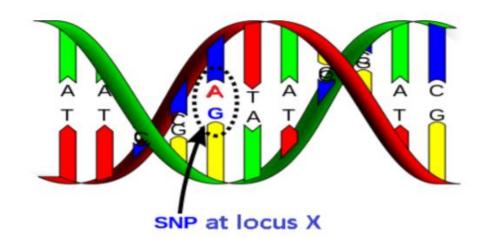
ARCHANA BHARDWAJ (POST GENOMIC ERA) GBIO0002

STRUCTURE OF THIS LECTURE

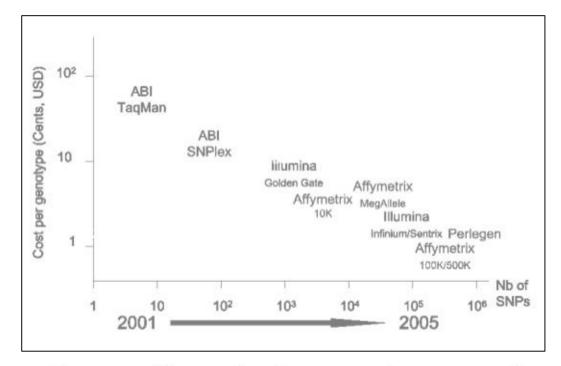
- Recap of some concepts
- All about Post GWAS
- Data bases : Post GWAS
- Web servers : Post GWAS

RECAP OF SOME CONCEPT


- What are SNPs ?
- What are minor and major alleles ?
- What is LD dis equillibirum ?
- What do you mean by association test ?
- What are manhattan plots ?
- What are q-q plot ?

Important genetic terms

Given position in the genome (i.e. locus) has several associated alleles (A and G) which produce genotypes r_A/r_G

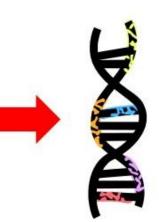

> Haplotypes

- Combination of alleles at different loci

GWAS visually

- GWAS tries to uncover links between genetic basis of the disease
- Which set of SNPs explain the phenotype?

Genotype	Phenotype
ATGCAGTT	control
TTGCAGTT	control
CTGCAGTT	control
ATGCGGTT	case
TTGC <mark>G</mark> GTT	case
CTGCCGTT	case
SNP	


The era of hypothesis generating research

Running a GWAS: Getting your genotype data

- Select your chip
- Complete your genotyping

1

Complement Factor H Variant Increases the Risk of Age-Related Macular Degeneration Jonathan L. Haines *et al. Science* **308**, 419 (2005); DOI: 10.1126/science.1110359

EXTENDED POP FORMA!

Characterizatio

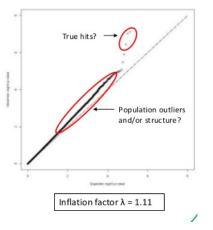
This copy is for your personal, non-commercial use only.

Data Preparation

Quality Control

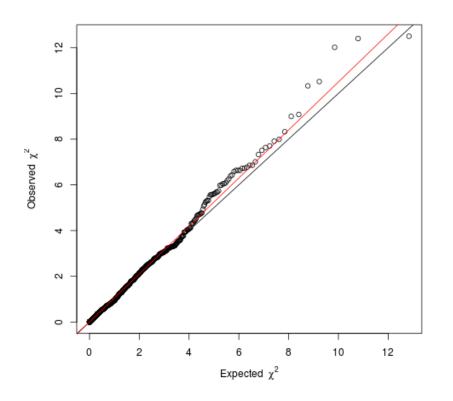
> Clustering

➢ GWAS


The Problems of population substructure

Devlin and Roeder (1999) used theoretical arguments to propose that with population structure, the distribution of Cochran-Armitage trend tests, genome-wide, is inflated by a constant multiplicative factor λ .

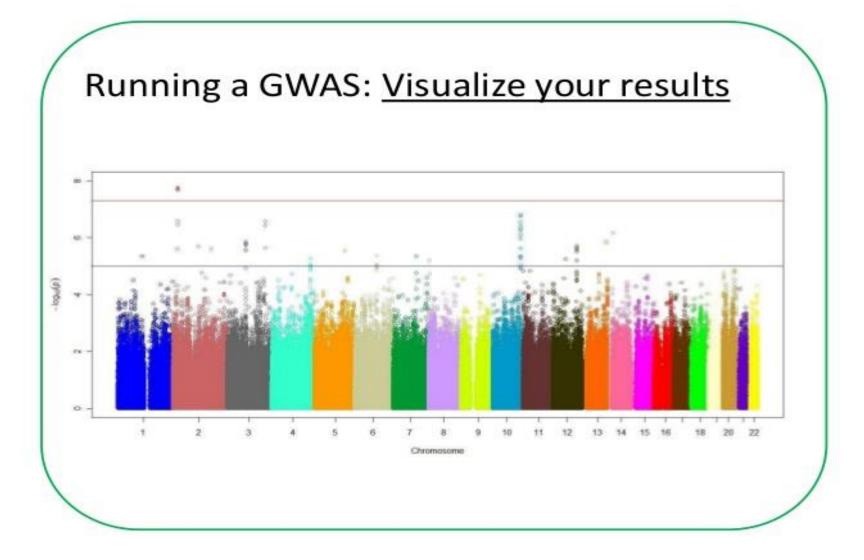
We can estimate the multiplicative inflation factor using the statistic λ = median(X_i²)/0.456.


Inflation factor $\lambda > 1$ indicates population structure and/or genotyping error.

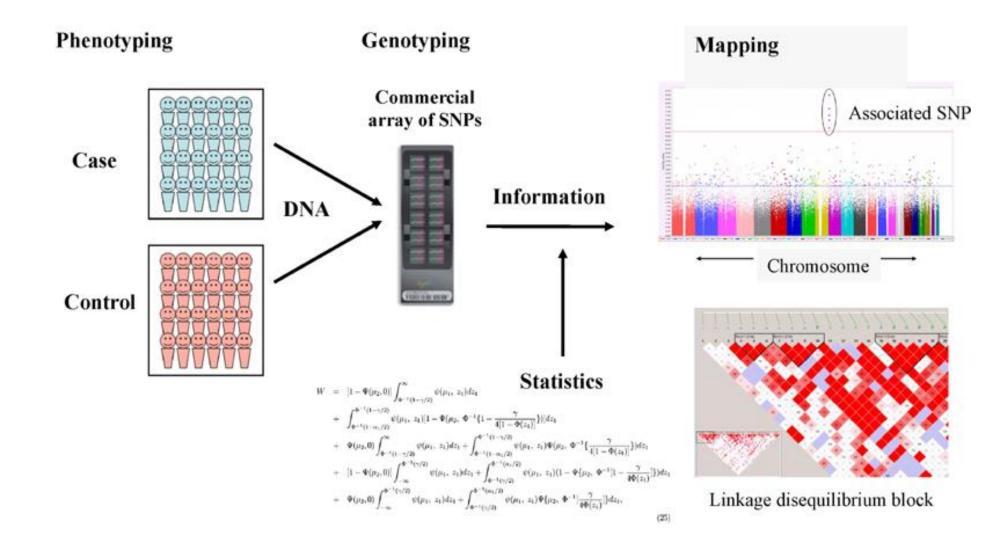
We can carry out an adjusted test of association that takes account of any mismatching of cases/controls at any SNP using the statistic X_i^2/λ .

GWAS based on Linkage Disequilibrium (LD)

- LD is the non-random correlation or association of alleles at two loci
- *D*, *D'* (normalized), and *r*² are commonly used summary statistics to estimate pairwise LD
- *r*² is preferred in association studies because it is more indicative of how markers might correlate with QTL



Lambda should range from 0 to 1 (ideal condition).


The resulting Q-Q plot clearly depicts a trend line (\lambda = 1, red), overlapping with x = y (black) and a slight deviation in the right tail.

so we can be more confident about our results.

Manhattan (multi chromosome view)

GWAS

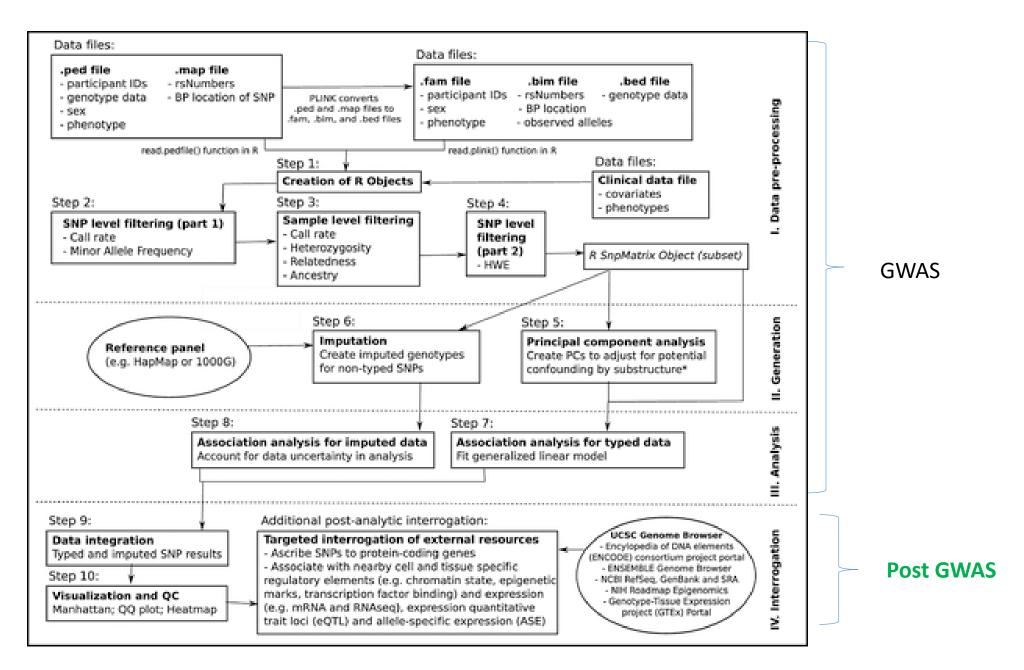
Tutorial in Biostatistics | 🖻 Open Access | 😋 🚺 🗐 😒

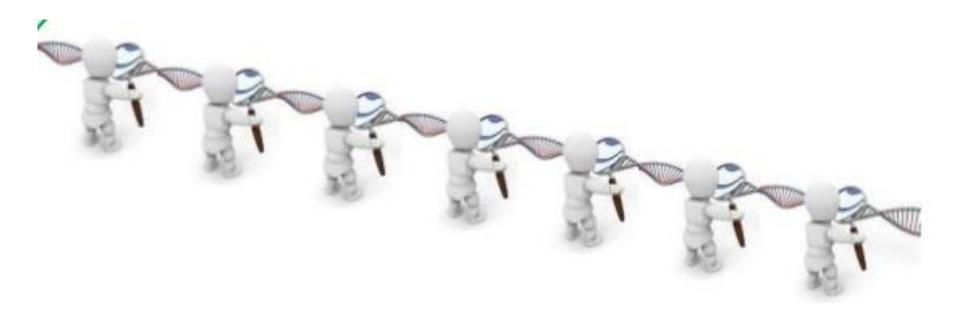
A guide to genome-wide association analysis and post-analytic interrogation

Eric Reed, Sara Nunez, David Kulp, Jing Qian, Muredach P. Reilly, Andrea S. Foulkes 🔀

First published: 06 September 2015 | https://doi.org/10.1002/sim.6605 | Cited by: 21

Get it@ULiège


Support for this research is provided by NIH/NHLBI R01-HL107196.

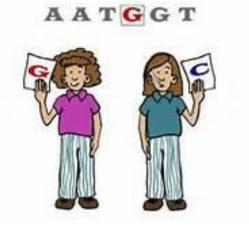

SECTIONS

and a	PDF	∢	TOOLS	<	SHARE
· · ·		~			

Abstract

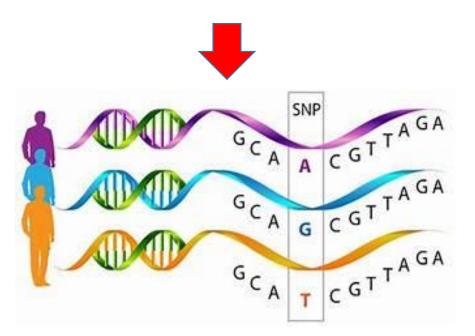
This tutorial is a learning resource that outlines the basic process and provides specific software tools for implementing a complete genome-wide association analysis. Approaches to post-analytic visualization and interrogation of potentially novel findings are also presented. Applications are illustrated using the free and open-source R statistical computing and graphics software environment, Bioconductor software for bioinformatics and the UCSC Genome Browser. Complete genome-wide association data on 1401 individuals across 861,473 typed single nucleotide polymorphisms from the PennCATH study of coronary artery disease are used for illustration. All data and code, as

All about Post GWAS

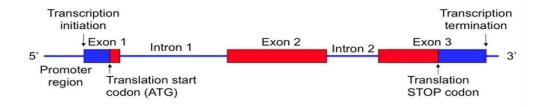

Post GWAS : Interpreting SNPs

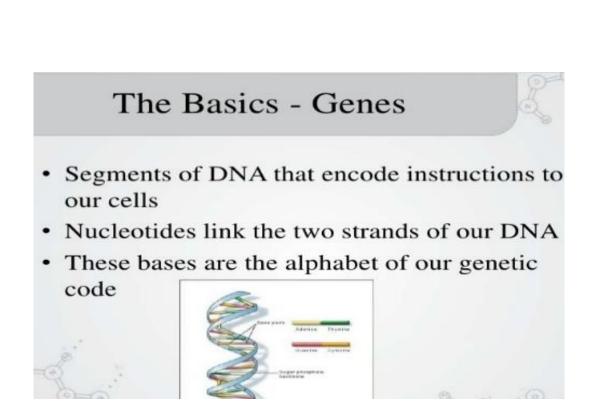
Look at the functionality of your SNP (SNPdoc) Literature search – can you give biological plausibility?

Other tests: pathway analysis / Gene based tests

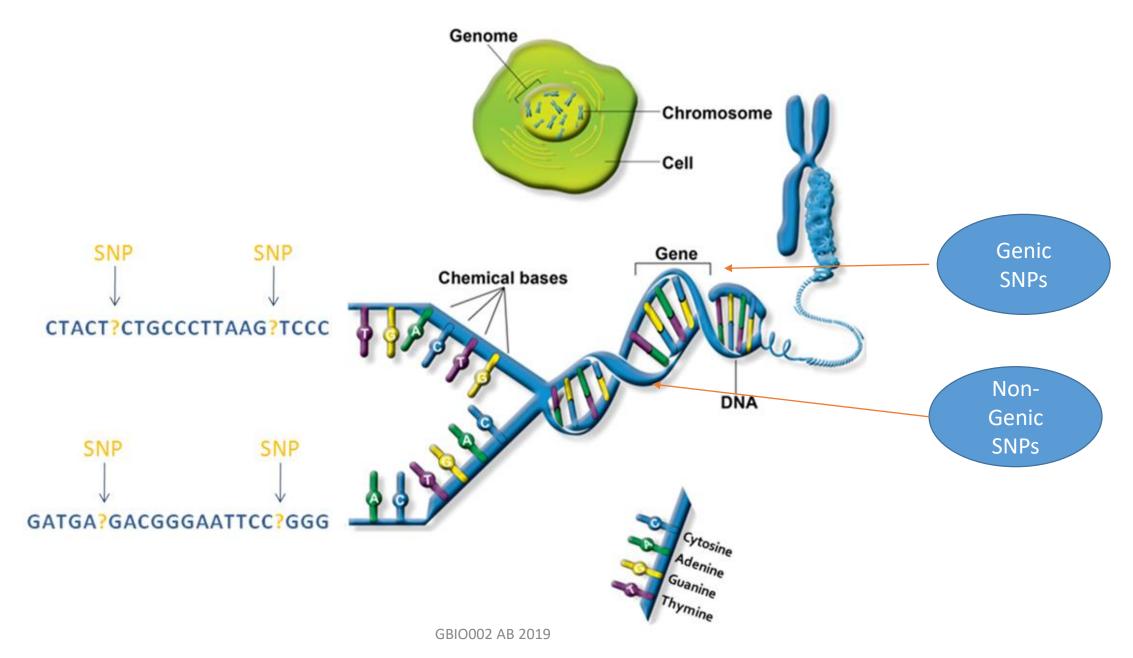

Manual Search = No

Multiple softwares are available

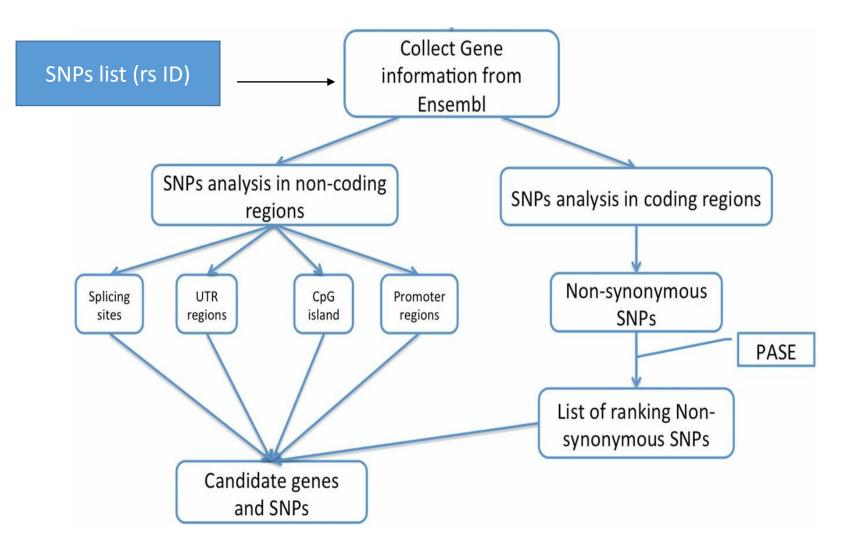


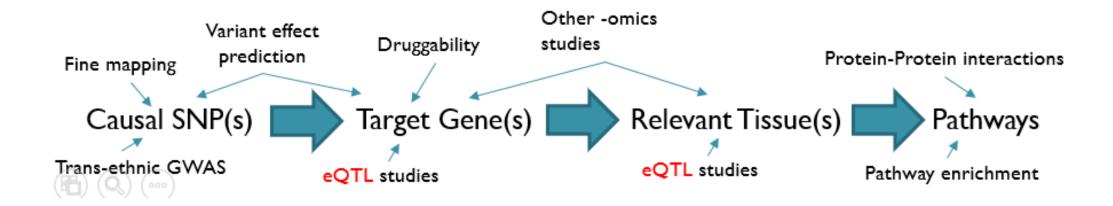

Genomic Positions of SNPs

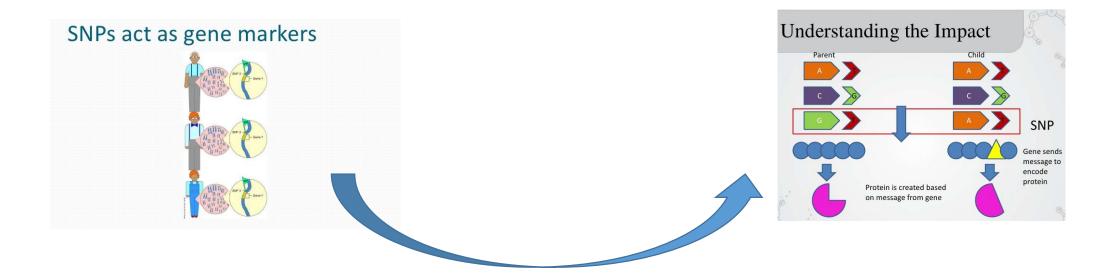
IMPORTANT FINDING



Gene Structure




Genomic Positions of SNPs



Classification of SNPs (Based on Genomic Position)

Why : From SNPs to Genes

Examples: From SNPs to Genes

- rs6311 and rs6313 are SNPs in the Serotonin 5-HT2A receptor gene on human chromosome 13.
- rs3091244 is an example of a triallelic SNP in the CRP gene on human chromosome 1.
- rs148649884 and rs138055828 in the FCN1 gene encoding M-ficolin crippled the ligandbinding capability of the recombinant M-ficolin.

