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Rare-Variant Association Analysis:
Study Designs and Statistical Tests

Seunggeung Lee,1 Gonçalo R. Abecasis,1 Michael Boehnke,1 and Xihong Lin2,*

Despite the extensive discovery of trait- and disease-associated common variants, much of the genetic contribution to complex traits

remains unexplained. Rare variants can explain additional disease risk or trait variability. An increasing number of studies are underway

to identify trait- and disease-associated rare variants. In this review, we provide an overview of statistical issues in rare-variant association

studies with a focus on study designs and statistical tests. We present the design and analysis pipeline of rare-variant studies and review

cost-effective sequencing designs and genotyping platforms. We compare various gene- or region-based association tests, including

burden tests, variance-component tests, and combined omnibus tests, in terms of their assumptions and performance. Also discussed

are the related topics of meta-analysis, population-stratification adjustment, genotype imputation, follow-up studies, and heritability

due to rare variants. We provide guidelines for analysis and discuss some of the challenges inherent in these studies and future research

directions.
Introduction

In the last 8 years, genome-wide association studies

(GWASs) have been extensively used to dissect the genetic

architecture of complex diseases and quantitative traits.1

These studies systematically evaluate common genetic var-

iants, typically with a minor allele frequency (MAF) > 5%.

To date, more than 2,000 disease-associated common var-

iants have been identified through GWASs.2 These dis-

ease-associated variants have provided many new clues

about disease biology, for example, a role for autophagy

in Crohn disease,3 for the complement pathway in age-

related macular degeneration,4 and for the CNS in predis-

position to obesity.5

Despite these discoveries, much of the genetic contribu-

tion to complex traits remains unexplained, even in dis-

eases for which large GWAS meta-analyses have been

undertaken. For example, a GWAS and follow-up analysis

of type 2 diabetes (T2D [MIM 125853]) in >150,000 indi-

viduals identified >70 loci at genome-wide significance

but that explain only ~11% of T2D heritability.6 Likewise,

a GWAS and follow-up analysis in >210,000 individuals

identified ~70 loci associated with Crohn disease, but these

explain only 23% of heritability.7 In general, GWAS loci

have modest effects on disease risk or quantitative trait

variation, and the long process of translating this knowl-

edge into functional understanding or clinical practice is

just beginning.

Several explanations have been proposed for the so-

called problem of ‘‘missing heritability.’’8,9 Because GWASs

focus on the identification of common variants, it is plau-

sible that analyses of low-frequency (0.5% % MAF < 5%)

and rare (MAF < 0.5%) variants could explain additional

disease risk or trait variability. Rare variants are known to

play an important role in human diseases. Many Mende-

lian disorders and rare forms of common diseases are
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caused by highly penetrant rare variants.10 Evolutionary

theory predicts that deleterious alleles are likely to be rare

as a result of purifying selection,10,11 and indeed, loss-of-

function variants, which prevent the generation of func-

tional proteins, are especially rare.12,13 There is also recent

empirical evidence that low-frequency and rare variants

are associated with complex diseases.14–16 Until recently,

commercial genotyping arrays have largely ignored this

portion of the allele frequency spectrum—because of a

combination of the lack of systematic catalogs of rare vari-

ation to support array design, the fact that genome-wide

surveys of rare variation require many more assays than

current arrays can support, and a sensible initial choice

to focus on common variants.

Over the past several years, rapid advances in DNA

sequencing technologies17 have transformed human and

medical genetics. Sequencing enables more complete

assessments of low-frequency and rare genetic variants

and investigation of their role in complex traits. Next-

generation sequencing (NGS) technologies are high-

throughput parallel-sequencing approaches that now

generate billions of short sequence reads for modest cost.

These short reads are aligned to a reference genome so

that researchers can identify and genotype sites where

sequenced individuals vary. In recent years, the price of

sequencing has fallen dramatically, enabling exome and

whole-genome sequencing (WGS) studies of complex dis-

eases. For example, the NHLBI Exome Sequencing Project

(ESP) has sequenced the exomes of 6,500 individuals to

study genetic contributions to several different traits, the

T2D-GENES project has sequenced exomes for >10,000

T2D-affected and control individuals across five different

ancestry groups, and the UK10K Project has sequenced

the exomes of 6,000 individuals ascertained for various

diseases and traits and the genomes of 4,000 healthy
SA; 2Department of Biostatistics, Harvard School of Public Health, Boston,

y of Human Genetics. All rights reserved.

The American Journal of Human Genetics 95, 5–23, July 3, 2014 5

mailto:xlin@hsph.harvard.edu
http://dx.doi.org/10.1016/j.ajhg.2014.06.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajhg.2014.06.009&domain=pdf


Figure 1. Data-Processing and Analysis
Flow Chart for Sequencing-Based Associa-
tion Studies
Explanations of these steps are given in
Box 1. The following abbreviation is
used: QC, quality control.
individuals with detailed physical characteristics. As a

result of these and other projects,13,18 dbSNP now includes

>60 million genetic variants, the large majority of which

are rare.

