases, and its Tier 2 databases), Reactome, the National Cancer
Institute's Pathway Interaction Database, WikiPathways, and Gene
Ontology (GO).

(https://www.ncbi.nlm.nih.gov/Structure/biosystems/docs/biosystems_about.html)
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Vartant and gene description
mined In Ensembl.
Gene-disease evidences mined
In DISGeNET,

cls-cQTL analysls In GTEx.
Gene-cnvironment analysls in
CardioGxE.

SNP-gene-pathway network.

The network displays 580 SNPs
(green diamonds) located in the

selected region for 365 genes
(circles) present in 117 pathway
clusters (blue squares). Black

symbols indicate genes with ten or
more connections to pathway
clusters, and triangles indicate genes
with a positive DisGeNET score
(note that these are all black). The
disconnected  SNP-gene-pathway
subnetworks are shown on the left,
framed in black.

(Cirillo et al. 2018)

Removal of Cluster analysis
redundant resulting in 117 Network
pathways: 424 —» clusters of ~%  creation and
pathways all overlapping analysis
genes Kept pathways
e f
Tools:
a. Varfant Effect Predictor
b. GoElite
¢ WIkiPathways database
d. Manual check
e. hclustin R
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Home » BiocViews

All Packages

Bioconductor version 2.14 (Release)

Autocomplete biocViews search:

Software (824)
* AnnotationData (867)

I~ ChipManufacturer (370)
ChipName (195)
CustomArray (2)
CustomCDF (16)
CustomDBSchema (10)
FunctionalAnnotation (13)
Organism (529)
PackageType (638)
SequenceAnnotation (2)

ExperimentData (202)

Bioconductor

OPEN SOURCE SOFTWARE FOR BIOINFORMATICS

Packages found under FunctionalAnnotation:

Show All v entries

Install

Help

Search:

Developers About

Search table:

Package Maintainer Title
DO.db Jiang Li A sgt of{annotanon maps describing the
entire Disease Ontology

Bioconductor Package A set of annotation maps describing the
GO.db R 2

Maintainer entire Gene Ontology

: A data package containing annotation data

humanCHRLOC Biocore Data Team for humanCHRLOC

Bioconductor Package
KEGG.db S 9 A set of annotation maps for KEGG

Maintainer
MeSH.AOR.db Koki Tsuyuzaki A s_et of annotation maps describing the
—t— entire MeSH
MeSH.db Koki Tsuyuzaki A s_et of annotation maps describing the
S entire MeSH
MeSH.PCR.db koki Tsuyuzaki A s_et of annotation maps describing the
o entire MeSH
mirbase.db James F. Reid miRBase: the microRNA database
MouseCHRLOC Biocors Dats Tes A data package containing annotation data
e for mouseCHRLOC
ratCHRLOG Biocore Data Team A data package containing annotation data

for ratCHRLOC

Genome

annotation is
the process of
identifying the
locations of
genes and all
of the coding
regionsin a
genome and
determining
what those
genes do.
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Integrating GWAS results & biological networks

e Huang et al. (2018) evaluates 21 human genome-wide interaction networks
for their ability to recover 446 disease gene sets.

e While all networks could recover disease genes, STRING,
ConsensusPathDB,and GIANT networks gave the best performance overall.

@) o Genes in gene set O Sub-sampled L I )
R} O Genes not in gene set R o - gene sel genes . 0]
0g° ogP® 0q°
o Q90 o ©8o oe9B
o) o) ° e

= =

Molecular network Identify gene set on network Sub-sample genes Network-smoothed gene set sub-sample

(https://www.cell.com/cell-systems/pdf/S2405-4712(18)30095-4.pdf)
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Model organisms as an extra source of information: interpretation

e Suppose that we have an unknown human DNA sequence that is associated
with the disease cystic fibrosis.

e A bioinformatic analysis finds a similar sequence from mouse that is
associated with a gene that codes for a membrane protein that regulates
salt balance.

e A good bet may be that the human sequence also is part of a gene that
codes for a membrane protein that regulates salt balance.
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Model organisms as an extra source of information: importance

e Conserved sequences

More about sequencing &
associated analyses in
subsequent classes
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6 Adding levels of complexity [via homework assignments]
6.a Trait heterogeneity in GWAS

6.b Missingness

6.c Multiple testing

6.d Multiple studies

6.e When variants become rare

6.f Non-independent effects

6.g Confounding in the context of 6a-6f
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Questions?
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Main supporting docs to this class (complementing course slides)

V OPEN 8 ACCESS Freely available online @ P LOS | (B:%MLS%LATI ONAL

Chapter 11: Genome-Wide Association Studies

William S. Bush'*, Jason H. Moore?

1 Department of Biomedical Informatics, Center for Human Genetics Research, Vanderbilt University Medical School, Nashville, Tennessee, United States of America,
2 Departments of Genetics and Community Family Medicine, Institute for Quantitative Biomedical Sciences, Dartmouth Medical School, Lebanon, New Hampshire, United
States of America

\J /A tutorial on statistical methods for

population association studies

David J. Balding

Abstract | Although genetic association studies have been with us for many years, even for
the simplest analyses there is little consensus on the most appropriate statistical procedures.
Here | give an overview of statistical approaches to population association studies, including
preliminary analyses (Hardy-Weinberg equilibrium testing, inference of phase and missing
data, and SNP tagging), and single-SNP and multipoint tests for association. My goal is to
outline the key methods with a brief discussion of problems (population structure and
multiple testing), avenues for solutions and some ongoing developments.

Nature reviews Genetics 2006; 5:63-70 — for those
interested in technical (statistical) details
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