List of Data sources for Post GWAS

Example data types	Select data sources*	UCSC genome browser navigation
DNA level data (non-somatic; genEric to all cells):		
I. Coordinates, e.g.		
(1) SNPs	NCBI dbSNP[a], ENSEMBL[b]	Variation: Common SNPs(141)
(2) Insertions and delations (INDELs)		
(3) Copy number variants (CNVs)		
II. Gene elements, e.g.		
(1) Protein-coding genes	NCBI RefSeq[c], NCBI GenBank[d], ENSEMBL[b]	Gene and Gene Predictions: UCSC Genes
(2) Non-protein-coding genes	NCBI RefSeq[c], NCBI GenBank[d], ENSEMBL[b]	Gene and Gene Predictions: UCSC Genes
Cell and tissue-specific regulation:		
III. Chromatin state, e.g.		
 DNA hypersensitivity (DNase-Seq) 	ENCODE[e], ENSEMBL[b]	Regulation: ENCODE Regulation
(2) FAIRE sequencing	ENCODE[e], ENSEMBL[b]	Regulation: ENC DNase/FAIRE
IV. Epigenetic marks, e.g.		_
 Methylation promoter marks 	ENCODE[e], NIH Roadmap Epigenomics[f]	Regulation: ENCODE Regulation
(2) Methylation enhancer marks	ENCODE[e], NIH Roadmap Epigenomics[f]	Regulation: ENCODE Regulation
(3) Acetylation marks (e.g. #H3K27Ac histone mark)	ENCODE[e], NIH Roadmap Epigenomics[f]	Regulation: ENCODE Regulation
V. Transcription factor binding, e.g.	••••	
(1) ChipSeq data	ENCODE[e], ENSEMBL[b], custom	Regulation: ENCODE Regulation
Cell and tissue-specific expression:		
VI. RNA expression, e.g.		
(1) historic mRNA	NCBI GenBank[d]	mRNA and EST: Human mRNAs
(2) genome-wide cell-specific RNA data (e.g. RNAseq)	ENCODE[e], GTex Portal[g], NCBI SRA[h]	Expression: ENC RNA-seq
VII. SNP-mRNA association, e.g.		
 Expression quantitative trait locis (eQTL) 	GTex Portal[g], custom	N/A
(2) Allelic imbalance (AI); allele specific expression (ASE)	GTex Portal[g], custom	N/A
Biomarkers endophenotype:		
VIII. Other -omics data, e.g.		
 Proteomic (e.g. pQTLs) 	UniProtKB[i]	N/A
(2) Metabolomic	HMDB[j]	N/A

Post GWAS : Terminology

- Indels
- Epigenetic markers
- eQTL

SNPs could be linked to epigenetic markers and regulate the expression of other genes

What are indels ?

- Indels can be contrasted with a point mutation.
- An indel inserts and deletes nucleotides from a sequence, while a point mutation is a form of substitution that replaces one of the nucleotides without changing the overall number in the DNA.

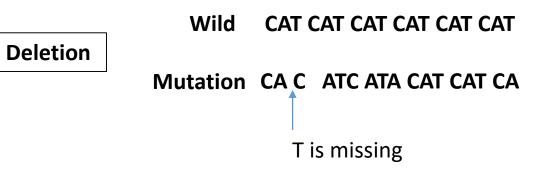
```
wild-type sequence
ATCTTCAGCCATAAAAGATGAAGTT
3 bp deletion
ATCTTCAGCCAAAGATGAAGTT
4 bp insertion (orange)
ATCTTCAGCCATATGTGAAAGATGAAGTT
```

Identify the insertion or deletion in following sequences

Wild CAT CAT CAT CAT CAT CAT

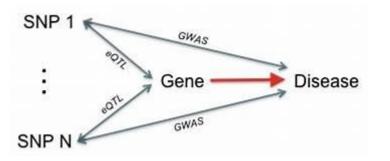
Mutation CAT CAT CAT ACA TCA TCA

Wild CAT CAT CAT CAT CAT CAT


Mutation CAC ATC ATA CAT CAT CA

Wild CAT CAT CAT CAT CAT CAT

Insertion


Mutation CAT CAT CAT ACA TCA TCA

A is inserted

eQTL

- SNPs can be located in gene regions or intergenic ones.
- eQTL= expression Quantitative Trait Locus.
- This is a genomic locus that influences the expression level of mRNA (how much a gene is transcribed).
- This locus can be physically located close to the gene that gets regulated, or far away (even on another chromosome).

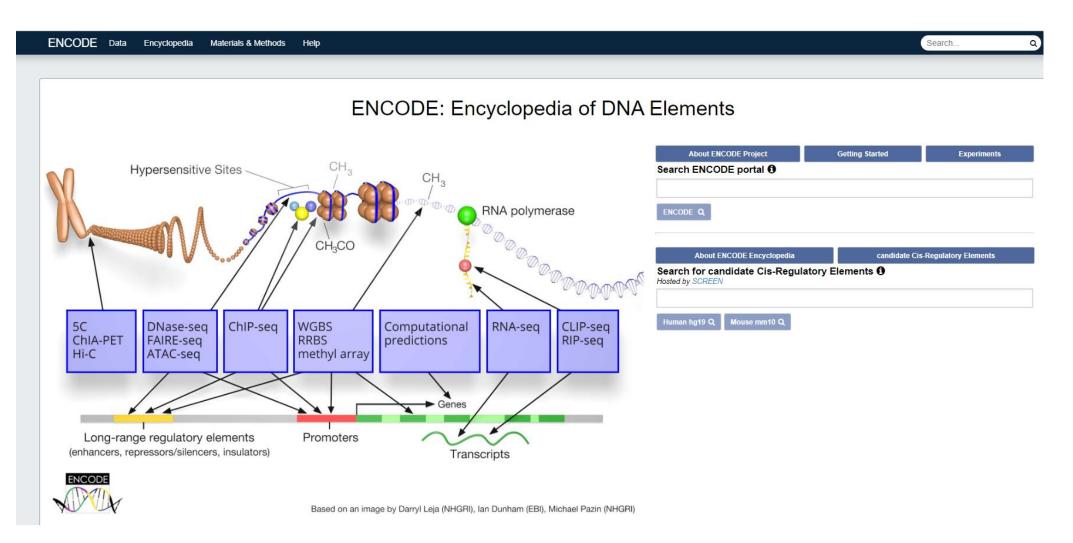
Databases and Softwares

Data source/tool	Used for	Links	Last update	Reference
1000 Genome Project Phase 3	Reference panel used to compute $\ensuremath{r^2}$ and MAF.	Info: http://www.internationalgenome.org/ Data: ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130602/	27 May 2019	1000 Genomes Project Consortium, et al. 2015. A global reference for human genetic variation. <i>Nature</i> . 526, 68-74. PMID:26432245
PLINK v1.9	Used to compute r2 and MAF.	Info and download: https://www.cog-genomics.org/plink2	27 May 2019	Purcell, S., et al. 2007. PLINK: A tool set for whole-genome association and population-based linkage analyses. <i>Am.</i> <i>J. Hum. Genet.</i> 81, 559-575. PMID:17701901
MAGMA v1.07	Used for gene analysis and gene- set analysis.	Info and download: https://ctg.cncr.nl/software/magma	13 Feb 2019	de Leeuw, C., et al. 2015. MAGMA: Generalized gene-set analysis of GWAS data. <i>PLoS Comput. Biol.</i> 11, DOI:10.1371/journal.pcbi.1004219. PMCID:PMC4401657
ANNOVAR	A variant annotation tool used to obtain functional consequences of SNPs on gene functions.	Info and download: http://annovar.openbioinformatics.org/en/latest/	5 Dec 2016	Wang, K., Li, M. and Hakonarson, H. 2010. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. <i>Nucleic Acids Res.</i> 38:e164 PMID:20801885
CADD v1.4	A deleterious score of variants computed by integrating 63 functional annotations. The higher the score, the more deleterious.	Info: http://cadd.gs.washington.edu/ Data: <u>http://cadd.gs.washington.edu/download</u>	27 May 2019	Kicher, M., et al. 2014. A general framework for estimating the relative pathogeneticity of human genetic variants. <i>Nat. Genet.</i> 46 , 310-315. PMID:24487276
RegulomeDB v1.1	A categorical score to guide interpretation of regulatory variants.	Info: http://regulomedb.org/index Data: http://regulomedb.org/downloads/RegulomeDB.dbSNP141.txt.gz	5 Dec 2018	Boyle, AP., et al. 2012. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 22, 1790-7. PMID:22955989
15-core chromatin state	Chromatin state for 127 epigenomes was learned by ChromHMM derived from 5 chromatin markers (H3K4me3, H3K4me1, H3K30me3, H3K427me3, H3K9me3).	Info: http://egg2 wustl.edu/roadmapl/web_portal/chr_state_learning.ht ml Data: http://egg2.wustl.edu/roadmapl/data/byFileTypeic/bromhmmSeg mentationsi/ChmmModels/coreMarksi/jointModel/final/all.mnemonics. bedFiles.tgz	5 Dec 2018	Roadmap Epigenomics Consortium, et al. 2015. Integrative analysis of 111 reference human epigenomes. Nature. 518, 317-330. PMID:25603633 Ernst, J. and Kellis, M. 2012. ChromHMM: automating chromatin-state discovery and characterization. Nat. Methods. 28, 215-6. PMID:22373907
GTEx vðiv7/v8	eQTLs and gene expression used in the pipeline were obtained from GTEx.	Info and data: http://www.gtexportal.org/home/	14 Oct 2019	GTEX Consortium. 2015. Human genomics, The genotype-tissue expression (GTEX) pilot analysis: multissue gene regulation in humans. Solence. 348, 848-80. PMID:25854001 GTEX Consortium. 2017. Genetic effects on gene expression across human tissues. Nature. 550, 204-213. PMID:25022587 Aguet, et al. 2019. The GTEX consortium atlas of genetic regulatory effects across human tissues. bioRxiv. doi: https://doi.org/10.1101/787003.

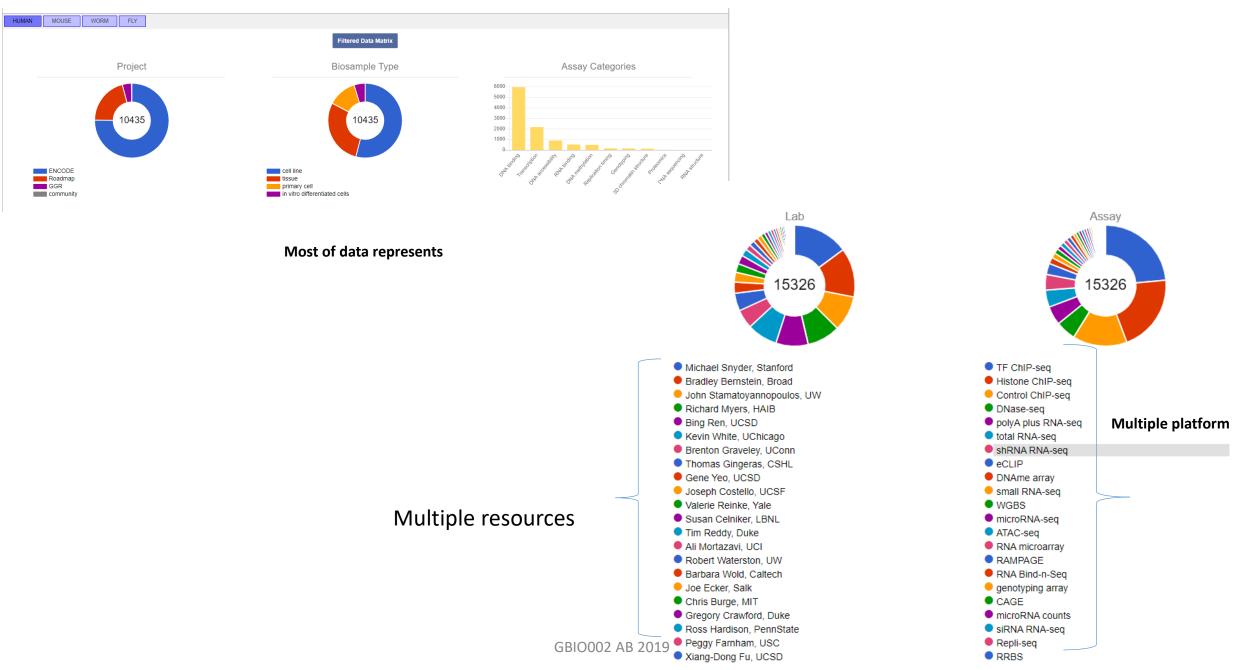
Blood eQTL Browser	eQTLs of blood cells. Only ciseQTLs with FDR ≤ 0.05 are available in FUMA.	Info and data: http://genenetwork.nl/bloodeqt/browser/	17 January 2017	Westra et al. 2013. Systematic identification of trans eQTLs as putative divers of known disease associations. Nat. Genet. 45, 1238-1243. PMID:24013839
BIOS QTL browser	eQTLs of blood cells in Dutch population. Only cis-eQTLs (gene-level) with FDR ≤ 0.05 are available in FUMA.	Info and data: http://genenetwork.nl/biosqt/browser/	17 January 2017	Zhernakova et al. 2017. Identification of context-dependent expression quantitative trait loci in whole blood. Nat. Genet. 49, 139-145. PMID:27918533
BRAINEAC	eQTLs of 10 brain regions. Cis- eQTLs with nominal P-value < 0.05 are available in FUMA.	Info and data: http://www.braineac.org/	26 January 2017	Ramasamy et al. 2014. Genetic variability in the regulation of gene expression in ten regions of the human brain. <i>Nat. Neurosci.</i> 17, 1418-1428. PMID:27018633
MuTHER	eQTLs in Adipose, LCL and Skin samples (only cis eQTLs).	Info: http://www.muther.ac.uk/ Data: http://www.muther.ac.uk/Data.html	21 January 2018	Grundberg et al. 2012. Mapping cis and trans regulatory effects across multiple tissues in twins. <i>Nat. Genet.</i> 44, 1084- 1089. PMID:22941192
xQTLServer	eQTLs in dorsolateral prefrontal cortex samples.	Info and data: http://mostafavilab.stat.ubc.ca/xqt//	21 January 2018	Ng et al. 2017. An xQTL map integrates the genetic architecture of the human brain's transcriptome and epigenome. <i>Nat. Neurosci.</i> 20, 1418-1428. PMID:28889584
CommonMind Consortium	eQTLs in brain samples. Both cis and trans eQTLs are available	Info and data: https://www.synapse.org/#ISynapse.syn5586484	21 January 2018	Fromer et al. 2018. Gene expression elucidates functional impact of polygenic risk for schizophrenia. <i>Nat. Neurosci.</i> 16, 1442-1453. PMID:27668389
eQTLGen	Meta-analysis of cis and trans eQTLs based on 37 data sets (in total of 31,684 individuals).	Info: http://www.eqtigen.org/index.html Data: https://molgenis28.goc.rug.nl/downloadsleqtigen/cis-eqti/cis- eQTL_s_full_20180905.bt.gz, https://molgenis2.goc.rug.nl/downloadsleqtigen/trans-eqtiltrans- eQTL_significant_20181017.bt.gz	20 Oct 2018	Vosa et al. 2018. Unraveling the polygenic architecture of complex traits using blood eQTL meta-analysis. <i>bioRxiv</i> https://doi.org/10.1101/447387
DICE	eQTLs of 15 types of immune cells.	Info: https://dice-database.org/landing Data: https://dice-database.org/downloads	27 May 2019	Schmiedel et al. 2018. Impact of genetic polymorphisms on human immune cell gene expression. Cell 175, 1701- 1715.e10. PMID:30449622
van der Wijst et al. scRNA eQTLs	eQTLs based on scRNA-seq of 9 cell types.	Info and data: <u>https://molgenis28.target.rug.nl/downloads/soma-seg</u> /	27 May 2019	van der Wijst et al. 2018. Single-cell RNA sequencing identifies celltype- specific eQTLs and co-expression QTLs. Nat. Genet. 50, 493-497. PMID:20810479
PsychENCODE	SNP annotations (enhancer, H3K27ac markers), eQTLs and HIC based enhancer-promoter interactions.	Info and data: http://resource.psychencode.org/	27 May 2019	Wang et al. 2018. Comprehensive functional genomic resource and integrative model for the human brain. Science 14, eaat8464. PMID:30548857
FANTOM5	SNP annotations (enhancer and promoter) and enhancer-promoter correlations.	Info. http://fantom.gso.riken.jo/5/ Data: http://fantom.gso.riken.jo/5/data/, http://sidebase.binf.ku.dk/human_enhanoers/presets	27 May 2019	Andersson et al. 2014. An atlas of active enhancers across human cell types and tissues. Nature 507, 455-461. PMID:24407083 FANTOM Consortium. A promoter-level mammälian expression atlas. Neture 507, 462-470 PMID:24670784

Databases and Softwares

BrainSpan	Gene expression data of developmental brain samples.	Info and data: http://www.brainspan.org/static/download	31 January 2018	Kang et al. 2011. Spatio-temporal transcriptome of the human brain. Nature 478, 483-489. PMID:22031440
GSE87112 (Hi- C)	Hi-C data (significant loops) of 21 tissue/cell types. Pre-processed data (output of Fit-Hi-C) is used in FUMA.	Info and data: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi? acc=GSE87112	9 May 2017	Schmitt, A.D. et al. 2016. A compendium of chromatin contact maps reveals spatially active regions in the human genome. <i>Cell Rep.</i> 17 , 2042-2059. PMID:27851987
Giusti- Rodriguez et al. 2019 (Hi-C)	Hi-C data (significant loops) of adult and fetal cortex. Only significant loops after Bonferroni correction (Pbon < 0.001) are available.	The data was kindly shared by Patric F. Sullivan.	13 Feb 2019	Giusti-Rodriguez, P. et al. 2019. Using three-dimentional regulatory chromatin interactions from adult and fetal cortex to interpret genetic results for psychiatric disorders and cognitive traits. <i>bioRxiv</i> . https://doi.org/10.1101/408330
Enhancer and promoter regions	Predicted enhancer and promoter regions (including dyadic) from Roadmap Epigenomics Projects. 111 epigenomes are available.	Info: http://egg2.wustl.edu/roadmap/web_portal/DNase_reg.html Data: http://egg2.wustl.edu/roadmap/data/byDataType/dnase/	9 May 2017	Roadmap Epigenomics Consortium, et al. 2015. Integrative analysis of 111 reference human epigenomes. <i>Nature</i> . 518, 317-330. PMID:26693636 Ernst, J. and Kellis, M. 2012. ChromHIM: automating chromatin-state discovery and characterization. <i>Nat.</i> <i>Methods</i> . 28, 215-6. PMID:22373907
MsigDB v7.0	Collection of publicly available gene sets. Data sets include e.g. KEGG, Reactome, BioCarta, GO terms and so on.	Info and data: http://software.broadinstitute.org/gsea/msigdb	14 Oct 2019	Liberzon, A. et al. 2011. Molecular signatures database (MSigDB) 3.0. <i>Bioinformatics</i> . 27, 1739-40. PMID:21546393
WikiPathways v20191010	The curated biological pathways.	Info: http://wikipathways.org/index.php/WikiPathways Data: http://data.wikipathways.org/20161110/gmt/wikipathways-2016 1110-gmt-Homo_sapiens.gmt	14 Oct 2019	Kutmon, M., et al. 2018. WikiPathways: capturing the full diversity of pahtway knowledge. <i>Nucleic Acids Res.</i> 44, 488- 494. PMID:26481357
GWAS-catalog e96 2019-09- 24	A database of reported SNP-trait associations.	Info: https://www.ebi.ac.uk/gwas/ Data: https://www.ebi.ac.uk/gwas/downloads	14 Oct 2019	MacArthur, J., et al. 2016. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). <i>Nuoleic Acids Res.</i> piirgkw1133. PMID:27899670
DrugBank v5.1.4	Targeted genes (protein) of drugs in DrugBank was obtained to assign drug ID for input genes.	Info: https://www.ncbi.nlm.nih.gov/pubmed/27899870 Data: https://www.drugbank.ca/releases/latest#protein-identifiers	14 Oct 2019	Wishart, DS., et al. 2008. DrugBank: a knowledgebase for drugs, drug actions and drug targets. <i>Nucleic Acis Res.</i> 36, D901-8. PMID:18048412
pLI	A gene score annotated to prioritized genes. The score is the probability of being loss-of-function intolerance.	Info: http://exac.broadinstitute.org/ Data: ftp://ftp.broadinstitute.org/pub/ExAC_release/release0.3.1/funct ional_gene_constraint	27 April 2017	Lek, M. et al. 2016. Analyses of protein- coding genetic variation in 60,706 humans. <i>Nature</i> . 536, 285-291. PMID:27535533
ncRVIS	A gene score annotated to prioritized genes. The score is the non-coding residual variation intolerance score.	Info: http://journals.plos.org/plosgenetics/article? id=10.1371/journal.pgen.1005492 Data: http://journals.plos.org/plosgenetics/article/file? type=supplementary&id=info:doi/10.1371/journal.pgen.1005492.s011	27 April 2017	Petrovski, S. et al. 2015. The intolerance of regulatory sequence to genetic variation predict gene dosage sensitivity. <i>PLOS Genet.</i> 11 , e1005492. PMID:28332131