Although sequencing provides an unparalleled opportu-

nity to investigate the roles of low-frequency and rare var-

iants in complex diseases, detection of these variants in

sequencing-based association studies presents substantial

challenges. First, deep WGS of large numbers of individ-

uals is costly and is likely to remain so in the near future.

In light of this limitation, various alternative strategies,

including targeted sequencing, exome sequencing, low-

depth WGS, and extreme-phenotype sampling, have

been proposed to increase efficiency. As an example, geno-

typing arrays, such as the Illumina and Affymetrix exome

chips, allow investigators to interrogate previously identi-

fied protein-coding variants across a wide range of the

allele frequency spectrum.19

Second, the statistical power of classical single-variant-

based association tests for low-frequency and rare variants

is low unless sample sizes or effect sizes are very large, and

the requisite multiple test corrections are poorly under-

stood. To address these issues, investigators have recently

developed statistical methods specifically configured for

rare-variant association analysis to boost power. These

methods evaluate association formultiple variants in a bio-

logically relevant region, such as a gene, instead of testing

the effects of single variants, as is commonly done in

GWASs.

In this review, we provide an overview of the current

status of sequencing-based association studies and dis-

cuss the statistical issues that arise. We first discuss

strategies for study design, proceed to association testing

and meta-analysis methods for sequencing-based rare-

variant association studies, and conclude with other

important issues, including population-stratification

adjustment, genotype imputation, and the design of

follow-up studies.
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Design Strategies for Rare-Variant

Studies

Sequencing-based association studies

require several data-processing and

-analysis steps, including platform

selection, quality control, choice of

analysis units, assignment of variants

to analysis units with bioinformatic

tools, selection of methods for testing

rare-variant effects, and prioritization

and replication of top signals (Figure 1
and Box 1). In this section, we focus on choices of different

sequencing designs and platforms, and we discuss associa-

tion analysis in the next section.

Deep WGS of large numbers of individuals provides the

most informative strategy for association studies of com-

plex traits and diseases. However, the combination of

large-scale WGS and classical epidemiological designs,

such as case-control and cohort studies, is currently

impractical because of the high cost. Several less costly

sequencing strategies have been proposed and used and

are discussed here: low-depth WGS, exome sequencing,

targeted-region sequencing, and rare-variant genotyping

arrays (Table 1). We also discuss extreme-phenotype sam-

pling as an alternative study design.

Low-Depth WGS

Sequencing depth refers to the average number of

reads that cover each base. Owing to the costs associated

with deepWGS of large numbers of individuals, low-depth

WGS has been proposed as a cost-effective alternative.20,21

When sample-preparation costs are low, sequencing costs

dominate. Instead of sequencing one individual at 303

depth, it might be possible to sequence seven to eight

individuals at 43 depth for approximately the same cost.

The 1000 Genomes Project13 has demonstrated that low-

coverage WGS can be used to discover and genotype

shared variants.

Low-depth sequencing relies on linkage-disequilibrium

(LD)-based methods that leverage information across indi-

viduals to improve the quality of variant detection and

estimated genotypes.20,22 In comparison to deep WGS,

low-depth sequencing is expected to result in higher

genotyping error rates, and this will result in lower power.

Initial simulation studies showed that low-depth

sequencing for a larger sample might be more powerful

than deep sequencing of fewer samples, both for variant

detection and subsequent disease association studies. For

example, Li et al.20 demonstrated that for variants with a



Box 1. Explanation of the Steps of the Data-Processing and Analysis Flow Chart for Sequencing-Based Association Studies in
Figure 1

Choose Analysis Plan and Platform

Rare-variant analysis requires careful planning related to sample and platform selection, quality control, statistical

analysis, results prioritization, and replication strategy.

Variant Calling and Quality Control

Variant detection and genotype calling from raw sequence data involve multiple steps; errors can occur in each step.

An important step is to investigate possible contamination of DNA samples. Contaminated samples often have un-

usually high levels of heterozygosity.36,139 Excluding contaminated samples from analysis or explicitly modeling

sample contamination during analysis can result in substantially more accurate genotype calls.

A number of measures can be calculated as broad indicators of the quality of genotype calls; these include read

depth, transition/transversion ratio, numbers of known and novel variants, and heterozygosity ratio. It is possible

to calculate additional measures, such as quality-control measures for each variant, including the quality score for

the assertion made in alternative alleles (QUAL), mapping quality, strand bias, haplotype scores, and so on. Methods

for machine learning have been developed to combine these scores.140

Bioinformatics Assay and Functional Annotation

Bioinformatics tools can be used to predict the impact of variants, such as synonymous, missense, nonsense and

splicing site variants, on amino acid sequence.141–145 Many of these tools also provide the predicted functional

impact (i.e., benign or deleterious) of coding variants. Recently, several methods have been developed to provide

functional annotation of noncoding variants.124,146 This information can be used in association analysis and result

interpretation.