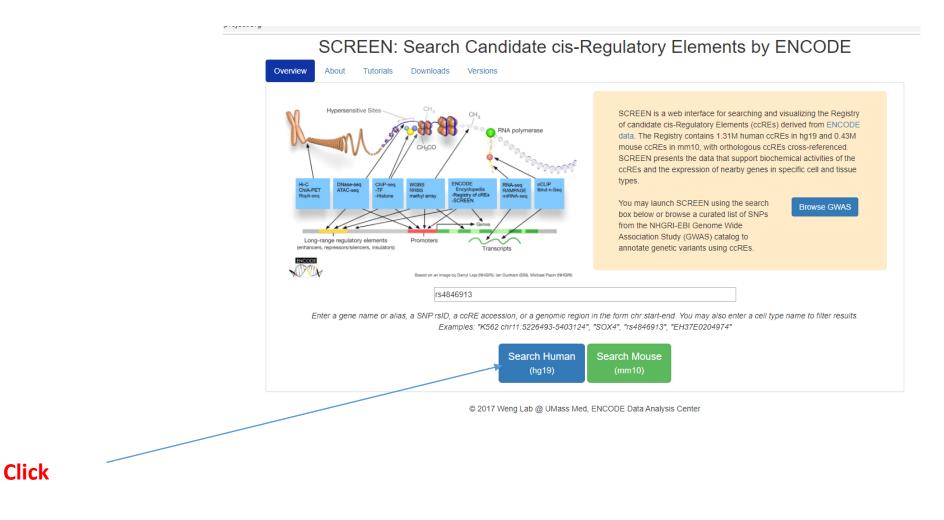

Data bases and web servers

Let us discuss :


- ENCODE
- HelgoDB
- RegulomeDB
- UniprotKB
- ENSEMBL
- FUMA

ENCODE: Encyclopedia of DNA Elements

https://www.encodeproject.org/


Encode : Data structures

Let us use Encode

Go to link http://screen.encodeproject.org/

Enter snp id : rs4846913

RE	EN hg19 chr1:230294714-230294718	5				Searc	ch										
iosa	amples 🕄			Se	ccRE earch Results	Bed Upload											
V	Search:			Cand	lidate cis-Regulat	ny Elements (c	CREs) that meet	your search c	riteria are	listed in th	e table below						
	cell type	tissue		0	Click a ccRE ac	cession to view	details about the	ccRE, includi				ires, etc.					
	A172	brain		•	Click a gene ID	o view the exp	ression prome or	the gene.									
	A549	lung													Search:		
	A549 treated with dexamethasone	lung		\land	accession	DNase Z	H3K4me3 Z	H3K27ac Z	CTCF Z	chr	start	length	experimental evidence	nearest genes: protein-coding / all		cart	genome browsers
	A549 treated with ethanol	lung		۲	EH37E014552	2 3.48	2.13	4.09	1.20	chr1	230,294,315	813		pc: GALNT2, PGBD5, COG2 all: GALNT2, RP5-956O18.2, BX323860	.1	₽₽	UCSC
	A673	muscle		Add	all to cart Clear car	Download bed	Download JSON	found 1 resul	ts								
	ACC112	salivary glands			High H3K4me3 Proximal/Distal to a	Transcription Sta	High H3K27ac art Site			High CTCF High DNas			igh DNase or CTCF in the same cell type	Z-score < 1.64	🗆 No data		
	adipocyte	adipose		V	_												
1	adipose derived mesenchymal stem cell in vitro differentiated cells	stem cell			Selec	t this	row										
	adrenal gland female adult (51 years)	adrenal															
	adrenal gland female fetal (108 days)	adrenal															
ıl: (622 « < 1 2 3	63	> >>														
ror	mosome			Í													
1			\otimes														
orc	dinates: chr1:230294714-230294715 讠			ĺ													
		nhaa, kii Mastav	alian and														
	230294714 - 23029471																
	mum across cell types 🕕																
axin	<i>1</i> 1 -																

EH37E0145522 chr1:230,294,315-230,295,128 * D

Тор	Nearby	TF and His-mod	FANTOM	Associated	Associated	Orthologous ccREs	Signal	Linked
Tissues	Genomic Features	Intersection	Intersection	Gene Expression	RAMPAGE Signal	in mm10	Profile	Genes

H3K4me3 Z-scores 🟮 🔶

Tri methylation (me3): Chromatin markers	Search:	
cell type	H3K4me3 and DNase	H3K4me3 only
OCI-LY1		2.13
HepG2	2.71	2.11
mid-neurogenesis radial glial cells derived from H9 stably expressing fusion protein		1.96
Caco-2	2.14	1.94
BE2C	2.31	1.87
radial glial cell derived from H9 stably expressing fusion protein		1.83
neuroepithelial stem cell derived from H9 stably expressing fusion protein		1.83
skeletal muscle male adult (54 years)		1.82
stomach smooth muscle female adult (84 years)		1.80
germinal matrix male fetal (20 weeks)		1.70
«	< 1 2 3 .	21 >

Total: 210 Chromatin markers

CTCF Z-scores 🟮 👉

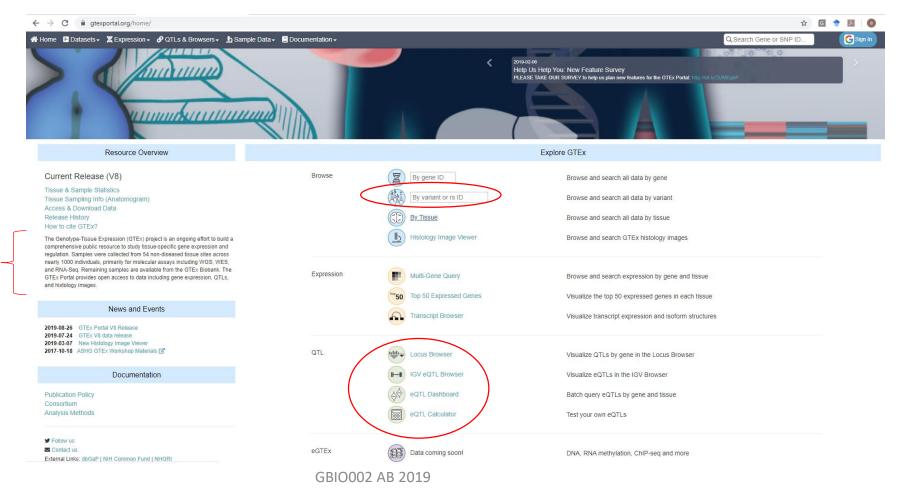
TSV	Search:	
cell type	CTCF and DNase	CTCF only
BE2C	1.97	1.20
H54		1.17
MCF-7 treated with estradiol	1.74	1.14
HGPS cell		1.13
skin fibroblast female	0.51	0.97
epithelial cell of proximal tubule	1.94	0.94
spleen adult		0.94
GM19240		0.92
GM12874		0.91
GM10266		0.89
Total: 101	« < 1 2	3 11 > »

Acetylation (AC) Chromatin markers

H3K27ac Z-scores 🟮

TSV	Search:	
cell type	H3K27ac and DNas	e H3K27ac only
KMS-11		4.09
HepG2	3.52	3.73
neuroepithelial stem cell derived from H9 stably expressing fusion protein		3.68
right lobe of liver female adult (53 years)	3.47	3.58
HUES64-derived CD184+		3.54
small intestine male fetal (108 days)	3.23	3.40
hepatocyte derived from H9	2.98	3.39
KOPT-K1		3.30
liver male adult (31 years)		3.29
OCI-LY1		3.25
Total: 136	« < 1 2 3	14 > »

Chromatin markers

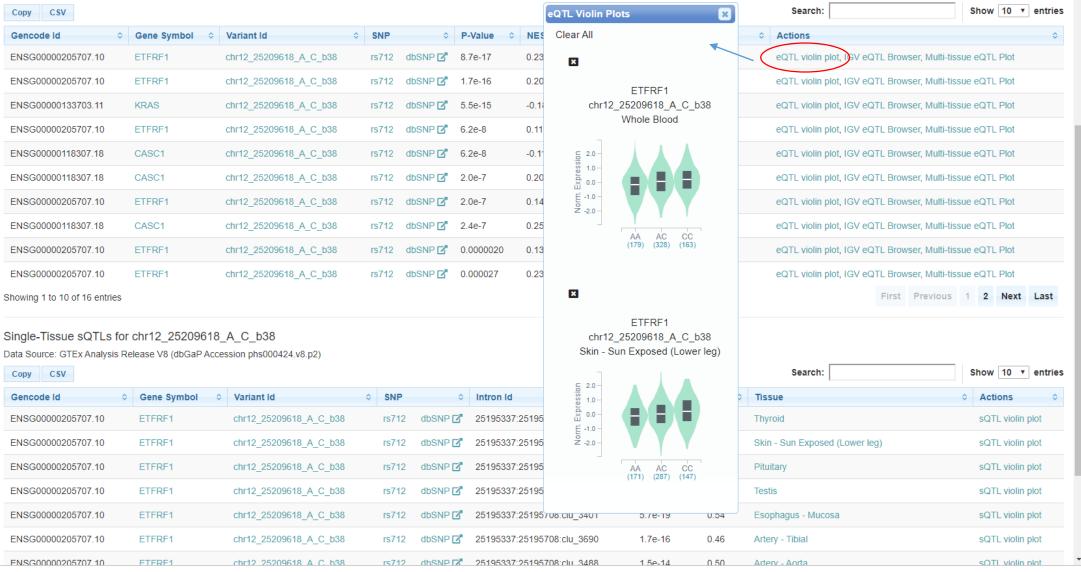

TSV		Search:	
	cell type		Z-score
	large intestine female fetal (108 days)		3.48
	large intestine female fetal (107 days)		3.42
	small intestine male fetal (105 days)		3.37
	small intestine female fetal (108 days)		3.35
	right lobe of liver female adult (53 years)		3.35
	large intestine female fetal (91 days)		3.35
	HepG2		3.31
	small intestine female fetal (105 days)		3.29
	small intestine female fetal (98 days)		3.26
	large intestine female fetal (110 days)		3.21
Total: 462		« < 1 2 3	47 > ::

Z score data from multiple chromatin markers in different cell types

GTEx : Genotype-Tissue Expression (GTEx)

Go to link https://gtexportal.org/home/

Enter snp id : rs712 [Homo sapiens]


☆ 🖸 🔶 💹 🛛 🗄

← → C

gtexportal.org/home/snp/rs712

Datasets - X Expre	ession + 🔗 QTLs & Browsers + .	Lample Data - ■	Documentation -					C Abo	out GTEX 💷 Publicati	earch Gene or SNP II	
ssue eQTLs	Variant Page								Search:		Show 10 T
ssue sQTLs	Variant ID		Shorthand)	nosome 🗘	Position	♦ MAF >= 1%	Ref Allele	Alt Allele	b37 Variant	
	chr12_25209618_A_C_b3	38	rs712	chr12		25209618	true A	۱.	С	12_2536255	2_A_C_b37
	Showing 1 to 1 of 1 entries										Previous 1
	Single-Tissue eQTLs fo Data Source: GTEx Analysis F										
	eQTLs of chr12_25209618_A	_C_b38									
	Copy CSV		 Variant Id 		 ₽-Value ↓ 		Tissue	•	Search:		Show 10
	Copy CSV		Variant Id chr12_25209618_A_C_b38	SNP rs712 dbSNF	 ◇ P-Value ◇ ☑[*] 8.7e-17 	NES 3 ≎ 0.23	Tissue Whole Blood	\$	Search: Actions eQTL violin plot, IGV	/ eQTL Browser, Mult	
	Copy CSV Gencode Id \diamond	Gene Symbol		rs712 dbSNF				\$	Actions		i-tissue eQTL Plot
	Copy CSV Gencode Id ENSG0000205707.10	Gene Symbol ETFRF1	chr12_25209618_A_C_b38	rs712 dbSNF rs712 dbSNF	☑ 8.7e-17	0.23	Whole Blood	\$	Actions eQTL violin plot, IGV	eQTL Browser, Mult	i-tissue eQTL Plot
	Copy CSV Gencode Id Columna ENSG00000205707.10 ENSG00000205707.10	Gene Symbol ETFRF1 ETFRF1	chr12_25209618_A_C_b38 chr12_25209618_A_C_b38	rs712 dbSNF rs712 dbSNF rs712 dbSNF	2 8.7e-17 2 1.7e-16	0.23 0.20	Whole Blood Skin - Sun Exposed (Lower leg)	\$	Actions eQTL violin plot, IGV eQTL violin plot, IGV	/ eQTL Browser, Mult / eQTL Browser, Mult	I-tissue eQTL Plot I-tissue eQTL Plot I-tissue eQTL Plot
	Copy CSV Gencode Id > ENSG00000205707.10 ENSG00000205707.10 ENSG00000133703.11	Gene Symbol ETFRF1 ETFRF1 KRAS	chr12_25209618_A_C_b38 chr12_25209618_A_C_b38 chr12_25209618_A_C_b38	rs712 dbSNF rs712 dbSNF rs712 dbSNF	2 8.7e-17 2 1.7e-16 2 5.5e-15 2 6.2e-8	0.23 0.20 -0.18	Whole Blood Skin - Sun Exposed (Lower leg) Celis - Cultured fibroblasts	\$	Actions eQTL violin plot, IGV eQTL violin plot, IGV eQTL violin plot, IGV	/ eQTL Browser, Mult / eQTL Browser, Mult / eQTL Browser, Mult	I-tissue eQTL Plot I-tissue eQTL Plot I-tissue eQTL Plot I-tissue eQTL Plot
	Copy CSV Gencode Id ◇ ENSG00000205707.10 ENSG00000133703.11 ENSG00000205707.10	Gene Symbol ETFRF1 ETFRF1 KRAS ETFRF1	chr12_25209618_A_C_b38 chr12_25209618_A_C_b38 chr12_25209618_A_C_b38 chr12_25209618_A_C_b38	rs712 dbSNF rs712 dbSNF rs712 dbSNF rs712 dbSNF rs712 dbSNF	2 8.7e-17 2 1.7e-16 2 5.5e-15 2 6.2e-8	0.23 0.20 -0.18 0.11	Whole Blood Skin - Sun Exposed (Lower leg) Cells - Cultured fibroblasts Testis	\$	Actions eQTL violin plot, IGV eQTL violin plot, IGV eQTL violin plot, IGV	/ eQTL Browser, Mult / eQTL Browser, Mult / eQTL Browser, Mult / eQTL Browser, Mult	I-tissue eQTL Plot I-tissue eQTL Plot I-tissue eQTL Plot I-tissue eQTL Plot I-tissue eQTL Plot
	Copy CSV Gencode Id Image: Comparison of the second seco	Gene Symbol ETFRF1 ETFRF1 KRAS ETFRF1 CASC1	chr12_25209618_A_C_b38 chr12_25209618_A_C_b38 chr12_25209618_A_C_b38 chr12_25209618_A_C_b38 chr12_25209618_A_C_b38 chr12_25209618_A_C_b38	rs712 dbSNF rs712 dbSNF rs712 dbSNF rs712 dbSNF rs712 dbSNF	2 8.7e-17 1.7e-16 5.5e-15 6.2e-8 6.2e-8 2 2.0e-7	0.23 0.20 -0.18 0.11 -0.11	Whole Blood Skin - Sun Exposed (Lower leg) Cells - Cultured fibroblasts Testis Testis		Actions eQTL violin plot, IGV eQTL violin plot, IGV eQTL violin plot, IGV eQTL violin plot, IGV	eQTL Browser, Mult eQTL Browser, Mult eQTL Browser, Mult eQTL Browser, Mult eQTL Browser, Mult	I-tissue eQTL Plot I-tissue eQTL Plot I-tissue eQTL Plot I-tissue eQTL Plot I-tissue eQTL Plot I-tissue eQTL Plot
	Copy CSV Gencode Id ENSG00000205707.10 ENSG00000205707.10 ENSG00000133703.11 ENSG00000205707.10 ENSG00000133703.11 ENSG00000133703.11 ENSG00000133703.11 ENSG00000118307.18	 Gene Symbol ETFRF1 ETFRF1 KRAS ETFRF1 CASC1 CASC1 	chr12_25209618_A_C_b38 chr12_25209618_A_C_b38 chr12_25209618_A_C_b38 chr12_25209618_A_C_b38 chr12_25209618_A_C_b38 chr12_25209618_A_C_b38 chr12_25209618_A_C_b38 chr12_25209618_A_C_b38	rs712 dbSNF rs712 dbSNF rs712 dbSNF rs712 dbSNF rs712 dbSNF rs712 dbSNF rs712 dbSNF	2 8.7e-17 1.7e-16 5.5e-15 6.2e-8 6.2e-8 2 2.0e-7	0.23 0.20 -0.18 0.11 -0.11 0.20	Whole Blood Skin - Sun Exposed (Lower leg) Cells - Cultured fibroblasts Testis Testis Skin - Sun Exposed (Lower leg)		Actions eQTL violin plot, IGV eQTL violin plot, IGV eQTL violin plot, IGV eQTL violin plot, IGV eQTL violin plot, IGV	eQTL Browser, Mult eQTL Browser, Mult eQTL Browser, Mult eQTL Browser, Mult eQTL Browser, Mult eQTL Browser, Mult	I-tissue eQTL Plot I-tissue eQTL Plot I-tissue eQTL Plot I-tissue eQTL Plot I-tissue eQTL Plot I-tissue eQTL Plot I-tissue eQTL Plot
	Copy CSV Gencode Id ENSG00000205707.10 ENSG00000205707.10 ENSG00000205707.10 ENSG00000205707.10 ENSG00000113307.18 ENSG00000118307.18 ENSG00000205707.10	 Gene Symbol ETFRF1 ETFRF1 KRAS ETFRF1 CASC1 CASC1 ETFRF1 	chr12_25209618_A_C_b38 chr12_25209618_A_C_b38 chr12_25209618_A_C_b38 chr12_25209618_A_C_b38 chr12_25209618_A_C_b38 chr12_25209618_A_C_b38 chr12_25209618_A_C_b38 chr12_25209618_A_C_b38 chr12_25209618_A_C_b38 chr12_25209618_A_C_b38	rs712 dbSNF rs712 dbSNF rs712 dbSNF rs712 dbSNF rs712 dbSNF rs712 dbSNF rs712 dbSNF	2 8.7e-17 2 1.7e-16 2 5.5e-15 2 6.2e-8 2 2.0e-7 2 2.0e-7 2 2.4e-7	0.23 0.20 -0.18 0.11 -0.11 0.20 0.14	Whole Blood Skin - Sun Exposed (Lower leg) Cells - Cultured fibroblasts Testis Testis Skin - Sun Exposed (Lower leg) Skin - Not Sun Exposed (Suprapu		Actions eQTL violin plot, IGV eQTL violin plot, IGV	eQTL Browser, Mult eQTL Browser, Mult eQTL Browser, Mult eQTL Browser, Mult eQTL Browser, Mult eQTL Browser, Mult	I-tissue eQTL Plot I-tissue eQTL Plot

eQTLs of chr12_25209618_A_C_b38

Indicates snps has high expression in human blood and skin tissues GBIO002 AB 2019

Multi-tissue eQTL Comparison o

ENSG00000205707.10 ETFRF1 and chr12_25209618_A_C_b38 eQTL (Meta Analysis RE2 P-Value: 1.93850999999999999e-60)