Prioritization and Replication of Top Hits

After the identification of associated variants in the discovery phase, prioritization for replication and follow-up is

usuallymade on the basis of levels of statistical significance and, in some cases, apparent biological relevance. Because

the replication of rare-variant associations generally requires a large sample, replication studies should be carefully

designed to have adequate power. Strategies for the design of replication studies typically depend onmultiple factors,

including study budget and characteristics of the discovered variants, including MAFs and estimated effect sizes.
MAF > 0.002, sequencing 3,000 samples at 43 has a power

similar to that of deep sequencing 2,000 individuals at 303

in single-variant association tests. Empirical studies are

now confirming these simulation-based findings.23

Exome Sequencing

Exome sequencing aims to sequence the 1%–2% of the

genome that codes for protein.24 It generally targets the

consensus coding sequence (of the CCDS Project),25 which

is ~30 million bases, but the precise regions targeted differ

by service providers. Many causal variants for Mendelian

disorders have been identified through exome sequencing.

DHODH (MIM 126064) for Miller syndrome (MIM

263750)26 and MLL2 (MIM 602113) for Kabuki syndrome

(MIM 147920)27 are prime examples.

An increasing number of studies now aim to use exome

sequencing to identify genes and variants associated with

complex diseases. Several large-scale exome sequencing

studies have been completed or are underway. For

example, the NHLBI ESP has sequenced the exomes of

~6,500 individuals to study phenotypes such as heart

attack, stroke, chronic obstructive pulmonary disease

(MIM 606963), blood lipid levels, blood pressure, and

obesity.28,29 The T2D-GENES Consortium has sequenced

the exomes of ~10,000 individuals across five ancestry
groups with the aim of identifying genetic variants associ-

ated with T2D and metabolic phenotypes. The UK10K

Project has sequenced the exomes of 6,000 individuals

with neurological disorders, obesity, or one of several rare

diseases to identify the genetic basis of these diseases.

Some low-frequency and rare disease-susceptibility vari-

ants have been identified by exome sequencing. Cruchaga

et al.30 demonstrated that rare variants in PLD3 (MIM

615698) are associated with late-onset Alzheimer disease

(LOAD) by sequencing 14 large LOAD-affected families,

and Lange et al.31 identified associations between low-

frequency and rare variants in PNPLA5 (MIM 611589)

and low-density lipoprotein cholesterol by sequencing

2,005 exomes.

Exome sequencing is typically carried out at a high

average depth; an average depth of 603–803 in targeted

regions can achieve a high probability of >203 coverage

in a large fraction (~80%–90%) of the protein-coding

regions.32 Because target-enrichment technology is imper-

fect, exome sequencing also produces some sequencing

reads in off-target regions. These off-target reads can be

useful for checking sequence quality and inferring popu-

lation structure.32–36

The primary limitation of exome sequencing is that it

captures genetic variation only in the exome. Noncoding
The American Journal of Human Genetics 95, 5–23, July 3, 2014 7



Table 1. Array and Sequencing Platforms for Rare-Variant Analysis

Advantage Disadvantage

High-depth WGS can identify nearly all variants in genome with
high confidence

is currently very expensive

Low-depth WGS is a cost-effective, useful approach for association
mapping

has limited accuracy for rare-variant identification and genotype
calling; compared to deep sequencing, is subject to power loss if
the same number of subjects is sequenced

Whole-exome sequencing can identify all exomic variants; is less expensive
than WGS

is limited to the exome

GWAS chip and imputation is inexpensive has lower accuracy for imputed rare variants

Exome chip (custom array) is much cheaper than exome sequencing provides limited coverage for very rare variants and for non-
Europeans; is limited to target regions
regions can play an important role in complex diseases and

traits. It has been shown that most GWAS loci lie in non-

coding regions.2 Recent results from the ENCODE Project

suggest that many noncoding regions might have impor-

tant biological function.37 Despite this limitation, the rela-

tive cost effectiveness and focus on a high-value portion of

the genome suggest that exome sequencing will remain an

important experimental approach for rare-variant studies

until WGS becomes less costly.

Targeted-Region Sequencing

Given the common variants that have been found to be

associated with complex diseases in GWASs, targeted-

region sequencing provides a cost-effective approach for

further investigation of high-priority regions of the

genome and has the potential to identify rare causal vari-

ants in GWAS loci. For example, Rivas et al.14 sequenced

56 candidate genes and discovered several low-frequency

and rare variants associated with Crohn disease, including

protective splicing variants in CARD9 (MIM 607212).

Similarly, Johansen et al.38 discovered large numbers of

rare variants in genes in GWAS loci among individuals

with hypertriglyceridemia. In contrast, other resequencing

studies have failed to identify disease-associated rare

variants,39,40 suggesting that few GWAS signals are driven

by nearby rare variants of strong effect. Large samples are

needed for identifying low-frequency and rare disease-

associated variants unless their effects are quite strong.

Custom Genotyping Arrays

Although current genotyping arrays do not assay enough

variants to capture more than a small fraction of all the

low-frequency and rare variants in a population, they do

provide a cost-effective alternative to sequencing of tar-

geted regions. Custom genotyping arrays, such as the

Metabochip41 for metabolic and cardiovascular disease

and the Immunochip42 for autoimmune and inflamma-

tory disease, were developed on the basis of high-priority

variants from GWASs and sequencing studies. These chips

include both common variants selected to replicate the

original GWAS signals and a selection of common and

low-frequency variants to enable detailed examination of

several hundred regions implicated in relevant traits by
8 The American Journal of Human Genetics 95, 5–23, July 3, 2014
GWASs, thereby allowing cost-effective fine mapping of

some low-frequency variants.

More recently, the Illumina and Affymetrix exome chips

have begun to provide an inexpensive array-based alterna-

tive to exome sequencing.32 The exome chips were devel-

oped on the basis of 12,000 sequenced exomes (mostly

of European ancestry), ~250,000 target nonsynonymous

variants, ~12,000 target splicing variants, and ~7,000

target stop-altering variants, as well as several additional

categories of variants, including GWAS-identified SNPs,

ancestry-informative markers, a grid of SNPs for imputa-

tion, mitochondrial SNPs, and human leukocyte antigen

tag SNPs.

Compared to exome sequencing, genotyping with

exome chips has important limitations. First, the ~12,000

exome-sequenced individuals onwhich the chip was based

are mostly Europeans. Hence, the current generation of

exome chips has more limited representation of low-fre-

quency and rare variants in non-Europeans.43 Second,

array-based technologies are limited in the range of vari-

ants they can target—for example, they require variants

flanked by short unique sequences with an appropriate

proportion of guanine and cytosine bases—and thus can

only successfully genotype 70%–80% of variants.

Because of its relatively low cost (103–203 less than

exome sequencing), the exome chip enables studies of

large numbers of individuals, substantially increasing sta-

tistical power for variants that are on the chip. The first

results of exome-chip-based studies are now being pub-

lished. For example, Huyghe et al.19 reported associations

between insulin processing and secretion and low-fre-

quency variants in SGSM2 (MIM 611418) and MADD

(MIM 231680) on the basis of exome-chip genotyping in

~8,000 Finnish individuals from the METSIM Study. There

are more studies underway, and we will learn the effective-

ness of exome array and the allelic architecture of complex

traits as their results become available.

Extreme-Phenotype Sampling

If the number of samples available for sequencing or gen-

otyping greatly exceeds a study budget, association power

can be improved by preferential selection of sequencing

individuals who are most likely to be informative. One



such approach is to sample individuals with extreme phe-

notypes in the reasonable hope that rare causal variants

will be enriched among them.11,44–47 In studies of quanti-

tative traits, one can select individuals with extreme trait

values after adjusting for known covariates. Alternatively,

in disease-focused studies, selecting individuals with

extreme phenotypes can often be done on the basis of

known risk factors.44 For example, in a case-control study

of T2D, one might sample affected individuals with

early-onset disease, low body mass index, and/or a family

history of T2D and control individuals who are old, obese,

and have no evidence of impaired glucose tolerance.

For quantitative traits, the required sample size for

extreme-phenotype sampling can be significantly smaller

than that for random sampling. For example, when

samples are selected from the upper and lower 10%

tails of the phenotype distribution, the number of in-

dividuals who must be sequenced for a given power can

often be reduced by more than half.45,46 A simple

approach for data analysis is to treat extreme phenotypes

as binary outcomes. Alternatively, extreme phenotypes

can be modeled to follow a truncated normal distribu-

tion.45,46 The latter approach is more powerful but might

be sensitive to the assumption of normality for the under-

lying continuous trait. A method for adjusting complex

extreme-phenotype sampling when one is interested in

studying multiple traits in the same set of subjects has

recently been developed.48

Despite its advantages over random sampling in terms of

power, extreme-phenotype sampling also has limitations.

Notably, the results might not be generalizable to the

underlying population and might be sensitive to outliers,

sampling bias, and the assumption of normality for the

underlying traits. If a complex trait is influenced by multi-

ple loci, extreme-phenotype sampling can reduce power to

detect loci with small effects.49 Power can also be affected if

variants in the two extremes have different directions of

effect.

Methods for Rare-Variant Association Testing

We focus in this section on providing an overview of asso-

ciation tests for rare variants. The analysis of rare variants is

more challenging than that of common variants. First, a

large sample size is needed for simply observing a rare

variant with a high probability. For example, sampling

alleles with a 0.5% or 0.05% frequency with 99% probabil-

ity requires sequencing at least 460 or 4,600 individuals,

respectively, even if perfect detection is assumed. Second,

standard single-variant association analysis is underpow-

ered to detect rare-variant associations. Numerous region-

or gene-based multimarker tests have been proposed in

recent years (Table 2); here, we review the general princi-

ples behind these tests.