Tissue	Samples	s NES	p-value	m-value	Single-tissue eQTL NES (with 95% CI)	Single-tissue eQTL p-value versus Multi-tissue Posterior Probability
Whole Blood	670	0.234	8.7e-17	1.00	_ −	-
Brain - Cerebellum	209	0.231	2.7e-5	1.00		
 Skin - Sun Exposed (Lower leg) 	605	0.204	1.7e-16	1.00		
Ovary	167	0.147	0.01	0.950		
 Skin - Not Sun Exposed (Suprapubic) 	517	0.141	2.0e-7	1.00		
Esophagus - Gastroesophageal Junction	330	0.131	4.9e-4	0.996		15-
Thyroid	574	0.126	2.0e-6	1.00		
Vagina	141	0.113	0.2	0.543		-
Testis	322	0.109	6.2e-8	1.00		
Pituitary	237	0.106	0.02	0.935		
😑 Lung	515	0.106	2.5e-4	1.00		
Cells - EBV-transformed lymphocytes	147	0.0915	0.3	0.512		
Esophagus - Mucosa	497	0.0895	3.5e-3	0.955		
Pancreas	305	0.0850	0.05	0.740	_	
Heart - Atrial Appendage	372	0.0794	0.008	0.906		
Cells - Cultured fibroblasts	483	0.0761	4.3e-3	0.946		
Spleen	227	0.0734	0.2	0.492		
Uterus	129	0.0705	0.4	0.576		
 Adipose - Visceral (Omentum) 	469	0.0703	0.03	0.714	<mark>-</mark>	
Esophagus - Muscularis	465	0.0701	0.03	0.791		
Heart - Left Ventricle	386	0.0645	2.3e-3	0.679		1 0
Brain - Spinal cord (cervical c-1)	126	0.0584	0.3	0.399		
Liver	208	0.0571	0.1	0.408		Ö
Nerve - Tibial	532	0.0532	0.02	0.295	— <u>—</u> —	
Colon - Transverse	368	0.0522	0.06	0.301		S S
Prostate	221	0.0486	0.4	0.326		₩ ₩
Adrenal Gland	233	0.0396	0.4	0.188		p la
Colon - Sigmoid	318	0.0306	0.4	0.102		ភ
 Muscle - Skeletal 	706	0.0282	0.1	0.00		-log 10(Single 41ssue
Brain - Cerebellar Hemisphere	175	0.0281	0.6	0.190		Б) О
Small Intestine - Terminal Ileum	174	0.0200	0.7	0.162		T
Breast - Mammary Tissue	396	0.0177	0.5	0.00300		
Brain - Hypothalamus	170	0.00978	0.9	0.123	_	
Adipose - Subcutaneous	581	0.00428	0.9	0.00		
Artery - Aorta	387	-0.000668	3-1	0.00400		5-
Stomach	324	-0.0158	0.6	0.00200		
Artery - Coronary	213	-0.0300	0.5	0.00700		
Artery - Tibial	584	-0.0368	0.1	0.00		
Minor Salivary Gland	144	-0.0404	0.6	0.0600 -		
Brain - Substantia nigra	114	-0.0472	0.5	0.0810 -		
😑 Brain - Amygdala	129	-0.0578	0.5	0.0790		
 Brain - Nucleus accumbens (basal ganglia) 	202	-0.0644	0.2	0.00	_	
Kidney - Cortex	73	-0.0715	0.2	0.00 -		

Ensembl Database

https://www.ensembl.org/index.html

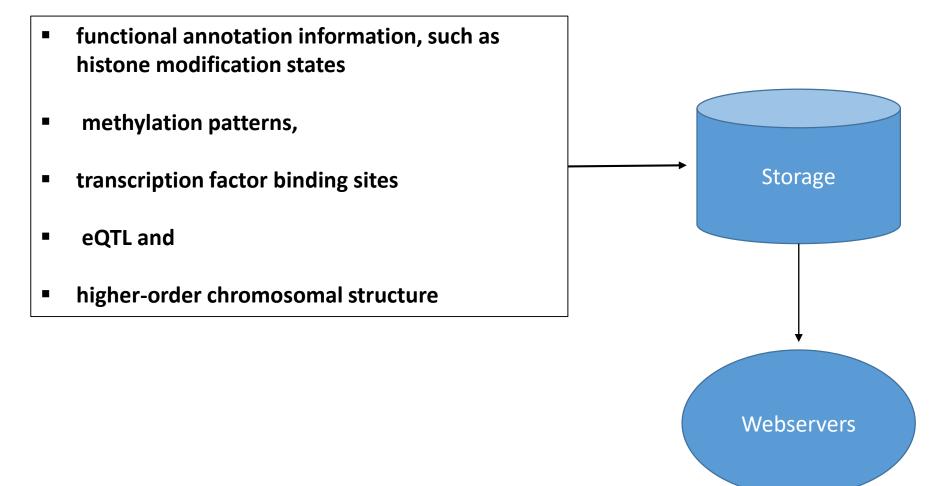
← → C		\$	G	🔶 💹 🛛 🔕
CERSEMBI BLAST/BLAT VEP Tools BioMart Downloads Help & Docs Blog	>	Q ▼ Search all species	5	Login/Regista
Search Human (Homo sapiens) Search all categories • g. BRCA2 or 17:63992802-64038237 or rs699 or osteoarthritis				
Genome assembly: GRCh38.p13 (GCA_000001405.28) Image: Constant of the example of the exampl	View karyotype	Gene annotation What can I find? Protein-coding and non-coding genes, splice variants, cDNA and protein sequences, non-coding RNAs. Image: More about this genebuild Image: Download FASTA files for genes, cDNAs, ncRNA, proteins Image: Download GTF or GFF3 files for genes, cDNAs, ncRNA, proteins Image: Download GTF or GFF3 files for genes, cDNAs, ncRNA, proteins Image: Download GTF or GFF3 files for genes, cDNAs, ncRNA, proteins Image: Download GTF or GFF3 files for genes, cDNAs, ncRNA, proteins Image: Download GTF or GFF3 files for genes, cDNAs, ncRNA, proteins		Pax6 IIIS BRCA2 DMD ssh Example gene xample transcript
Comparative genomics What can I find? Homologues, gene trees, and whole genome alignments across multiple species. More about comparative analysis L Download alignments (EMF)	Example gene tree	Variation What can I find? Short sequence variants and longer structural variants; disease and other phenotypes Image: Short sequence variants and longer structural variants; disease and other phenotypes Image: Short sequence variants and longer structural variants; disease and other phenotypes Image: Short sequence variants and longer structural variants; disease and other phenotypes Image: Short sequence variants and longer structural variants; disease and other phenotypes Image: Short sequence variants and longer structural variants; disease and other phenotypes Image: Short sequence variants and longer structural variants; disease and other phenotypes Image: Short sequence variants and longer structural variants; disease and other phenotypes Image: Short sequence variants and longer structural variants; disease and other phenotypes Image: Short sequence variants and longer structural variants; disease and other phenotypes Image: Short sequence variants and longer structural variants; disease and other phenotypes Image: Short sequence variants and longer structural variants; disease and other phenotypes Image: Short sequence variants and longer structural variants; disease and other phenotypes Image: Short sequence variants and longer structural variants; disease and other phenotypes Image: Short sequence variants; disease variants; dis		ATCGAGCT ATCCAGCT ATCGAGAT Example variant
Regulation What can I find? DNA methylation, transcription factor binding sites, histone modifications, and regulatory features such as enhancers and repressors, and microarray annotations. Image: Comparison of the end o	Example regulatory feature	Variant annotation	E	Example phenotype

UNIPROT KB

Available at https://www.uniprot.org/

• The UniProt Knowledgebase (UniProtKB) is the central hub for the collection of

functional information on proteins, with accurate, consistent and rich annotation.


In addition to capturing the core data mandatory for each UniProtKB entry (mainly, the amino acid sequence, protein name or description, taxonomic data and citation information), as much annotation information as possible is added.

← → C	-0013		III 🛧 🧟 🔶 📜 🍳
			Policion / Long
UniProt	Cross-referenced databases -		Advanced - Q Search
BLAST Align Retrieve/ID mapping Pe	eptide search		Help Contact
Database - dbSN	Р		
Map to	Format		
UniProtKB (12,533)			
	Name Databa	e of single nucleotide polymorphism	
	Servers https:/	www.ncbi.nlm.nih.gov/SNP/	
	URL template https:/	www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?type=rs&rs=%s	
	Citation [PubM	l:17170002][DOI:10.1093/nar/gkl1031]	
	Link type Explicit		
	Category Polymo	phism and mutation databases	
T - 1-		Our and the state	
Tools	Core data	Supporting data	Information
BLAST	Protein knowledgebase (UniP	tKB) Literature citations	About UniProt
Align	Sequence clusters (UniRef)	Taxonomy	Help
Retrieve/ID mapping	Sequence archive (UniParc)	Keywords	FAQ
Peptide search	Proteomes	Subcellular locations	UniProtKB manual
		Cross-referenced databases	Technical corner
		Diseases	Expert biocuration
		10 March 10 Mar	
		UniProt	
		© 2002 – 2019 UniProt Consortium License & Disclaimer Privacy Notice	
		EMBL-EBI 🔐 🕮 📥	
		SIB	

Multiple web servers (for Post GWAS)

- Identifying causal variants remains a key challenge in post-GWAS (genome-wide association study) era, as many GWAS single-nucleotide polymorphisms (SNPs) (including imputed ones) fall into non-coding regions.
- Its making it difficult to associate statistical significance with predicted functionality.

 Therefore, researches developed web-based multiple tools which overlays functional annotation information, such as histone modification states, methylation patterns, transcription factor binding sites, eQTL and higher-order chromosomal structure, to GWAS results.

HaploReg web server

https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php

stitute.org/mammals/haploreg/haploreg.php ☆ HaploReg v4.1 Broad Institute Homepage HaploReg is a tool for exploring annotations of the noncoding genome at variants on haplotype blocks, such as candidate regulatory SNPs at disease-associated loci. Using LD information from the 1000 Genomes Project, linked SNPs and small indels can be visualized along with chromatin state and protein binding annotation from the Roadmap Epigenomics and ENCODE projects, sequence conservation across mammals, the effect of SNPs on regulatory motifs, and the effect of SNPs on expression from eQTL studies. HaploReg is designed for researchers developing mechanistic hypotheses of the impact of non-coding variants on clinical phenotypes and normal variation. Update 2015.11.05: Version 4.1 GWAS and eQTL have been updated; a simpler pruning strategy is applied when combining GWAS; and links out to other NHGRI/EBI GWAS hits and GRASP QTL hits are provided. Update 2015.09.15: Version 4.0 now includes many recent eQTL results including the GTEx pilot, four different options for defining enhancers using Roadmap Epigenomics data, and a complete set of source files for download and local analysis. Older versions available: v3, v2, v1. Build Query Set Options Documentation Documentation If an r² threshold is specified (see the Set Options tab), results for each variant will be shown in a separate table along with other variants in LD. If r² is set to NA, only queried Use one of the three methods below to enter a variants will be shown, together in one table. Query (comma-delimited list of rsIDs OR a single region as chrN:start-end); or, upload a text file (one refSNPND per line): Choose File No file chosen or, select a GWAS • Submit

HaploReg v4.1

.

HaploReg is a tool for exploring annotations of the noncoding genome at variants on haplotype blocks, such as candidate regulatory SNPs at disease-associated loci. Using LD information from the 1000 Genomes Project, linked SNPs and small indels can be visualized along with chromatin state and protein binding annotation from the Roadmap Epigenomics and ENCODE projects, sequence conservation across mammals, the effect of SNPs on regulatory motifs, and the effect of SNPs on expression from eQTL studies. HaploReg is designed for researchers developing mechanistic hypotheses of the impact of non-coding variants on clinical phenotypes and normal variation.

Update 2015.11.05: Version 4.1 GWAS and eQTL have been updated; a simpler pruning strategy is applied when combining GWAS; and links out to other NHGRI/EBI GWAS hits and GRASP QTL hits are provided.

Update 2015.09.15: Version 4.0 now includes many recent eQTL results including the GTEx pilot, four different options for defining enhancers using Roadmap Epigenomics data, and a complete set of source files for download and local analysis. Older versions available: v3, v2, v1.

Build Query Set Options Documentation

Use one of the three methods below to enter a set of variants. If an r² threshold is specified (see the Set Options tab), results for each variant will be shown in a separate table along with other variants in LD. If r² is set to NA, only queried variants will be shown, together in one table.

Query (comma-delimited list of rsIDs OR a single region as chrN:start-end): rs9271055 or, upload a text file (one refSNP ID per line): Choose File No file chosen or, select a GWAS:

Submit

Query SNP: rs9271055 and variants with $r^2 >= 0.8$

chr	pos (hg38)	LD (r²)	LD (D')	variant	Ref	Alt	1	FR eq	AMR freq	A SN freq	EUR freq	SiPhy cons	Promoter histone marks	Enhancer histone marks	DNAse	Proteins bound	Motifs changed	NHGRI/EBI GWAShits	GRA SP QTL hits	Selected eQTL hits	GENCODE genes	dbSNP func annot
6	32602082	0.88	0.94	rs9270815	Α	G	0.	83	0.88	0.81	0.85			BLD			HNF4, PPAR			265 hits	12kb 5' of HLA-DRB1	intronic
6	32604152	0.81	0.96	rs4367411	С	Т	0.	79	0.86	0.78	0.84		BLD, FAT	BLD	10 tissues	POL2	Maf,Spz1			263 hits	14kb 5' of HLA-DRB1	intronic
6	32604684	0.91	0.97	rs9270928	G	Т	0.	82	88.0	0.81	0.85		BLD, FAT	BLD, BRN, GI	16 tissues	5 bound proteins				265 hits	15kb 5' of HLA-DRB1	intronic
6	32606132	0.88	0.98	rs9270980	С	Α	0.	82	0.88	0.81	0.84			BLD			Evi-1			264 hits	16kb 5' of HLA-DRB1	intronic
6	32606283	0.95	0.98	rs9270986	Α	С	0.	83	0.89	0.81	0.85			BLD	BLD		Ascl2		34 hits	273 hits	16kb 5' of HLA-DRB1	intronic
6	32606473	0.95	0.98	rs9270994	Т	С	0.	83	0.89	0.81	0.85			BLD	BLD,BLD					265 hits	17kb 5' of HLA-DRB1	
6	32606597	0.94	0.97	rs9270997	G	Α	0.	83	0.89	0.81	0.85			BLD	BLD		FAC1,Pou1f1,STAT			265 hits	17kb 5' of HLA-DRB1	
6	32607592	1	1	rs9271055	G	Т	0.	83	0.88	0.81	0.85		BLD	BLD	5 tissues	BATF,EGR1,NFKB	4 altered motifs		4 hits	299 hits	18kb 5' of HLA-DRB1	
6	32607601	1	1	rs9271056	Т	С	0.	83	0.88	0.81	0.85		BLD	BLD	5 tissues	BATF,EGR1,NFKB	BDP1,MIF-1,Myf			265 hits	18kb 5' of HLA-DRB1	
6	32607767	0.97	0.99	rs9271061	Α	Т	0.	83	0.89	0.81	0.85		BLD	ESC, BLD, FAT	BLD,BLD,BLD	5 bound proteins	Hoxa13,Hoxb13			265 hits	18kb 5' of HLA-DRB1	
6	32607798	0.94	0.99	rs9271062	Т	Α	0.	83	0.89	0.81	0.85		BLD	ESC, BLD, FAT	4 tissues	5 bound proteins	STAT			267 hits	18kb 5' of HLA-DRB1	
6	32607842	0.82	0.96	rs9271065	С	G	0.	83	0.94	0.88	0.87		BLD	BLD, FAT	4 tissues	4 bound proteins				228 hits	18kb 5' of HLA-DRB1	
6	32608299	0.8	0.97	rs9271080	С	Т	0.	79	0.86	0.78	0.83		BLD	BLD	BLD,BLD	NFKB,TBP	HNF1,Ncx			264 hits	18kb 5' of HLA-DRB1	
6	32608309	0.81	0.98	rs9271082	Т	С	0.	79	0.86	0.77	0.83		BLD	BLD	BLD,BLD	NFKB,TBP	Pax-6			229 hits	18kb 5' of HLA-DRB1	
6	32608375	0.86	0.98	rs9271085	Т	С	0.	82	0.88	0.80	0.84		BLD	BLD	BLD,BLD,BLD	NFKB,TBP	4 altered motifs			264 hits	19kb 5' of HLA-DRB1	
6	32608564	0.9	0.95	rs9271093	G	Α	0.	82	0.88	0.81	0.85		BLD	BLD	5 tissues	CTCF,NFKB,TBP	6 altered motifs			263 hits	19kb 5' of HLA-DRB1	
6	32609754	0.8	0.9	rs9271152	Т	G	0.	83	0.88	0.81	0.86		5 tissues	11 tissues	16 tissues	6 bound proteins				265 hits	18kb 5' of HLA-DQA1	

Advantage

- It was developed to systematically mine chromatin state data, along with conservation data and regulatory motif alterations.
- It uses Gtex , Encode databases in backend.
- Most importantly, it gives motif based regulatory impact of SNPs

chr	pos (hg38)	LD (r ²)	LD (D')	variant	Ref	Alt	AFR freq	AMR freg	A SN freg	EUR frea	SiPhy cons	Promoter histone marks	Enhancer histone marks	DNAse	Proteins bound	Motifs changed	GRI/EBI VAShits	GRA SP QTL hits	Selected eQTL hits	GENCODE genes	dbSNP func annot
6	32602082	0.88	0.94	rs9270815	А	G	0.83	0.88	0.81	0.85	Cono		BLD		bound	HNF4,PPAR		into	265 hits	12kb 5' of HLA-DRB1	intronic
6	32604152	0.81	0.96	rs4367411	С	Т	0.79	0.86	0.78	0.84		BLD, FAT	BLD	10 tissues	POL2	Maf,Spz1			263 hits	14kb 5' of HLA-DRB1	intronic
6	32604684	0.91	0.97	rs9270928	G	т	0.82	0.88	0.81	0.85		BLD, FAT	BLD, BRN, GI	16 tissues	5 bound proteins				265 hits	15kb 5' of HLA-DRB1	intronic
6	32606132	0.88	0.98	<u>rs9270980</u>	С	Α	0.82	0.88	0.81	0.84			BLD			Evi-1			264 hits	16kb 5' of HLA-DRB1	intronic
6	32606283	0.95	0.98	rs9270986	Α	С	0.83	0.89	0.81	0.85			BLD	BLD		Ascl2		34 hits	273 hits	16kb 5' of HLA-DRB1	intronic
6	32606473	0.95	0.98	rs9270994	Т	С	0.83	0.89	0.81	0.85			BLD	BLD,BLD					265 hits	17kb 5' of HLA-DRB1	
6	32606597	0.94	0.97	<u>rs9270997</u>	G	Α	0.83	0.89	0.81	0.85			BLD	BLD		FAC1,Pou1f1,STAT			265 hits	17kb 5' of HLA-DRB1	
6	32607592	1	1	<u>rs9271055</u>	G	Т	0.83	0.88	0.81	0.85		BLD	BLD	5 tissues	BATF,EGR1,NFKB	4 altered motifs		4 hits	299 hits	18kb 5' of HLA-DRB1	
6	32607601	1	1	rs9271056	Т	С	0.83	0.88	0.81	0.85		BLD	BLD	5 tissues	BATF,EGR1,NFKB	BDP1,MIF-1,Myf			265 hits	18kb 5' of HLA-DRB1	
6	32607767	0.97	0.99	rs9271061	Α	Т	0.83	0.89	0.81	0.85		BLD	ESC, BLD, FAT	BLD,BLD,BLD	5 bound proteins	Hoxa13,Hoxb13			265 hits	18kb 5' of HLA-DRB1	
6	32607798	0.94	0.99	rs9271062	Т	Α	0.83	0.89	0.81	0.85		BLD	ESC, BLD, FAT	4 tissues	5 bound proteins	STAT			267 hits	18kb 5' of HLA-DRB1	
6	32607842	0.82	0.96	rs9271065	С	G	0.83	0.94	0.88	0.87		BLD	BLD, FAT	4 tissues	4 bound proteins				228 hits	18kb 5' of HLA-DRB1	
6	32608299	0.8	0.97	<u>rs9271080</u>	С	Т	0.79	0.86	0.78	0.83		BLD	BLD	BLD,BLD	NFKB,TBP	HNF1,Ncx			264 hits	18kb 5' of HLA-DRB1	
6	32608309	0.81	0.98	<u>rs9271082</u>	Т	С	0.79	0.86	0.77	0.83		BLD	BLD	BLD,BLD	NFKB,TBP	Pax-6			229 hits	18kb 5' of HLA-DRB1	
6	32608375	0.86	0.98	rs9271085	Т	С	0.82	0.88	0.80	0.84		BLD	BLD	BLD,BLD,BLD	NFKB,TBP	4 altered motifs			264 hits	19kb 5' of HLA-DRB1	
6	32608564	0.9	0.95	rs9271093	G	Α	0.82	0.88	0.81	0.85		BLD	BLD	5 tissues	CTCF,NFKB,TBP	6 altered motifs			263 hits	19kb 5' of HLA-DRB1	
6	32609754	0.8	0.9	<u>rs9271152</u>	Т	G	0.83	0.88	0.81	0.86		5 tissues	11 tissues	16 tissues	6 bound proteins				265 hits	18kb 5' of HLA-DQA1	

SNP causes 4 altered motifs due to change in nucleotide from G to T

RegulomeDB

Access to the database at <u>http://RegulomeDB.org/</u>

	Download	About Help
RegulomeDB		
v 1.1 TRY NEW BETA SITE Enter dbSNP IDs, 0-based coordinates, BED files, VCF files, GFF3 files (hg19).		
Submit		
Use RegulomeDB to identify DNA features and regulatory elements in non-coding regions of the human genome by entering	7	
dbSNP IDs Single nucleotides A chromosomal region		
Enter dbSNP ID(s) (example) or upload a list of dbSNP IDs to identify DNA features and regulatory elements that contain the coordinate of the SNP(s).		
A project of the Center for Genomics and Personalized Medicine at Stanford University.		
RegulomeDB (TM) Copyright 92011 The Board of Trustees of Leland Stanford Junior University. Permission to use the information contained in this database was given by the researchers/inst Users of the database are solely responsible for compliance with any copyright restrictions, including those applying to the author abstracts. Documents from this server are provided 'AS-IS' w RegulomeDB project at Stanford University is supported by a Genome Research Resource Grant from the US National Human Genome Research Institute, part of the US National Institutes of	titutes who contributed or publ vithout any warranty, expresse f Health.	ished the information. d or implied. The

Input Files Format

 The integrated database is fully searchable using common variant formats (VCF, BED, GFF3, rsIDs) and through file upload of the same formats.

. . .

rsID FORMAT

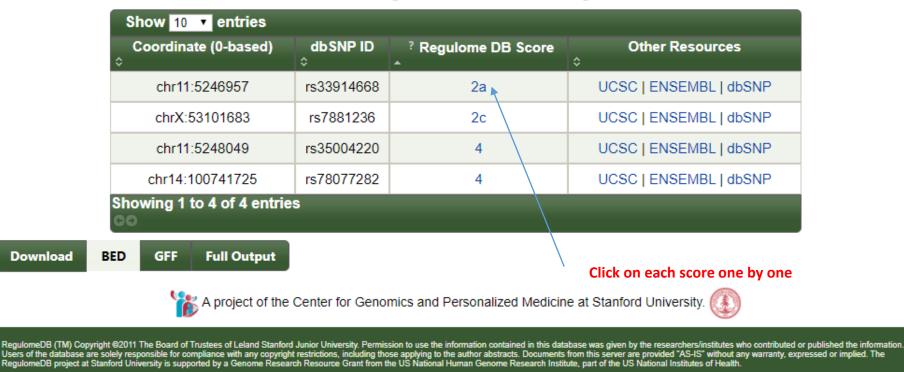
rs33914668 rs35004220 rs78077282 rs7881236

BED FORMAT

POS	REF	ALT	INFO
100	G	Α	AC=10;AF=0.05
200	С	Т	AC=40;AF=0.20
300	G	Т	AC=20;AF=0.10
	100 200	100 G 200 C	200 C T

VCF FORMAT

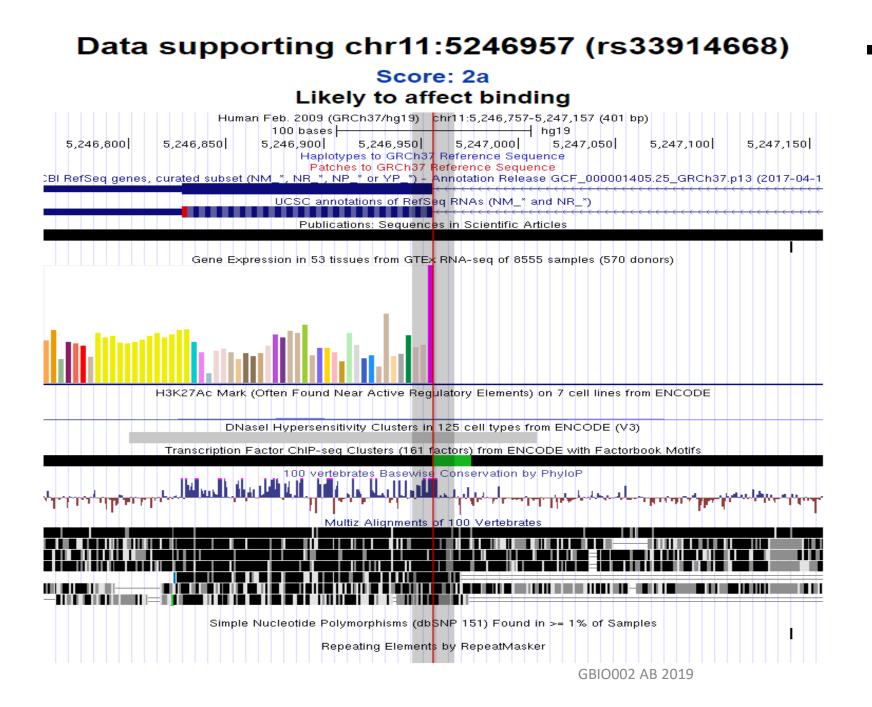
	~	-	-	-	-
1	#Chromosome	Start	End	SNP Id	Allele
2	chr1	174	175	1	T/C
3	chr1	5073	5074	2	T/G
4	chr1	5635	5636	3	T/C
5	chr1	6240	6241	4	T/C
6	chr1	39160	39161	5	T/C
7	chr1	50111	50112	6	C/T
8	chr1	126968	126969	7	C/A
9	chr1	223601	223602	8	C/T
10	chr1	226507	226508	9	T/A
11	chr1	251874	251875	10	C/T
12	chr1	523060	523061	11	С/Т


Output Files

 The initial results table provides a list of the coordinates of the variants, a dbSNP rsID (if it exists), a score assigned by method, and links to external resources for each variant

 The list is sorted by our classification scheme, with the SNVs most likely to be functional listed first. This list of SNVs is also downloadable by the user for their own analysis.

Summary of SNP analysis



 This display includes six major categories: Protein Binding, Motifs, Chromatin Structure, eQTLs, Histone Modifications, and Related Data (which includes gene information and other manual annotations).

	Table	1.	Database	content
--	-------	----	----------	---------

Data type	Types	Features	Genomic coverage (bp)
Transcription factor ChIP-seq (ENCODE)	495 conditions/cell lines	7,721,822	230,795,743
Transcription factor ChIP-seq (non-ENCODE)	32 conditions/cell lines	397,534	140,534,725
Transcription factor ChIP-exo	1 condition	35,161	2,604,066
Histone modifications	284 conditions/cell lines/marks	23, 055, 241	2,805,205,184
DNase I hypersensitive sites	114 conditions/cell lines	20,710,098	614,973,579
FAIRE sites	25 conditions/cell lines	4,816,196	476,386,909
DNase I footprints	50 cell lines	128,266,803	178,722,370
Predicted binding (PWMs)	1158 motifs	239,713,973	1,151,732,122
eQTLs	142,945 SNPs	142,945	142,945
dsQTLs	6069 SNPs	6069	6069
Manual annotations	6 genomic regions	282	11,607
VISTA enhancers	1448 enhancers	1325	1,658,146
Validated SNPs affecting binding	855 SNPs	855	855

Sources of data currently included in RegulomeDB. (Features) Specific entries in the database. (Genomic coverage) Total unique base pairs covered by each data type.

Each of these categories provides detailed information about the transcription factor, cell line, and a literature of the source information to provide the user with direct access for addressing their hypothesis.

Motifs				Filter:	
Method	Location ≎	Motif ≎	? Cell Type	PWM ≎	Reference ≎
Footprinting	chr11:52469565246974	Tal1::Gata1	K562	Le AATAA	21106904
PWM	chr11:52469565246974	Tal1::Gata1		Le ATTA	18006571

Result indicate SNP is present in Gata Motif which could have regulatory impact on the gene expression

Histone mod	lifications		Filter:						
Method	Location ≎	Chromatin State ≎	Tissue Group ≎	Tissue ≎	Reference ≎				
ChromHMM	chr11:46482005617400	Quiescent/Low	Digestive	Colonic Mucosa	REMC				
ChromHMM	chr11:46484005255400	Quiescent/Low	Thymus	Thymus	REMC				
ChromHMM	chr11:46586005617400	Quiescent/Low	Digestive	Rectal Mucosa Donor 29	REMC				
ChromHMM	chr11:46874005545600	Quiescent/Low	Digestive	Rectal Mucosa Donor 31	REMC				
ChromHMM	chr11:47040005530600	Quiescent/Low	ES-deriv	H9 Derived Neuronal Progenitor Cultured Cells	REMC				
ChromHMM	chr11:47424005617400	Quiescent/Low	Sm. Muscle	Colon Smooth Muscle	REMC				
ChromHMM	chr11:47726005273800	Quiescent/Low	Blood & T-cell	Primary T helper memory cells from peripheral blood 2	REMC				
ChromHMM	chr11:48152005351800	Quiescent/Low Blood & T-ce		Primary T helper memory cells from peripheral blood 1	REMC				
ChromHMM	chr11:48204005617400	Quiescent/Low	Digestive	Stomach Mucosa	REMC				
ChromHMM	chr11:48598005371600	Quiescent/Low	Blood & T-cell	Primary T CD8+ naive cells from peripheral blood	REMC				
ChromHMM	chr11:48850005272600	Quiescent/Low	Other	Placenta Amnion	REMC				
ChromHMM	chr11:50860005617800	Quiescent/Low	Blood & T-cell	Primary T cells effector/memory enriched from peripheral blood	REMC				
ChromHMM	chr11:50808005605600	Quiescent/Low	Blood & T-cell	Primary T CD8+ memory cells from peripheral blood	REMC				
	Result indic		chromat AB 2019	in regulatory imp	act				

Related data					
Method ^	Location ≎	? Cell Type ≎	Annotation	Reference ≎	
Transcript_expression_evidence	chr11:52469575246958	Cho	Canonical Three Prime Splice Site	2987809	

Result indicates SNP has expression in cho cell type and affect Splice site

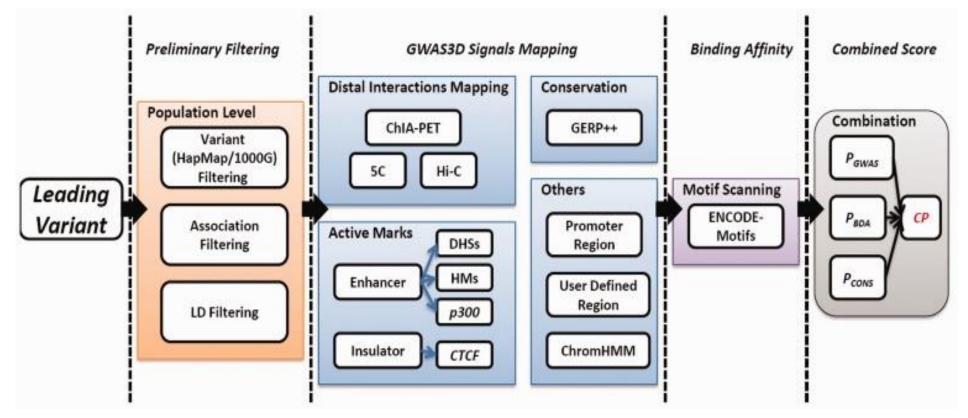
Advantage of RegulomeDB

- An integrated database to quickly generate prioritized hypotheses for the function of variants affecting both coding and noncoding regions in a genome by combining a large array of data sources into a single, integrated database.
- In particular, it include extensive information on annotated and computed regulatory elements in the human genome.
- Access to this novel approach via a simple and straightforward interface allows for easy query submission, and the scoring system provides for instant classification of significant variants.
- In addition, the SNV summary page will allow a user to quickly form a hypothesis as to the true functional consequence of a variant.
- While our examples deal with single nucleotide variants only, the database can also be used to annotate insertions and deletions.

Comparision of HaploReg and RegulomeDB

 Ward and Kellis (2012) published the HaploReg database which aims to provide a similar annotation by providing an intersect of SNVs with chromatin state (Ernst and Kellis 2010).

- RegulomeDB database provides additional information well beyond this by prioritizing SNVs within general regulatory regions based on specific TF, chromatin, eQTL, and PWM information.
- Furthermore, RegulomeDB allow for a query of personal SNPs which account for a large proportion of variation in the population.


How many of these SNPs alter motifs sequence ?

rs4468290 rs11201609

GWAS3D/GWAS4D

 GWAS3D: detecting human regulatory variants by integrative analysis of genomewide associations, chromosome interactions and histone modifications

http://mulinlab.tmu.edu.cn/gwas4d/gwas4d/gwas4d

From GWAS to Regulatory Function

 Majority of GWAS risk loci localize to the noncoding genomic region with gene regulatory signal, suggesting that most trait/disease casual SNPs exert their phenotypic effects by altering gene expression. GWAS4D systematically analyzes GWAS summary data and identify context-specific regulatory variants by integrating latest multidimensional functional genomics resources and our recently published algorithms.

Context-dependent Prediction

 By incorporating roadmap 127 tissue/cell type-specific epigenomes data, GWAS4D uses joint likelihood framework to measure the regulatory probability of genetic variants in a context-dependent manner. It also estimates possible altered TFBSs using large-scale motif collections and annotates non-coding variant with comprehensive functional predictions.

Link Variant to Target

Connecting non-coding variant to their gene targets under particular chromatin organization is crucial to understand variant regulatory mechanism. GWAS4D uniformly processes Hi-C data and reports significant interactions at 5kb resolution across tissues/cell types of multiple human organs and different development stages. It also equips a highly interactive visualization function for variant-target interaction.

Comparision with RegulomeDB and HaploReg

- Compared with recent software and databases such as HaploReg and RegulomeDB, GWAS3D integrates more features and can be used in many scenarios.
- User can identify the most probable functional variant associated with interesting trait in one risk locus or prioritize the leading variants when given a full list of GWAS result or evaluate the deleteriousness of genetic variants affecting the gene regulation without any prior effect.
- GWAS3D also provides flexible configurations, such as human population, cell type specificity and TF family classification, for users to deal with different aspects of complex disease/trait. For example, user may select a matched cell type/tissue satisfying with a specific phenotype or manually define motifs of interested TFs used in following scanning when considering the tissue specificity of TFs.
- Recently, researchers found that the disease/trait-associated variants are highly related to active chromatin marks in relevant cell types. Therefore, these distinct features will greatly facilitate the discovery of regulatory variants under particular condition.

Comparision with RegulomeDB and HaploReg

- The computational process of our system is real-time, which is different from databases such as HaploReg and RegulomeDB, where the function annotations are pre-computed and stored in the database in advance.
- Therefore, it can dynamically deal with the genetic variants input by users with maximum flexibility.
- Despite large computational burden in the background when LD is considered, our system can finish the job of a meta GWAS data set (thousands of variants with moderate GWAS significance, $P < 1.0 \times 10^{-5}$) within a few hours even with LD from the 1000 Genomes Project. It will be much quicker when using HapMap LD.
- To exploit the regulatory properties of personal genomics data, GWAS3D accepts VCF-like format and can evaluate the deleteriousness of rare/novel variation altering gene regulation associated with personalized trait.

List of Tools

Tools	Format	GWAS summary statistics	LD	Functional consequences on genes	Regulatory elements	eQTLs	3D chromatin interactions	Prioritize SNPs	Map SNPs to genes	Gene expression	Pathways and gene sets	Priorit genes
LD calculation	า											
PLINK	St	x	x									
Variant annot	tations											
ANNOVAR	St			x	x			x	x			
VEP	St			x	x			x	x			
SCAN	Web		x			x		x		x		
ReglomeDB	Web				x	x		x				
HaploReg	Web		x		x	x		x				
Gene-based to	est/Gene-s	set analyses										
VEGAS	St	x							x			x
MAGMA	St	x							x		x	х
Pascal	St	x							x		x	x
MAGENTA	St	x							x		x	x
INRICH	St	x							х		x	
DEPICT	St	x							x		x	х
Visualization	tools											
LocusZoom	St/Web	x										
LocusTrack	St/Web	x			x							
3D genome browser	Web						х					
EUMA												
	Web	x	x	x	x	x	x	x	x	x	x	x

As discussed before

Analyses and visualization

View this Article Submit to PLOS Get E-Mail Alerts Contact Us

PLoS Comput Biol. 2015 Apr; 11(4): e1004219. Published online 2015 Apr 17. doi: <u>10.1371/journal.pcbi.1004219</u> PMCID: PMC4401657 PMID: 25885710

MAGMA: Generalized Gene-Set Analysis of GWAS Data

Christiaan A. de Leeuw, ^{1, 2,*} Joris M. Mooij, ³ Tom Heskes, ² and Danielle Posthuma ^{1, 4}

Hua Tang, Editor

PLoS

Comput Biol

PLoS

Comput Biol

► Author information ► Article notes ► Copyright and License information Disclaimer

This article has been cited by other articles in PMC.

Associated Data

- Supplementary Materials
- Data Availability Statement

Abstract

Go to: 🕑

By aggregating data for complex traits in a biologically meaningful way, gene and gene-set analysis constitute a valuable addition to single-marker analysis. However, although various methods for gene and gene-set analysis currently exist, they generally suffer from a number of issues. Statistical power for most methods is strongly affected by linkage disequilibrium between markers, multi-marker associations are often hard to detect, and the reliance on permutation to compute p-values tends to make the analysis computationally very expensive. To address these issues we have developed MAGMA, a novel tool for gene and gene-set analysis. The gene analysis is based on a multiple regression model, to provide better statistical performance. The gene-set analysis is built as a separate layer around the gene analysis for additional flexibility. This gene-set analysis also uses a regression structure to allow generalization to analysis of continuous properties of genes and simultaneous analysis of multiple gene sets and other gene

Gene analysis

- The gene analysis in MAGMA is based on a multiple linear principal components regression model, using an F-test to compute the gene pvalue.
- This model first projects the SNP matrix for a gene onto its principal components (PC), pruning away PCs with very small eigenvalues, and then uses those PCs as predictors for the phenotype in the linear regression model.
- This improves power by removing redundant parameters, and guarantees that the model is identifiable in the presence of highly collinear SNPs.

Gene-set analysis

• To perform the gene-set analysis, for each gene g the gene p-value p_g computed with the gene analysis is converted to a Z-value $z_g = \Phi^{-1}(1 - p_g)$, where Φ^{-1} is the probit function. This yields a roughly normally distributed variable Z with elements z_g that reflects the strength of the association each gene has with the phenotype, with higher values corresponding to stronger associations.