Single-Variant Tests

In GWASs, the standard approach to testing for association

between genetic variants and complex traits is a single-
variant test under an additive genetic model. The associa-

tion between each variant and a trait is typically evaluated

by linear regression for continuous traits and by logistic

regression for binary traits. GWAS single-variant tests

typically employ a significance threshold of 5 3 10�8,

corresponding to 5% genome-wide if ~1 million indepen-

dent association tests are performed.68 Thousands of

trait-associated loci have been identified with this simple

procedure. Single-variant tests can also identify association

with low-frequency variants if sample sizes are large

enough. For example, as noted earlier, single-variant tests

in a sample of ~8,000 individuals identified associations

between insulin processing and variants in SGSM2

(MAF ¼ 1.4%, p ¼ 8.7 3 10�10) and MADD (MAF ¼
3.7%, p ¼ 7.6 3 10�15).19

However, single-variant tests are less powerful for rare

variants than for common variants with identical effect

sizes.69 For example, with an odds ratio (OR) ¼ 1.4, the

sample sizes required to achieve 80% power are 6,400,

54,000, and 540,000 for a MAF ¼ 0.1, 0.01, and 0.001,

respectively, if one assumes 5% disease prevalence and a

significance level of 5 3 10�8. Because the number of

rare variants is much larger than the number of common

variants, more stringent significance levels might be

required, further reducing power.

Despite their limitations, single-variant tests are still a

useful tool for rare-variant analysis if the sample sizes

are large enough, the effects are very large, or the variants

are not too rare. Further, when combined with tools

such as quantile-quantile plots, genomic-control analysis,

and Manhattan plots, single-variant tests can be used

for evaluating data quality and identifying batch

effects or population stratification. It should be noted

that single-variant-based p value estimates based on stan-

dard regression methods might not be accurate if the

number of subjects with the variant is small,70 and

addressing this issue will require more methodological

development.

Gene- or Region-Based Aggregation Tests of Multiple Variants

Instead of testing each variant individually, aggregation

tests evaluate cumulative effects of multiple genetic

variants in a gene or region, increasing power when

multiple variants in the group are associated with a

given disease or trait. Numerous methods have been

developed, and we mainly review regression-based

methods that provide the ability to easily adjust for

covariates. We broadly categorize these methods into

five classes: burden tests, adaptive burden tests, vari-

ance-component tests, combined burden and variance-

component tests, and the exponential-combination (EC)

test (Table 2). These methods are based on varying

assumptions about the underlying genetic model, and

power for each test depends on the true disease model.

Because the true disease model is unknown and variable,

omnibus tests, such as the combined test discussed below,

are desirable.
The American Journal of Human Genetics 95, 5–23, July 3, 2014 9



Table 2. Summary of Statistical Methods for Rare-Variant Association Testing

Description Methods Advantage Disadvantage Software Packagesa

Burden tests collapse rare variants
into genetic scores

ARIEL test,50 CAST,51

CMC method,52

MZ test,53 WSS54

are powerful when a
large proportion of
variants are causal and
effects are in the same
direction

lose power in the presence
of both trait-increasing and
trait-decreasing variants or a
small fraction of causal
variants

EPACTS, GRANVIL,
PLINK/SEQ, Rvtests,
SCORE-Seq, SKAT, VAT

Adaptive burden tests use data-adaptive
weights or thresholds

aSum,55 Step-up,56

EREC test,57 VT,58

KBAC method,59

RBT60

are more robust than
burden tests using fixed
weights or thresholds;
some tests can improve
result interpretation

are often computationally
intensive; VT requires the
same assumptions as burden
tests

EPACTS, KBAC,
PLINK/SEQ, Rvtests,
SCORE-Seq, VAT

Variance-component
tests

test variance of genetic
effects

SKAT,61 SSU test,62

C-alpha test63
are powerful in the
presence of both trait-
increasing and trait-
decreasing variants or a
small fraction of causal
variants

are less powerful than
burden tests when most
variants are causal and
effects are in the same
direction

EPACTS, PLINK/SEQ,
SCORE-Seq, SKAT, VAT

Combined tests combine burden and
variance-component
tests

SKAT-O,64 Fisher
method,65 MiST66

are more robust with
respect to the percentage
of causal variants and
the presence of both
trait-increasing and trait-
decreasing variants

can be slightly less
powerful than burden
or variance-component
tests if their assumptions
are largely held; some
methods (e.g., the
Fisher method) are
computationally intensive

EPACTS, PLINK/SEQ,
MiST, SKAT

EC test exponentially combines
score statistics

EC test67 is powerful when a very
small proportion of
variants are causal

is computationally
intensive; is less powerful
when a moderate or large
proportion of variants are
causal

no software is available
yet

Abbreviations are as follows: ARIEL, accumulation of rare variants integrated and extended locus-specific; aSum, data-adaptive sum test; CAST, cohort allelic sums
test; CMC, combined multivariate and collapsing; EC, exponential combination; EPACTS, efficient and parallelizable association container toolbox; EREC, esti-
mated regression coefficient; GRANVIL, gene- or region-based analysis of variants of intermediate and low frequency; KBAC, kernel-based adaptive cluster;
MiST, mixed-effects score test for continuous outcomes; MZ, Morris and Zeggini; RBT, replication-based test; Rvtests, rare-variant tests; SKAT, sequence kernel
association test; SSU, sum of squared score; VAT, variant association tools; VT, variable threshold; and WSS, weighted-sum statistic.
aMore information is given in Table 3.
We first introduce the statistical model for various rare-

variant tests. Assume n subjects are sequenced in a region

withm variant sites. For subject i, let yi denote a phenotype

with mean mi, Xi ¼ (Xi1, ., Xiq)
0 covariates, and Gi ¼

(Gi1,.,Gim)
0 allele counts (zero, one, or two variant alleles)

for m variants of interest. We assume that yi follows a dis-

tribution in the quasi-likelihood family and consider the

following generalized linear model:71

hðmiÞ ¼ a0 þ a0Xi þ b0Gi; (Equation 1)

where h(m) ¼ m for a continuous trait, h(m) ¼ logit(m) for a

binary trait, a0 is an intercept, and a ¼ (a1,., aq)
0 and

b ¼ (b1,., bm)
0 are the regression coefficients for the cova-

riates Xi and allele counts Gi, respectively. We define the

score statistic of the marginal model for variant j as

Sj ¼
Xn
i¼1

Gij

�
yi � bmi

�
;

where bmi is the estimatedmean of yi under the null hypoth-

esis (H0: b ¼ 0) and is obtained by application of the null

model hðmiÞ ¼ a0 þ a0Xi. Note that Sj is positive when

variant j is associated with increased disease risk or trait

values and negative when variant j is associated with

decreased risk or trait values.
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Burden Tests

One class of aggregation tests can be termed burden tests:

they collapse information for multiple genetic variants

into a single genetic score50–54,72 and test for association

between this score and a trait. A simple approach summa-

rizes genotype information by counting the number of

minor alleles across all variants in the set. The summary

genetic score is then

Ci ¼
Xm
j¼1

wjGij; (Equation 2)

where wj is a threshold indicator or weight for variant j.

This approach is identical to assuming bj ¼ wjb in the

regression model in Equation 1 and testing H0: b ¼ 0 in

the simplified model hðmiÞ ¼ a0 þ a0Xi þ bCi. The corre-

sponding score statistic to test H0: b ¼ 0 is then

Qburden ¼
 Xm

j¼1

wjSj

!2

: (Equation 3)

A p value can be obtained by comparison to a chi-square

distribution with 1 degree of freedom.

The summary genetic score Ci can be defined to accom-

modate different assumptions about disease mechanism.



Table 3. List of Software Packages for Rare-Variant Association Tests

Name Type Methods Implemented URL

EPACTS stand alone burden, MB test, SKAT, SKAT-O, VT http://genome.sph.umich.edu/wiki/EPACTS

GRANVIL stand alone ARIEL, MZ http://www.well.ox.ac.uk/GRANVIL

MiST R-package SKAT, MiST http://cran.r-project.org/web/packages/MiST

PLINK/SEQ stand alone burden, C-alpha test, SKAT, SKAT-O, VT http://atgu.mgh.harvard.edu/plinkseq

Rvtests stand alone burden, VT, KBAC method, SKAT http://genome.sph.umich.edu/wiki/Rvtests

SCORE-Seq stand alone burden, SKAT, EREC test, VT, WSS http://dlin.web.unc.edu/software/score-seq

SKAT R-package burden, SKAT, SKAT-O http://www.hsph.harvard.edu/skat, http://cran.r-project.org/
web/packages/SKAT

VAT stand alone aSum, burden, C-alpha test, KBAC method, RBT, VT http://varianttools.sourceforge.net/Association/HomePage

Software Packages for Meta-analysis

MASS stand alone meta-analysis: burden, SKAT, VT http://dlin.web.unc.edu/software/mass

MetaSKAT R-package meta-analysis: burden, SKAT, SKAT-O http://www.hsph.harvard.edu/skat, http://cran.r-project.org/
web/packages/MetaSKAT

seqMeta R-package meta-analysis: burden, SKAT, SKAT-O http://cran.r-project.org/web/packages/seqMeta/

RAREMETAL stand alone meta-analysis: burden, SKAT, VT http://genome.sph.umich.edu/wiki/RAREMETAL

Abbreviations are as follows: ARIEL, accumulation of rare variants integrated and extended locus-specific; aSum, data-adaptive sum test; EPACTS, efficient and
parallelizable association container toolbox; EREC, estimated regression coefficient; GRANVIL, gene- or region-based analysis of variants of intermediate and
low frequency; KBAC, kernel-based adaptive cluster; MASS, meta-analysis of sequencing studies; MB, Madsen and Browning; MiST, mixed-effects score test
for continuous outcomes; RBT, replication-based test; Rvtests, rare-variant tests; SKAT, sequence kernel association test; VAT, variant association tools; VT, variable
threshold; and WSS, weighted-sum statistic.
Instead of an additive genetic model, a dominant genetic

model can be used to compute genetic scores in which Ci

is the number of rare variants for which individual i carries

at least one copy of the minor allele (as in the MZ test53).