 Gene based and Gene set based analysis are included as feature of FUMA webserver

FUMA : interrogation of GWAS

nature communications

Article | Open Access | Published: 28 November 2017

Functional mapping and annotation of genetic associations with FUMA

Kyoko Watanabe, Erdogan Taskesen, Arjen van Bochoven & Danielle Posthuma 🖂

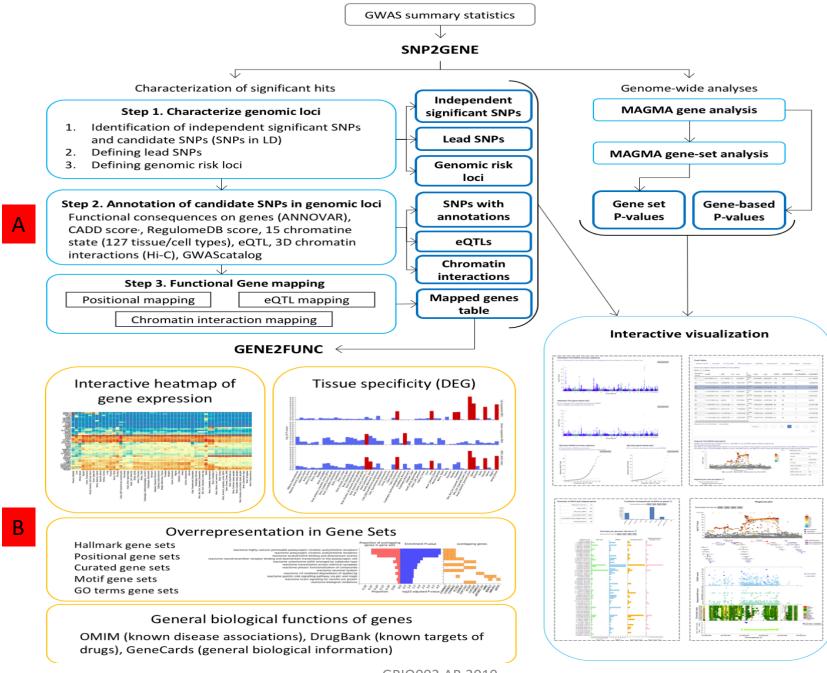
Nature Communications8, Article number: 1826 (2017)Cite this article9563Accesses170Citations23AltmetricMetrics

Abstract

A main challenge in genome-wide association studies (GWAS) is to pinpoint possible causal variants. Results from GWAS typically do not directly translate into causal variants because the majority of hits are in non-coding or intergenic regions, and the presence of linkage disequilibrium leads to effects being statistically spread out across multiple variants. Post-GWAS annotation facilitates the selection of most likely causal variant(s). Multiple resources are available for post-GWAS annotation, yet these can be time consuming and do not provide integrated visual aids for data interpretation. We, therefore, develop FUMA: an integrative web-based platform using information from multiple biological resources to facilitate functional annotation of GWAS results, gene prioritization and interactive visualization. FUMA accommodates positional, expression quantitative trait loci (eQTL) and chromatin interaction mappings, and provides gene-based, pathway and tissue enrichment results. FUMA results directly aid in generating hypotheses that are testable in functional experiments aimed at proving causal relations. GBIO002 AB 2019

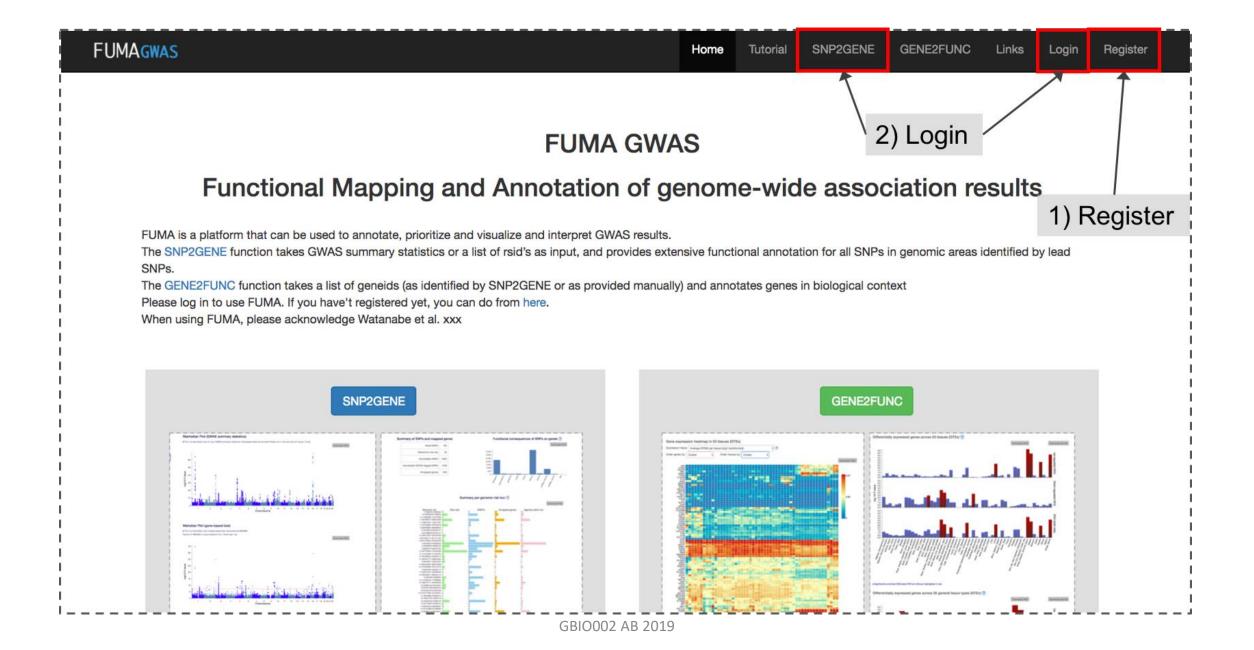
http://fuma.ctglab.nl/

FUMA : Muti Steps


- The main purpose of FUMA is to use functional, biological information to prioritize genes based on GWAS outcomes.
- FUMA consists of two separate process; SNP2GENE and GENE2FUNC.
- To annotate and prioritize SNPs and genes from your GWAS summary statistics, go to SNP2GENE which compute LD structure, annotates functions to SNPs, and prioritize candidate genes.
- You can then use the prioritized genes as input to GENE2FUNC to check expression patterns and shared molecular functions between genes. GENE2FUNC can also be used for any list of pre-selected genes (i.e. created outside of SNP2GENE).

FUMA : Discuss

https://www.nature.com/articles/s41467-017-01261-5


Ready to use FUMA Webserver !!!

GBIO002 AB 2019

С

GBIO002 AB 2019

2. Submit new job at SNP2GENE

A new job stats with a GWAS summary statistics file. A variety of file formats are supported. Please refer the section of Input files for details. If your input file is an output from PLINK, SNPTEST or METAL, you can directly submit the file without specifying column names.

The input GWAS summary statistics file could be a subset of SNPs (e.g. only SNPs which are interesting in your study), but in this case, MAGMA results are not relevant anymore.

Optionally, if you would like to pre-specify lead SNPs, you can upload a file with 3 columns; rsID, chromosome and position. FUMA will then use these SNPs to select LDrelated SNPs for annotation and mapping, instead of using lead SNPs identified by FUMA (it requires to disable an option for "identify additional lead SNPs").

In addition, if you are interested in specific genomic regions, you can also provide them by uploading a file with 3 columns; chromosome, start and end position. FUMA will then use these genomic regions to select LD-related SNPs for annotation and mapping, instead of determining the regions itself.

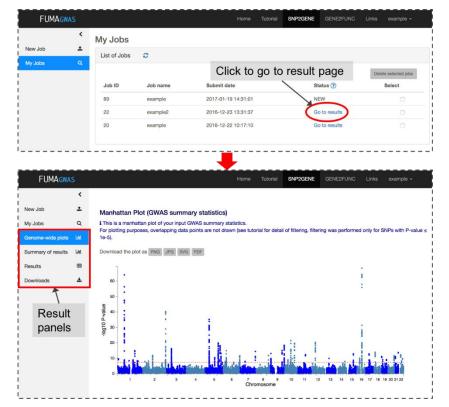
FUMAGWAS		Home	Tutorial	SNP2GENE	GENE2FUNC	Links	example -
< New Job	Upload your GWAS summar	y statistics and set parameters to obtain functional	annotati	ons of the ge	enomic loci as	sociated	I with your trait
My Jobs Q	1. Upload input files						^
Submit new j	ODGWAS summary statistics ⑦	Choose file No file chosen i The maximum file size is 600Mb. Please gzip if your file is bigger than 600Mb. Or Use example input (Crohn's disease, Franke et al. 2010).	Ø Mand	atory input			
	GWAS summary statistics file columns (?)	i case insensitive Chromosome: Position: rsID: P-value: Risk allele: Other allele: OR:		nal. Please fill as in names.	much as you can. I	t is not ne	cessary to fill

3. Set parameters

- On the same page as where you specify the input files, there are a variety of optional parameters that control the prioritization of genes.
- Please check your parameters carefully. The default settings are to perform identification of independent genome-wide significant SNPs at r² 0.6 and lead SNPs at r² 0.1, to maps SNPs to genes up to 10kb apart.
- To filter SNPs by specific functional annotations and to use eQTL mapping, please change parameters
- If all inputs are valid, 'Submit Job' button will be activated.
 Once you submit a job, this will be listed in My Jobs.

	<					
New Job	٤			atistics and set parameters to o	btain functional annotation	s of the genomic loc
My Jobs	Q	associated with	n your trait			
		1. Upload inpu	t files			~
		2. Parameters	for lead SNPs an	d candidate SNPs identification	1	~
		3-1. Gene Map	pping (positional I	mapping)		~
		3-2. Gene M	lake sur	e all parameter		ion- 🗸
		4. Gene types		red messag	je!!	~
		5. MHC region				~
		6. Title of job s	submission			~
		Submit Job	(Click to Submit	Job	
FUMA	GWAS			Home Tutorial	SNP2GENE GENE2FUNC	Links example -
	<	My Jobs				
New Job	<u>±</u>	List of Jobs	C			
My Jobs	۹					Delete selected jobs
		Job ID	Job name	Submit date	Status ?	Select
		89	example	2017-01-19 14:31:01	NEW	0
		22	example2	2016-12-23 13:31:37	Go to results	Ο
		20	Subm	itted job will ap	pear here	0

4. Check your results


After you submit files and parameter settings, a JOB has the status NEW which will be updated to QUEUES to RUNNING. Depending on the number of significant genomic regions, this may take between a couple of minutes and an hour. Once a JOB has finished running, you will receive an email. Unless an error occurred during the process, the email includes the link to the result page (this again requires login). You can also access to the results page from My Jobs page.

The result page displays 4 additional side bars.

Genome-wide plots: Manhattan plots and Q-Q plots for GWAS summary statistics and gene-based test by MAGMA, results of MAGMA gene-set analysis and tissue expression analysis.

Summary of results: Summary of results such as the number of lead and LD-related SNPs, and mapped genes for overall and per identified genomic risk locus. Results: Tables of lead SNPs, genomic risk loci, candidate SNPs with annotations, eQTLs (only when eQTL mapping is performed), mapped genes and GWAS-catalog reported SNPs matched with candidate SNPs. You can also create interactive regional plots with functional annotations from this tab.

Downloads: Download all results as text files.

1. Input files

Parameter	Mandatory	Description	Туре	Default
GWAS summary statistics	Mandatory	Input file of GWAS summary statistics. Plain text file or zipped or gzipped files are acceptable. The maximum file size which can be uploaded is 600Mb. As well as full results of GWAS summary statistics, subset of results can also be used. e.g. If you would like to look up specific SNPs, you can filter out other SNPs. Please refer to the Input files section for specific file format.	File upload	none
Pre-defined lead SNPs	Optional	Optional pre-defined lead SNPs. The file should have 3 columns, rsID, chromosome and position.	File upload	none
Identify additional lead SNPs	Optional only when predefined lead SNPs are provided	If this option is CHECKED, FUMA will identify additional independent lead SNPs after defining the LD block for pre-defined lead SNPs. Otherwise, only given lead SNPs and SNPs in LD of them will be used for further annotations.	Check	Checked
Pre-defined genetic region	Optional	Optional pre-defined genomic regions. FUMA only looks at provided regions to identify lead SNPs and SNPs in LD of them. If you are only interested in specific regions, this option will increase the speed of process.	File upload	none

FUMA : Parameter detail

GBIO002 AB 2019

Parameter	Mandatory	Description	Туре	Default	Direction
Sample size (N)	Mandatory	The total number of individuals in the GWAS or the number of individuals per SNP. This is only used for MAGMA to compute the gene-based P-values. For total sample size, input should be an integer. When the input file of GWAS summary statistics contains a column of sample size per SNP, the column name can be provided in the second text box. i When column name is provided, please make sure that the column only contains integers (no float or scientific notation). If there are any float values, they will be rounded up by FUMA.	Integer or text	none	Does not affect any candidates
Maximum lead SNP P-value (≤)	Mandatory	FUMA identifies lead SNPs with P-value less than or equal to this threshold and independent from each other.	numeric	5e-8	lower: decrease #lead SNPs. higher: increase #lead SNPs.
Maximum GWAS P-value (\leq)	Mandatory	This is the P-value threshold for candidate SNPs in LD of independent significant SNPs. This will be applied only for GWAS-tagged SNPs as SNPs which do not exist in the GWAS input but are extracted from 1000 genomes reference do not have P-value.	numeric	0.05	higher: decrease #candidate SNPs. lower: increase #candidate SNPs.
r^2 threshold for independent significant SNPs (2)	Mandatory	The minimum r^2 for defining independent significant SNPs, which is used to determine the borders of the genomic risk loci. SNPs with $r^2 \ge$ user defined threshold with any of the detected independent significant SNPs will be included for further annotations and are used fro gene prioritisation.	numeric	0.6	higher: decrease #candidate SNPs and increase #independent significant SNPs. lower: increase #candidate SNPs and decrease #independent significant SNPs.
2nd r ² threshold for lead SNPs (≥)	Mandatory	The minimum r^2 for defining lead SNPs, which is used for the second clumping (clumping of the independent significant SNPs). Note that when this threshold is same as the first r^2 threshold, lead SNPs are identical to independent significant SNPs.	numeric	0.1	higher: increase #lead SNPs. lower: decrease #lead SNPs.
Reference panel	Mandatory	The reference panel to compute r ² and MAF. Five populations from 1000 genomes Phase 3 and 3 versions of UK Biobank are available. See here for details.	Select	1000G Phase EUR	-
Include variants from reference panel	Mandatory	If Yes, all SNPs in strong LD with any of independent significant SNPs including non-GWAS-tagged SNPs will be included and used for gene mapping.	Yes/No	Yes	-
Minimum MAF (2)	Mandatory	The minimum Minor Allele Frequency to be included in annotation and prioritisation. MAF is based the user selected reference panel. This filter also applies to lead SNPs. If there is any pre-defined lead SNPs with MAF less than this threshold, those SNPs will be skipped. When this value is 0 (by default), SNPs with MAF>0 are considered.	numeric	0	higher: decrease #candidate SNPs. lower: increase #candidate SNPs.
Maximum distance of LD blocks to merge (≤)	Mandatory	This is the maximum distance between LD blocks of independent significant SNPs to merge into a single genomic locus. When this is set at 0, only physically overlapping LD blocks are merged. Defining genomic loci does not affect identifying which SNPs fulfil selection criteria to be used for annotation and prioritization. It will only result in a different number of reported risk loci, which can be desired when certain loci are partly overlapping or physically very close. GBIO002_AB_2019	numeric	250kb	higher: decrease #genomic loci. lower: increase #genomic loci.

3.1 Positional mapping

Parameter	Mandatory	Description	Туре	Default	Direction
Positional mapping	Optional	Check this option to perform positional mapping. Positional mapping is based on ANNOVAR annotations by specifying the maximum distance between SNPs and genes or based on functional consequences of SNPs on genes. These parameters can be specified in the option below.	Check	Checked	-
Distance to genes or functional consequences of SNPs on genes to map	Mandatory if positional mapping is activated.	Positional mapping criterion either map SNPs to genes based on physical distances or functional consequences of SNPs on genes. When maximum distance is provided SNPs are mapped to genes based on the distance given the user defined maximum distance. Alternatively, specific functional consequences of SNPs on genes can be selected which filtered SNPs to map to genes. Note that when functional consequences are selected, all SNPs are locating on the gene body (distance 0) except upstream and downstream SNPs which are up to 1kb apart from TSS or TSE. i When the maximum distance is set at > 0kb and < 1kb all upstream and downstream SNPs are included since the actual distance is not provided by ANNOVAR. Therefore, the maximum distance > 0kb and < 1kb is same as the maximum distance 1 kb. i For SNPs which are locating on a genomic region where multiple genes are overlapped, ANNOVAR has its own prioritization criteria to report the most deleterious function. For those SNPs, only prioritized annotations are used.	Integer / Multiple selection	Maximum distance 10 kb	

3.2 eQTL mapping

Parameter	Mandatory	Description	Туре	Default	Direction
eQTL mapping	Optional	Check this option to perform eQTL mapping. eQTL mapping will map SNPs to genes which likely affect expression of those genes up to 1 Mb (cis-eQTL). eQTLs are highly tissue specific and tissue types can be selected in the following option. eQTL mapping can be used together with positional mapping.	Check	Unchecked	-
Tissue types	Mandatory if eQTL mapping is CHECKED	All available tissue types with data sources are shown in the select boxes. From FUMA v1.3.0, GTEx v7 became available but GTEx v6 are kept available. Therefore, when "all" is selected, both GTEx v6 and v7 are used for mapping. For detail of eQTL data resources, please refer to the eQTL section in this tutorial.	Multiple selection	none	-
eQTL maximum P- value (≤)	Optional	The P-value threshold of eQTLs. Two options are available, Use only significant snp-gene pairs or nominal P-value threshold. When Use only significant snp-gene pairs is checked, only eQTLs with FDR ≤ 0.05 will be used. Otherwise, defined nominal P-value is used to filter eQTLs. i Some of eQTL data source only contained eQTLs with a certain FDR threshold. Please refer to the eQTLs section for details of each data sources.	Check / Numeric	Checked / 1e-3	lower: increase #eQTLs and #mapped genes. higher: decrease #eQTLs and #mapped genes.

3.3 Chromatin interaction mapping

Parameter	Mandatory	Description	Туре	Default	Direction
chromatin interaction mapping	Optional	Check this option to perform chromatin interaction mapping.	Check	Unchecked	-
Builtin chromatin interaction data	Optional	Build in chromatin interaction data can be selected in this option. Details of available build in data are available in the Chromatin interactions section in this tutorial.	Multiple selection	none	-
Custom chromatin interaction matrices	Optional	In addition to build in chromatin interaction data, user can upload custom data. The data should be pre-computed chromatin loops with significance (ideally FDR but another score can be used, see the Chromatin interactions section for details). The file should be gzipped and named as "(name-of-data).btt.gz". Multiple files can be uploaded. For each data, user can also provide data type, such as Hi-C, ChIA-PET or C5 which is not mandatory but will be used in the result table and regional plot. The file format is described in the Chromatin interactions section in this tutorial. A Please avoid uploading more than one file with identical file names. In that case, the files are over-written by the last uploaded one.	File upload (multiple)	none	-
FDR threshold (≤)	Mandatory if chromatin interaction mapping is CHECKED	FDR threshold for significant loops. The default value is set at 1e- 6 which is suggested by Schmitt et al. (2016) 1 This threshold will be applied both build in and user uploaded chromatin loops.	Numeric	1e-6	lower: increase #chromatin interactions and #mapped genes. higher: decrease #chromatin interactions and #mapped genes.
Promoter region window	Mandatory if chromatin interaction mapping is CHECKED	Promoter regions of genes to map in significantly interacting regions. The input format should be "(upstream bp)-(donwstream bp)" from transcription start site (TSS). For example, the default "260-500" means that promoter regions are defined as 250bp upstream and 500bp downstream of the TSS. By the chromatin interaction mapping, genes whose user defined promoter regions are overlapped with the significantly interacting regions will be mapped. Please refer the Chromatin interactions section in this tutorial for details.	text	250-500	lower: increase #mapped genes. smaller: decrease #mapped genes.
Annotate enhancer/promoter regions (Roadmap 111 epigenomes)	Optional	Predicted enhancer and promoter regions from Roadmap epigenomics project for 111 epigenomes can be annotated to significantly interaction regions. If any epigenome is not selected, enhancer and promoter regions are not annotated. Annotated enhancer/promoter regions can be used to filter SNPs and mapped genes in the next two options.	Multiple selection	none	-
Filter SNPs by enhancers	Optional	This option is only available when at least one epigenome is selected in the previous option to annotate enhancer/promoter regions. When this option is checked, SNPs are filtered on such that overlap with one of the annotated enhancer regions for chromatin interaction mapping. Please refer the Chromatin interactions section in this tutorial for details.	Check	Unchecked	-
Filter genes by promoters	Optional	This option is only available when at least one epigenome is selected in the previous option to annotate enhancer/promoter regions. When this option is checked, chromatin interaction mapping is only performed for genes whose promoter regions are overlap with one of the annotated promoter regions. Please refer the Chromatin interactions section in this tutorial for details.	Check	Unchecked	-

3.4 Functional annotation filtering

Positional, eQTL and chromatin interaction mappings have the following options separately, for the filtering of SNPs based on functional annotation. All filters below apply to selected SNPs in LD with independent significant SNPs that are used to prioritize genes and influence the number of SNPs that are mapped to genes, and consequently influence the number of prioritized genes.

Parameter	Mandatory	Description	Туре	Default	Direction
CADD score	Optional	Check this if you want to perform filtering of SNPs by CADD score. This applies to selected SNPs in LD with independent significant SNPs that are used to prioritize genes. CADD score is the score of deleteriousness of SNPs predicted by 63 functional annotations. 12.37 is the threshold to be deleterious suggested by Kicher et al (2014). Please refer to the original publication for details from links.	Check	Unchecked	
Minimum CADD score (2)	Mandatory if CADD score is checked	The higher the CADD score, the more deleterious.	numeric	12.37	higher: less SNPs will be mapped to genes. lower: more SNPs will be mapped to genes.
RegulomeDB score	Optional	Check if you want to perform filtering of SNPs by RegulameDB score. This applies to selected SNPs in LD with independent significant SNPs that are used to prioritize genes. RegulameDB score is a categorical score representing regulatory functionality of SNPs based on eQTLs and chromatin marks. Please refer to the original publication for details from links.	Check	Unchecked	-
Minimum RegulomeDB score (2)	Mandatory if RegulatedB score is checked	RegulareaDB score is a categorical score from 1a to 7) Score 1a means that those SNPs are most likely affecting regulatory elements and 7 means that those SNPs do not have any annotations. SNPs are recorded as NA if they are not present in the database. SNPs with NA will not be included for filtering on RegulareaDB score.	string	7	higher: more SNPs will be mapped to genes. lower: less SNPs will be mapped to genes.
15-core chromatin state	Optional	Check if you want to perform filtering of SNPs by chromatin state. This applies to selected SNPs in LD with independent significant SNPs that are used to prioritize genes. The chromatin state represents accessibility of genomic regions (every 200bp) with 15 categorical states predicted by ChromHMM based on 5 chromatin marks for 127 epigenomes.	Check	Unchecked	-
15-core chromatin state tissue/cell types	Mandatory # 15- core chromatin state is checked	Multiple tissue/cell types can be selected from the list.	Multiple selection	none	-
Maximum state of chromatin(s)	Mandatory # 15- core chromatin state is checked	The maximum state to filter SNPs. Between 1 and 15. Generally, between 1 and 7 is open state.	numeric	7	higher: more SNPs will be mapped to genes. lower: less SNPs will be mapped to genes.
Method for 15- core chromatin state filtering	Mandatory if 15- core chromatin state is checked	When multiple tissue/cell types are selected, either any (filtered on SNPs which have state above than threshold in any of selected tissue/cell types), asjerity (filtered on SNPs which have state above than threshold in majority (±50%) of selected tissue/cell type), or all (filtered on SNPs which have state above than threshold in all of selected tissue/cell type).	Selection	any	-
Annotation datasets	Optional	Additional functional annotations can be annotated to candidate SNPs. All available data are regional based annotation (bed file format).	Multiple selection	none	
Annotation filtering method	Mandatory if any of Annotation datasets, is selected.	By default, SNPs are not filtered by the annotations selected in <u>Annotation detauets</u> . To filter SNPs based on the selected annotation, select this options from <u>any</u> (filtered on SNPs which are overlapping with any selected annotations), <u>majority</u> ((filtered on SNPs which are overlapping with majority (250%) of selected annotations), or <u>main</u> (filtered on SNPs which are overlapping with all of selected annotations).	Selection	No filtering	*

4. Gene types

Biotype of genes to map can be selected. Please refer to Ensembl for details of biotypes.

Parameter	Mandatory	Description	Туре	Default
Gene type	Mandatory	Gene type to map. This is based on gene_biotype obtained from BioMart of Ensembl build 85. Please see here for details	Multiple selection.	Protein coding genes.

5. MHC region

The MHC region is often excluded due to its complicated LD structure. Therefore, this option is checked by default. Please uncheck to include MHC region. Note that it doesn't change any results if there is no significant hit in the MHC region.

Parameter	Mandatory	Description	Туре	Default
Exclude MHC region	Optional	Check if you want to exclude the MHC region. The default region is defined as between "MOG" and "COL11A2" genes.	Check	Checked
Options for excluding MHC region	Optional	MHC region can be excluded only from either annotations or MAGMA gene analysis, or from both by selecting this option.	Select	Only from annotations
Extended MHC region	Optional	User specified MHC region to exclude (for extended or shorter region). The input format should be like "25000000-34000000" on hg19.	Text	Null

6. MAGMA analysis

MAGMA gene and gene-set analyses are performed for the input summary statistics by default, but user can also select to omit MAGMA process that reduce the run time of SNP2GENE process. Gene expression data sets for MAGMA gene expression analysis can be also selected from here.

Parameter	Mandatory	Description	Туре	Default
Perform MAGMA	Optional	UNCHECK to SKIP MAGMA analyses.	Check	Checked
MAGMA gene annotation window	Mandatory when MAGMA is active.	The window of the genes to assign SNPs (symmetric). e.g. when 5kb is selected, SNPs within 5kb window of a gene (both side) will be assigned to that gene. The option is available from 0, 5, 10, 15, 20kb window.	Select	0kb from both side of the genes
MAGMA gene expression analysis	Mandatory when MAGMA is active.	Gene expression data sets used for MAGMA gene-property analysis to test positive association between genetic associations and gene expression in a given label.	Select	GTEx v6

Gene expression database used by Fuma

Gene expression data sets

1. GTEx v6

Data source

RNAseq data set was downloaded from http://www.gtexportal.org/home/datasets. Gene level RPKM was used (GTEx_Analysis_v6_RNA-seq_RNA-seq_Cv1.1.8_gene_rpkm.gct.gz).

Pre-process

Primary gene ID was Ensemble ID. In total, 8,555 samples were available. From 56,318 annotated genes, genes were filtered on such that average RPKM per tissue is >1 in at least on of the 53 tissues. This resulted in 28,577 genes. RPKM was winsorized at 50 (replaced RPKM>50 with 50). Then average of log transformed RPKM with pseudocount 1 (log2(RPKM+1)) per tissue (for either 53 detail or 30 general tissues) was used as the covariates conditioning on the average across all the tissues.

2. GTEx v7

Data source

RNAseq data set was downloaded from http://www.gtexportal.org/home/datasets. Gene level TPM was used (GTEx_Analysis_2016-01-15_v7_RNASeQCv1.1.8_gene_rpm.gct.gz).

Pre-process

Primary gene ID was Ensemble ID. In total, 11,688 samples were available. From 56,203 annotated genes, genes were filtered on such that average TPM per tissue is >1 in at least on of the 53 tissues. This resulted in 32,335 genes. TPM was winsorized at 50 (replaced TPM>50 with 50). Then average of log transformed TPM with pseudocount 1 (log2(TPM+1)) per tissue (for either 53 detail or 30 general tissues) was used as the covariates conditioning on the average across all the tissues.

3. BrainSpan

Data source

RNAseq data set was downloaded from http://www.brainspan.org/static/download. Gene level RPKM was used (genes_matrix_csv.zip).

Pre-process

Primary gene ID was Ensemble ID. In total, 524 samples were available. General developmental stages were annotated for each sample based on the age. We used 11 developmental stages and 29 ages as the label. For the label of age, we excluded age groups with <3 samples (25 pcw and 35 pcw). From 52,376 annotated genes, genes were filtered on such that average RPKM per label is >1 in at least one of the either developmental stage or age. This resulted in 19,601 and 21,001 genes for developmental stages and age groups, respectively. RPKM was winsorized at 50 (replaced RPKM>50 with 50). Then average of log transformed RPKM with pseudocount 1 (log2(RPKM+1)) per label (for either 11 developmental stages or 29 age groups) was used as the covariates conditioning on the average across all the labels.

Fuma : Genomic risk loci Identification

Characterization of genomic risk loci based on GWAS

To define genomic loci of interest to the trait based on provided GWAS summary statistics, pre-calculated LD structure based on 1000G of the relevant reference population (EUR for BMI, CD and SCZ) is used. First of all, independent significant SNPs with a genome-wide significant P-value (< 5e-8) and independent from each other at $r^2 < 0.6$ are identified. For each independent significant SNP, all known (i.e., regardless of being available in the GWAS input) SNPs that have $r^2 \ge 0.6$ with one of the independent significant SNPs are included for further annotation (candidate SNPs). These SNPs may thus include SNPs that were not available in the GWAS input, but are available in the 1000G reference panel and are in LD with an independent significant SNP. Candidate SNPs can be filtered based on a user-defined minor allele frequency (MAF, ≥ 0.01 by default).

Based on the identified independent significant SNPs, independent lead SNPs are defined if they are independent from each other at $r^2 < 0.1$. Additionally, if LD blocks of independent significant SNPs are closely located to each other (< 250 kb based on the most right and left SNPs from each LD block), they are merged into one genomic locus. Each genomic locus can thus contain multiple independent significant SNPs and lead SNPs.

Besides using FUMA to determine lead SNPs based on GWAS summary statistics, users can provide a list of pre-defined lead SNPs. In addition, users can provide a list of pre-defined genomic regions to limit all annotations carried out by FUMA to those regions.

GBIO002 AB 2019

Fuma : Gene and Gene set analysis

MAGMA for gene analysis and gene set analysis

FUMA uses input GWAS summary statistics to compute gene-based P-values (gene analysis) and gene set P-value (gene set analysis) using the MAGMA³⁵ tool. For gene analysis, the gene-based P-value is computed for protein-coding genes by mapping SNPs to genes if SNPs are located within the genes. For gene set analysis, the gene set P-value is computed using the gene-based P-value for 4728 curated gene sets (including canonical pathways) and 6166 GO terms obtained from MsigDB v5.2. For both analyses, the default MAGMA setting (SNP-wise model for gene analysis and competitive model for gene set analysis) are used, and the Bonferroni correction (gene) or FDR (gene-set) was used to correct for multiple testing. 1000G phase 3²⁷ is used as a reference panel to calculate LD across SNPs and genes.

Lets run SNP2GENE

GBIO002 AB 2019

1. Upload input files ^ Choose File No file chosen ✓ OK. An example file will be used. GWAS summary statistics ? Or ☑ : Use example input (Crohn's disease, Franke et al. 2010). i case insensitive Chromosome: Position: rsID: P-value: GWAS summary statistics file columns Optional. Please fill as much as you can. It is not necessary to fill all Effect allele*: column names. * "A1" is effect allele by default Non effect allele: OR: Beta: SE: Pre-defined lead SNPs (?) Choose File No file chosen Optional. Optional. Identify additional independent lead 1 SNPs ? This is only valid when predefined lead SNPs are provided.

Optional.

~

	Total sample size (integer):		
	21389		
Sample size (N) 🕐	OR Column name for N per SNP (t	text):	\checkmark OK. The total sample size will be applied to all SNPs.
Minimum P-value of lead SNPs (<)	5e-8		✓ OK.
Maximum P-value cutoff (<) 🕐	0,05		✓ OK.
r^2 threshold to define independent significant SNPs (\geqq)	0,6		✓ OK.
2nd r ² threshold to define lead SNPs (≥) $\textcircled{2}$	0,1		✓ OK.
Reference panel population	1000G Phase3 EUR	٣	✓ OK.
Include variants in reference panel (non-GWAS tagged SNPs in LD) (?)	Yes	٣	✓ OK.
Minimum Minor Allele Frequency (≥) 🕐	0		✓ OK.
Maximum distance between LD blocks to merge into a locus (< kb) 🕐	250	kb	

	oping)		
eQTL mapping			
Perform eQTL mapping 🕐 🔲 🛛 Op	ptional.		
3-3. Gene Mapping (3D Chrom	natin Interaction mappi	ing)	
chromatin interaction mapping	a		
en onidan moracuon mapping	9		
Perform chromatin interaction mapping			
Perform chromatin interaction mappin 4. Gene types	ng 🕐 🔲 Optional.		
Perform chromatin interaction mappin	g 🕐 🔲 Optional.	▼ ∨ 0K.	
Perform chromatin interaction mappin 4. Gene types Ensembl version	ng ⑦ 🔲 🛛 Optional.	▼ VK.	
Perform chromatin interaction mappin 4. Gene types	ng (2) Optional. V92 All Protein coding	▼ ▼ OK.	

Perform positional n	napping 🕜	*			✓ OK.			
Distance to genes or functional consequences of SNPs on genes to map ?		Maximum distance: 10 kb OR Functional consequences of SNPs on genes: clear exonic splicing			✓ OK. SNPs are mapped to genes up to 10 kb			
This filtering only a		al mapping criterion. W			so performed, this filtering can be specified sepa	rately.		
II these annotations				esult tables	, but this filtering affect gene prioritization.		0	
CADD	Perform SNPs filtering based on	CADD score. 🕐					Optional.	
CADD Minimum CADD score (≥) ⑦			12,37				Optional.	
)	pomeDB Perform SNPs filtering baed on ReguomeDB score (?) Maximum RegulomeDB score (categorical) (?)						Optional.	
RegulomeDB			7		¥	Optional.		
	Perform SNPs filtering based on	chromatin state 🕐					Optional.	
		Adrenal (1) E080 (Other) Fetal Adrenal Gland Blood (27) E029 (HSC & B-cell) Primary monocytes from peripheral blood						
5-core chromatin tate	Tissue/cell types for 15-core chro i Multiple tissue/cell types can be	E030 (HSC & B-cell) Primary neutrophils from peripheral blood E031 (HSC & B-cell) Primary B cells from cord blood E032 (HSC & B-cell) Primary B cells from cord blood E033 (Blood & T-cell) Primary T cells from peripheral blood E034 (Blood & T-cell) Primary T cells from peripheral blood E035 (HSC & B-cell) Primary T cells from peripheral blood E035 (HSC & B-cell) Primary T cells from peripheral blood				Optional.		
	15-core chromatin state maximum	7				Optional.		

Predefined genomic region (?)

3-1. Gene Mapping (positional mapping)

Choose File No file chosen

2. Parameters for lead SNPs and candidate SNPs identification

5. MHC region		^
Exclude MHC region ? From only annota Extended MHC region ? ie.g. 25000000-33000000	ations OK. Normal MHC region will be excluded from only annotations. Optional. 	

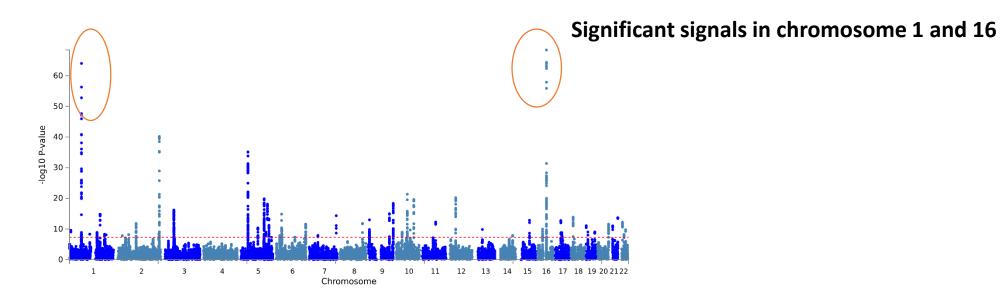
~

6. MAGMA analysis

Perform MAGMA (?)		 OK. MAGMA will be performed.
Gene windows 🕐	0 kb i One value will set same window size both sides, two values separated by comma will set different window sizes for up- and downstream. e.g. 2,1 will set window sizes 2kb upstream and 1kb downstream of the genes. i Maximum window size is limited to 50.	✓ OK.
MAGMA gene expression analysis ⑦	GTEx v8: 54 tissue types GTEx v8: 30 general tissue types GTEx v7: 53 tissue types GTEx v7: 30 general tissue types CTEx v6: 53 tissue types	✓ OK.

Title of job submission: trail

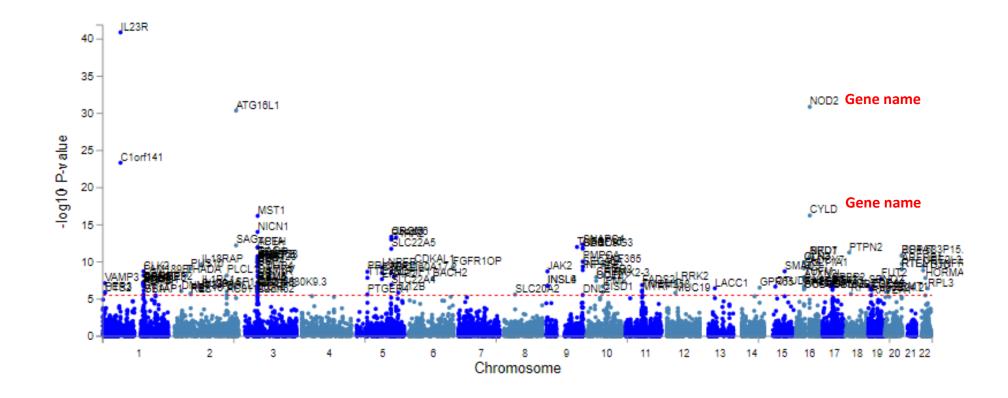
i This is not mandatory, but job title might help you to track your jobs.


Submit Job After submitting, please wait until the file is uploaded, and do not move away from the submission page.

			Home Tutoria	I Browse Public Results	SNP2GENE	GENE2FUNC	Cell Type	Links	Updates	0
My Jobs										
List of Jobs	C									
						Delete sele	ected jobs			
Job ID	Job name	Submit date	Status ?	Jump to GENE2FUNC	P	ublish S	Select			
60609	trail	2019-11-04 10:51:43	Go to results	GENE2FUNC	F	Publish				

Result

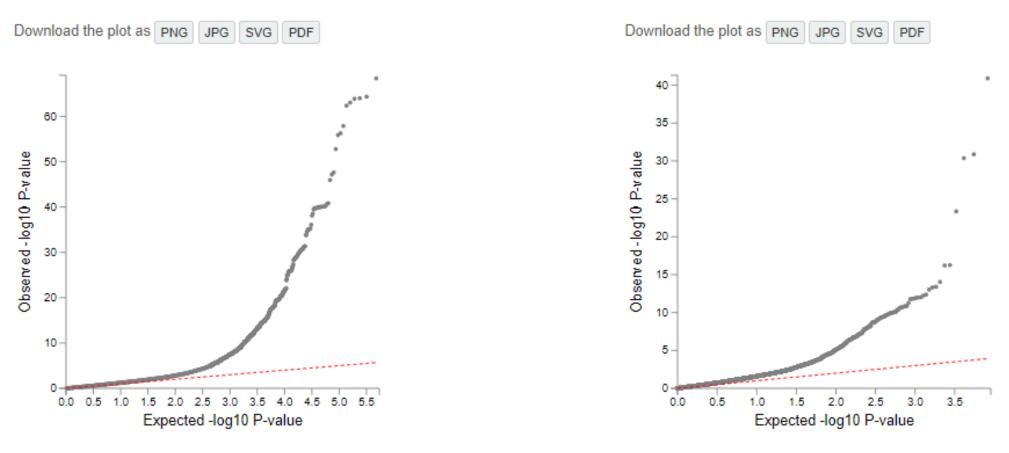
GBIO002 AB 2019


GWAS PLOTS

Manhattan Plot (GWAS summary statistics)

GBIO002 AB 2019

GWAS PLOTS (gene based test)


i This is a manhattan plot of the gene-based test as computed by MAGMA based on your input GWAS summary statistics. The gene-based P-value is downloadable from 'Download' tab from the left side bar.

Input SNPs were mapped to 16510 protein coding genes. Genome wide significance (red dashed line in the plot) was defined at P = 0.05/16510 = 3.028e-6.