The cohort allelic sums test (CAST)51 assumes that the pres-

ence of any rare variant increases disease risk and sets the

genetic score Ci ¼ 0 given no minor alleles in a region and

Ci ¼ 1 otherwise. To focus on the rarer variants, we can

assign wj ¼ 1 when the MAF of variant j (MAFj) is smaller

than a prespecified threshold andwj¼ 0 otherwise. Alterna-

tively, a continuous weight function can be used to

upweight rare variants: Madsen and Browning54 proposed

wj ¼ 1 / [MAFj (1 � MAFj)]
1/2, and Wu et al.61 proposed the

family of beta densities wj ¼ beta(MAFj, a1, a2), which in-

cludes the Madsen and Browning weight as a special case.

In addition, bioinformatics information on functional ef-

fects of variants canbeused forweight construction (Box2).

Several burden methods have been proposed outside the

regression framework. For example, the combined multi-

variate and collapsing (CMC) method52 collapses rare var-

iants, as in the CAST, but in different MAF categories and

evaluates the joint effect of common and rare variants

through Hoteling’s t test. The weighted-sum test (WST)

of Madsen and Browning54 uses the Wilcoxon rank-sum

test and obtains p values by permutation.

The burden methods make a strong assumption that all

rare variants in a set are causal and associated with a trait

with the same direction and magnitude of effect (after

adjustment for the weights). Violation of these assump-

tions can result in a substantial loss of power.63,64,73
T

Adaptive Burden Tests

To address the limitations of the original burden tests, in-

vestigators have developed several adaptive methods that

are robust in the presence of null variants and allow for

both trait-increasing and trait-decreasing variants. Han

et al.55 developed a data-adaptive sum test (aSum) that first

estimates the direction of effect for each variant in a mar-

ginal model and then conducts the burden test with esti-

mated directions. It assigns wj ¼ �1 when bj is likely to

be negative and wj ¼ 1 otherwise. The approach requires

permutation to estimate p values. The step-up test56 refines

the procedure to use a model-selection framework that

assigns wj ¼ 0 when a variant is unlikely to be associated

by removing the variant from consideration.

The estimated regression coefficient (EREC) test57 uses a

more direct approach; it estimates a regression coefficient

of each variant and uses this as a weight. The test is based

on the expectation that the true regression coefficient bj is

an optimal weight to maximize power. Because bj esti-

mates are unstable when the minor allele count (MAC) is

small, the EREC test stabilizes the estimates by adding a

small constant to the estimated bj, which might reduce

the optimality of the EREC test. Given that asymptotic

approximation of the EREC test statistic is only accurate

for very large samples, it uses parametric bootstrap to esti-

mate p values.

The variable threshold (VT)58 is an adaptive extension

that selects optimal frequency thresholds for burden tests

of rare variants and estimates p values analytically or by

permutation. The kernel-based adaptive cluster (KBAC)
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Box 2. Issues that Need to Be Considered in Analysis

Which Variants to Use for Testing Associations

One of the important issues for gene- or region-based multimarker tests is selecting variants to be tested for the asso-

ciation. One can use all variants in the region or a subset of variants selected on the basis of MAF, impact on amino

acid sequence (e.g., nonsynonymous SNPs), or other sequence-based annotation. Bioinformatics methods have been

developed to predict functional roles of variants, and this information can also be used for refining subsets. For

example, PolyPhen-2143 predicts whether a variant is ‘‘benign,’’ ‘‘possibly damaging,’’ or ‘‘probably damaging.’’

One can carry out an association test with ‘‘possibly damaging’’ and ‘‘probably damaging’’ variants or only with

‘‘probably damaging’’ variants. Alternatively, one can assign weights for different class of variants by upweighting

functionally damaging or low-frequency variants. The existing bioinformatics methods are not perfect and can pro-

duce inaccurate predictions; hence, they should be considered as just one possible choice for refining subsets.

Which Association Test to Use

Multiple methods have been developed to test for disease association with sets of rare variants (Table 2). Relative per-

formance of these methods depends on the underlying and usually unknown disease architecture. If prior informa-

tion exists, one can choose the association test by incorporating this information. For example, if one expects that a

region has a large fraction of causal rare variants and the majority of them increase disease risk, burden tests are likely

to bemore powerful. If one expects that there exist both risk-increasing and risk-decreasing variants in a region or that

the majority of variants are null, variance-component tests are likely to be more powerful. If there is no prior infor-

mation, one can trymultiple methods and adjust p values by accounting for usingmultiple methods to avoid inflated

type I errors or use an omnibus test that is likely to have robust power across a range of disease models.

How to Test Nonexonic Regions

For whole-exome studies, it is natural to use a gene as an analysis unit. In whole-genome studies, however, it is less

clear how to properly define an analysis unit. There are several possible choices, such as functionally annotated or

evolutionarily conserved regions116,143,147 or even moving windows of a fixed size. The ENCODE Project37 provides

rich data for functional and regulatory elements in noncoding regions. As our understanding of noncoding regions

advances, we will develop better strategies for whole-genome data.
method59 combines variant classification of nonrisk and

risk variants and association tests by using kernel-based

adaptive weighting. Ionita-Laza et al.60 proposed a WST

with an adaptive-weighting scheme to achieve robust

power in the presence of both protective and harmful

variants.