Q-Q PLOTS (GWAS/gene based test)

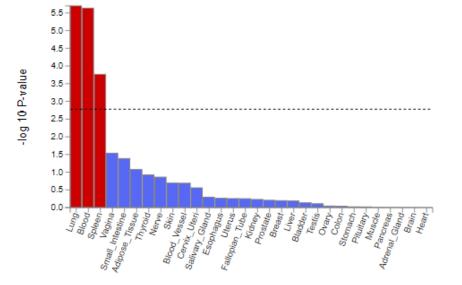
QQ plot (GWAS summary statisics)

i This is a Q-Q plot of GWAS summary statistics. For plotting purposes, overlapping data points are not drawn (filtering was performed only for SNPs with P-value ≥ 1e-5, see tutorial for details).

Slight variation in Plots (From SNPs to Gene based QQ plot)

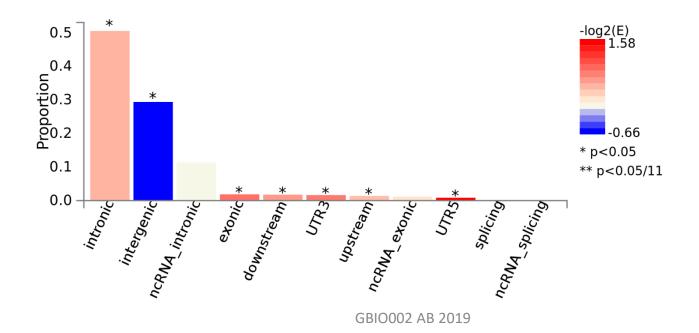
QQ plot (gene-based test)

i This is a Q-Q plot of the gene-based test computed by MAGMA.

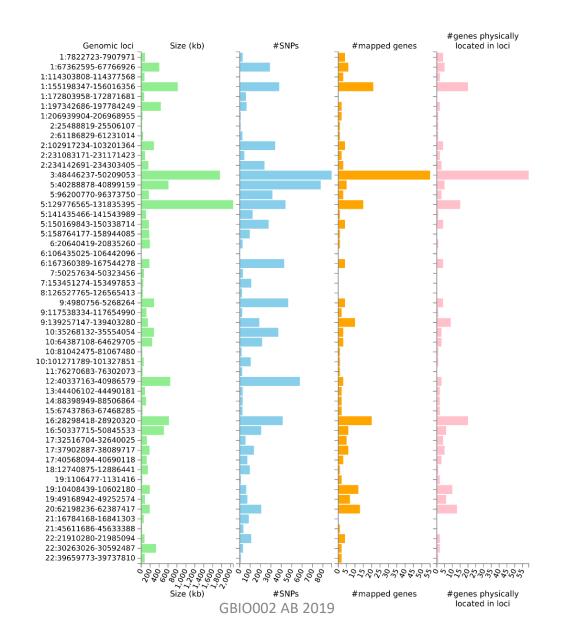

MAGMA gene set analysis

Over represented Gene ontology :

Gene Set	🕴 N genes 🗄	Beta +	Beta STD	SE 🕴	P	P _{bon}
GO_bp:go_defense_response	1286	0.17241	0.046207	0.028022	3.9114e-10	6.05171808e-06
GO_bp:go_cytokine_production	627	0.22151	0.04234	0.039019	6.9857e-09	0.0001080757647
GO_pp:go_inflammatory_response	589	0.22743	0.042186	0.040501	9.9697e-09	0.000154231259
GO_bp:go_cytokine_mediated_signaling_pathway	614	0.21695	0.041054	0.038923	1.2674e-08	0.000196054106
Gp_bp:go_positive_regulation_of_signaling	1541	0.13826	0.04022	0.025461	2.8612e-08	0.000442570416
GO_bp:go_response_to_cytokine	958	0.17057	0.039878	0.031566	3.3194e-08	0.000513411598
GO_bp:go_positive_regulation_of_intracellular_signal_transductio	n 845	0.17471	0.038502	0.033458	8.9777e-08	0.001388491082
Curated_gene_sets:reactome_signaling_by_interleukins	538	0.21607	0.038364	0.041524	9.9138e-08	0.00153316917
GO_bp:go_positive_regulation_of_rna_biosynthetic_process	1351	0.13521	0.037064	0.026186	1.2264e-07	0.00189650496
Curated_gene_sets:qi_plasmacytoma_up	208	0.3429	0.038246	0.067423	1.8522e-07	0.00286405686

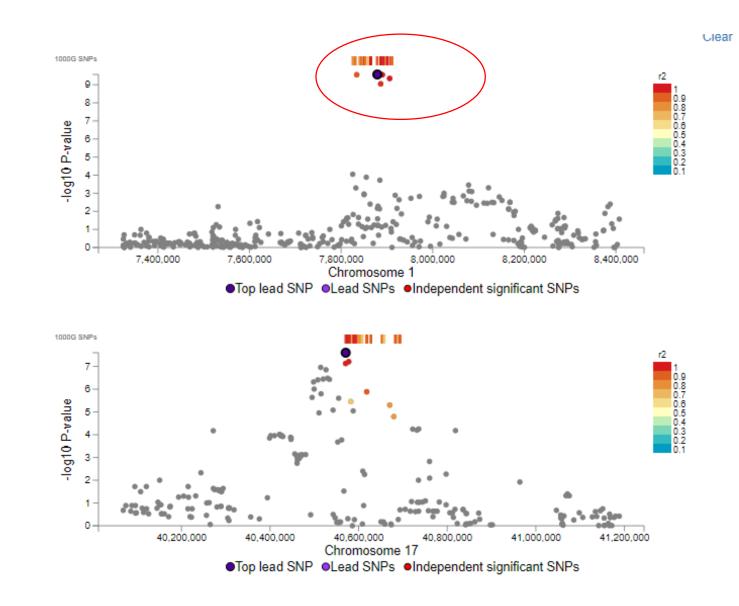

Defense response specific regulatory genes are highly significantly OR in this data.

Signifiant expression observed in Lung, Blood and spleen tissue.



Summary of SNPs and mapped genes

#Genomic risk loci	52
#lead SNPs	75
#Ind. Sig. SNPs	164
#candidate SNPs	8717
#candidate GWAS tagged SNPs	1247
#mapped genes	256



Distribution of SNPs

Fuma : Regional Plots

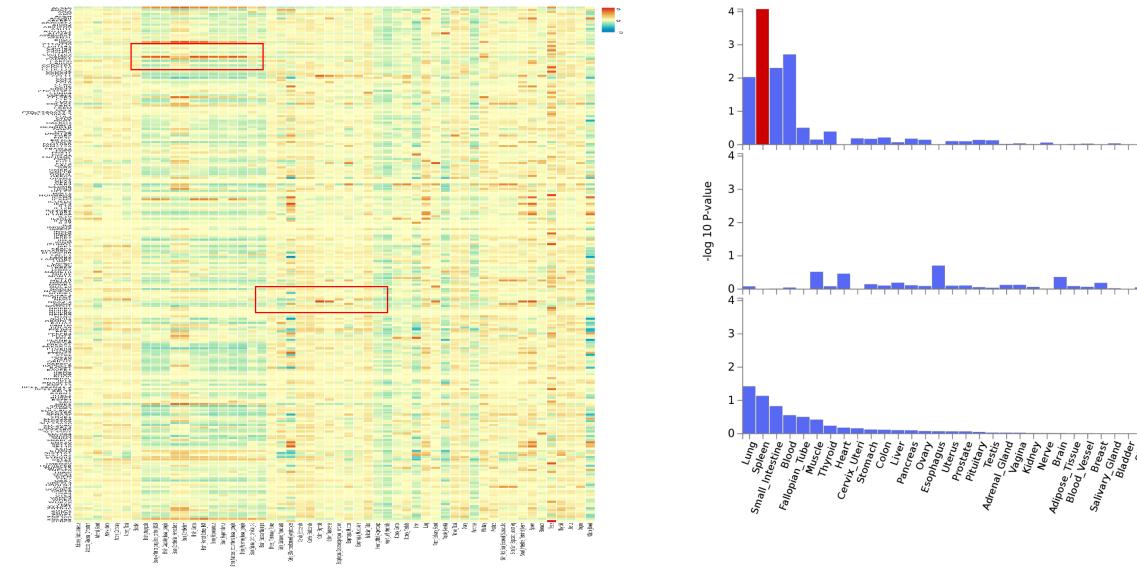
Genomic risk loci		lead SN	Ps	Ind. Sig. S	SNPs	SNPs (ann	otations)	ANNOVAR	Mapped	Genes	GWAScatalog	Parameters	
i Click row to display a regional plot of GWAS summary statistics.													
Show 10	• entrie	es										Search:	
Genomic Locus	uniqlD		÷ r	sID 🔶	chr ≑	pos 🔶	P- value ▼	start 🔶	end 🕴	n SNPs 🗍	nGWASSNPs	🔶 nIndSigSNPs 🖨	IndSigS
21	6:1064	35025:A:	Gr	s6568421	6	106435025	4.4e- 08	106435025	106442096	4	2	1	rs65684
42	17:405	70772:A:	Cr	s11871801	17	40570772	2.5e- 08	40568094	40690118	72	7	1	rs11871
8	2:2549	2467:A:G	6 n	s13428812	2	25492467	1.4e- 08	25488819	25506107	9	2	1	rs13428
20	6:2072	8731:C:T	R	s6908425	6	20728731	1.4e- 08	20640419	20835260	27	7	2	rs69084
36	14:884	72595:C:	TR	s8005161	14	88472595	1.3e- 08	88398949	88506864	29	4	1	rs80051
23	7:5030	4461:C:T	n n	s1456896	7	50304461	1.2e- 08	50257634	50323456	30	5	1	rs14568
7	1:2069	39904:A:	Gr	s3024505	1	206939904	8.3e- 09	206939904	206968955	8	1	1	rs30245
9	2:6122	4259:C:T	n n	s10181042	2	61224259	6.6e- 09	61186829	61231014	26	6	1	rs10181
51	22:305	92487:C:	Gr	s713875	22	30592487	5.7e- 09	30263026	30592487	32	8	1	rs71387
6	1:1977	27642:A:	Gr	s1998598	1	197727642	4.9e- 09	197342686	197784249	66	11	1	rs19985

Selected Locus top lead SNP rs6568421 Chrom 6 BP 106435025 4.4e-08 P-value #Ind. Sig. SNPs 1 #lead SNPs 1 SNPs within LD 4 GWAS SNPs within LD 2

Moving from SNP2Gene to Gene2FUNC

	<
New Job	<u>*</u>
Redo gene mapping	C
My Jobs	Q

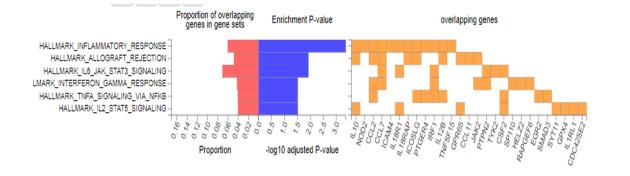
Expression Heatmap plot

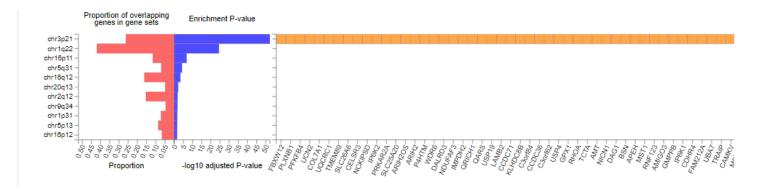

Tissue specific Expression

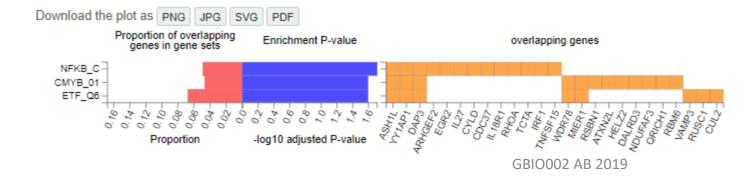
Up-regulated DEG

Down-regulated DEG

DEG (both side)

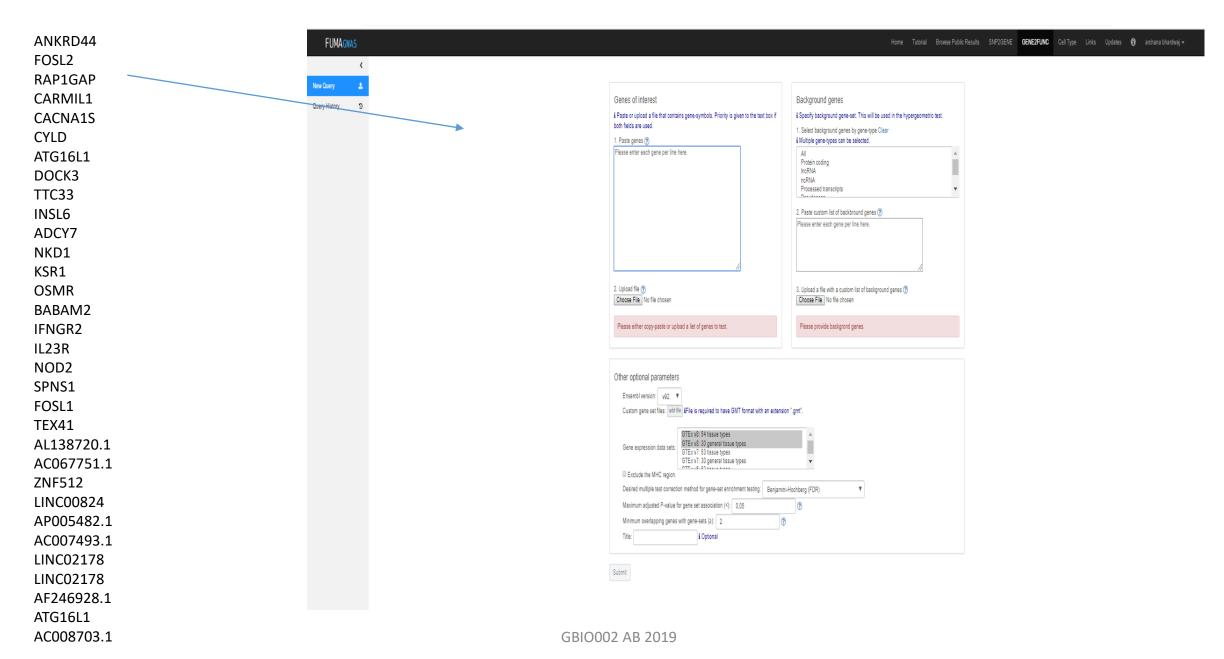

Skin

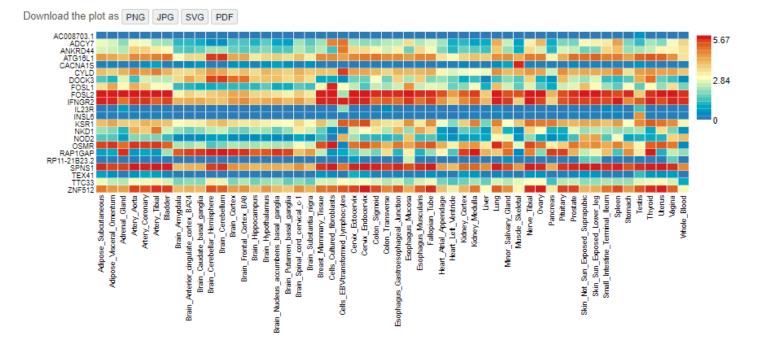


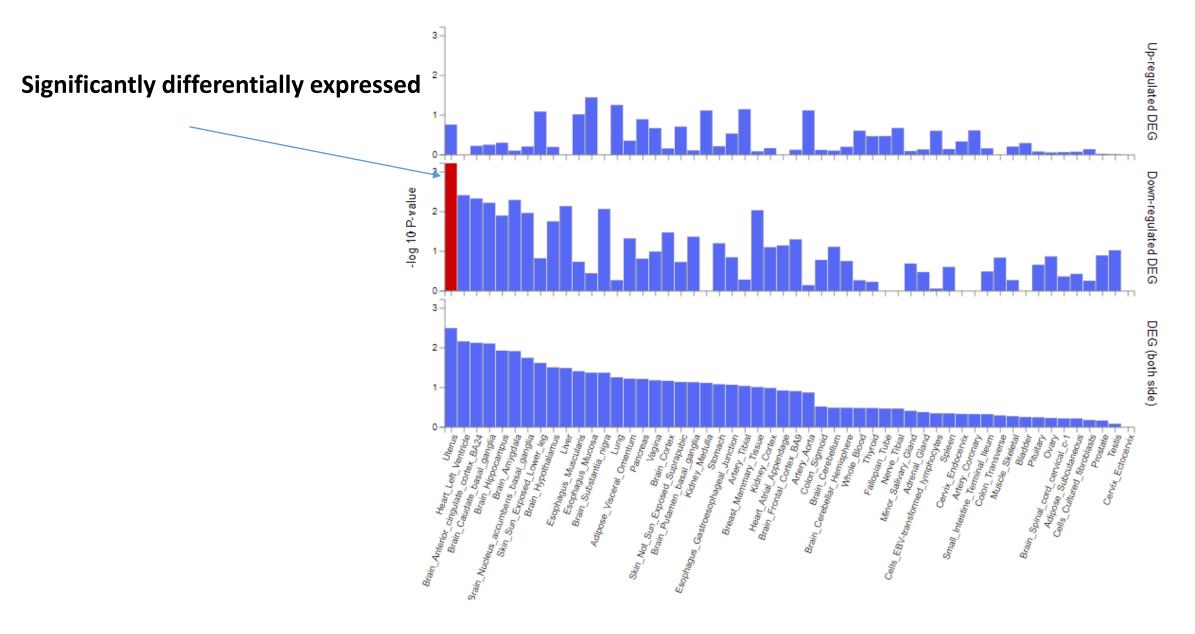

Dark red color : high expression

SNPs encoding genes have significant expression in spleen tissue

Functional Enrichment plots




Let us run Gene2FUNC


Gene ID

Summary of input genes

32	Number of input genes
57241	Number of background genes
26	Number of input genes with recognised Ensembl ID
CARMIL1, BABAM2, AL138720.1, LINC00824, AC007493.1, AF246928.1	Input genes without recognised Ensembl ID
57241	Number of background genes with recognised Ensembl ID
NA	Background genes without recognised Ensembl ID
23	Number of input genes with unique entrez ID
35142	Number of background genes with unique entrez ID

Enrichment : plots

Hallmark gene sets (MsigDB h) (3)	
Positional gene sets (MsigDB c1) (1)	
Curated_gene_sets (0)	
Chemical and Genetic pertubation gene sets (MsigDB c2) (0)	
All Canonical Pathways (MsigDB c2) (0)	
BioCarta (MsigDB c2) (1)	
KEGG (MsigDB c2) (2)	there are two signifiant pathways
Reactome (MsigDB c2) (0)	
microRNA targets (MsigDB c3) (1)	
TF targets (MsigDB c3) (0)	
All computational gene sets (MsigDB c4) (0)	
Cancer gene neighborhoods (MsigDB c4) (0)	
Cancer gene modules (MsigDB c4) (0)	
GO biological processes (MsigDB c5) (2)	there are two signifiant gene ontology
GO cellular components (MsigDB c5) (0)	
GO molecular functions (MsigDB c5) (1)	
Oncogenetic signatures (MsigDB c8) (0)	
Immunologic signatures (MsigDB c7) (0)	
WikiPathways (0)	
GVVAS catalog reported genes (8)	Informations found in GWAS catalog

Exercise

- 1. Classify SNPs list based on genomic location (genic and non genic)
- 2. Identify chromatin markers affected by given SNPs list .
- 3. Identify over represented KEGG pathways and GO enrichment based on SNPs encoding genes
- 4. Identify which tissue is differentially expressed due to given SNP list (via genes)?

rs4468290 rs11201609 rs4933212 rs701546 rs1241901 rs8087497 rs2409457 rs1666559 rs12943387 rs2036660

FROM TODAY SESSION

- Performed Post GWAS of identified SNPs (different ways)
- Multiple databases
- Multiple servers
- FUMA

NEXT SESSION

Multi Omics Integration :

- Working on multiple omics profiles (gene expression/methylatio/SNPs)
- Integrate data using multiple alogrithms for gene prioritization