Adaptive burden tests are more robust than the original

burden methods because they require fewer assumptions

about the underlying genetic architecture at each locus.

Many adaptive tests are based on two-step procedures,

and the fact that some require estimation of regression

coefficients of individual variants in the first stage is often

difficult and unstable for rare variants. Most adaptive tests

require permutation to estimate p values and are hence

computationally intensive. Simulation studies73 suggest

that many adaptive tests have power similar to that of

variance-component and combined tests.

Variance-Component Tests

Another class of methods uses a variance-component test

within a random-effects model. These methods test for

association by evaluating the distribution of genetic effects

for a group of variants. Specifically, instead of aggregating

variants, variance-component tests, including the C-alpha

test,63 the sequence kernel association test (SKAT),61,74 and

the sum of squared score (SSU) test,62 evaluate the distribu-
12 The American Journal of Human Genetics 95, 5–23, July 3, 2014
tion of the aggregated score test statistics (possibly with

weights) of individual variants. SKAT casts the problem

in mixed models. In the absence of covariates, SKAT re-

duces to the C-alpha test. SKAT can also accommodate

SNP-SNP interactions.

Under model 1 (Equation 1), SKAT assumes that regres-

sion coefficients bj follow a distribution with mean 0 and

variance w2
j t and tests the hypothesis H0: t ¼ 0 by

using a variance-component score test. The SKAT test

statistic

QSKAT ¼
Xm
j¼1

w2
j S

2
j

is a weighted sum of squares of single-variant score statis-

tics Sj.

Because SKAT collapses S2j instead of Sj, as is done in

burden tests (Equation 3), SKAT is robust to groupings

that include both variants with positive effects and

variants with negative effects.QSKAT asymptotically follows

a mixture chi-square distribution; its p value can be

computed analytically quickly.75,76

For binary traits, large-sample-based p value calculations

can produce inaccurate type I errors rates when sample

sizes or total MACs are small. In these situations, false-pos-

itive rates can be deflated when the numbers of affected



and control individuals are equal and inflated when these

numbers are unequal. This is truenot only for SKATbut also

for any large-sample-based methods, including single-

variant and burden tests.70 To address this difficulty, Lee

et al.77 developed a moment-based method that adjusts

the asymptotic null distribution by using estimates of the

exact small-sample variance and kurtosis of the test statis-

tic.77 If the MAC is very low, even this adjustment might

not be sufficient, and obtaining accurate p value estimates

might require a permutation or bootstrap approach.
Omnibus Tests that Combine Burden and Variance-Component

Tests

Variance-component tests are more powerful than burden

tests if a region has many noncausal variants or if the

causal variants have different directions of association. In

contrast, burden tests are more powerful than variance-

component tests if a region has a high proportion of causal

variants with the same direction of association. Both sce-

narios can arise; hence, it is desirable to combine these

two approaches.

Several methods have been proposed to combine burden

and variance-component tests. Derkach et al.65 proposed

using Fisher’s method78 to combine the p values of these

two tests and permutation to evaluate the significance of

the test. The Fisher statistic takes the form

Fisher ¼ �2log
�
pSKAT

�� 2log
�
pburden

�
;

where pSKAT and pBurden are p values obtained from SKAT

and burden tests, respectively. To increase computational

efficiency, Sun et al.66 modified the SKAT test statistic to

make it independent from the burden test statistic and

derived the asymptotic p value of the Fisher method.

Another approach is to use the data to adaptively com-

bine the SKAT and burden test statistics. Lee et al.64,77 pro-

posed a linear combination of SKAT and burden test

statistics:

Qr ¼ ð1� rÞQSKAT þ rQburden;0%r%1;

where the parameter r can be interpreted as a pairwise cor-

relation among the genetic-effect coefficients bj in Equa-

tion 1. Because in practice r is unlikely to be known,

they developed SKAT-O, an adaptive procedure that

approximates the test by using an optimal value of r esti-

mated with the minimum p value calculated over a grid

of rs. The asymptotic p value of SKAT-O can be calculated

with computationally efficient one-dimensional numeri-

cal integration.

Although combined tests achieve robust power by unify-

ing burden and variance-component tests, they can be less

powerful than either one of these tests if the assumptions

underlying one of these tests are largely true. However,

because we rarely have much prior information on genetic

architecture, combined tests are an attractive choice. It

should be noted that the naive approach of simply taking

theminimum p value of different methods generally yields
T

an inflated type I error rate. Proper p value calculations of

these omnibus tests need to counterbalance the effect of

searching for the optimal combination of statistics condi-

tional on the data, either analytically (e.g., as done in

SKAT-O) or empirically (e.g., with permutation).

The EC Test

The burden and variance-component tests are based on

linear and quadratic sums of Sj. The EC test67 uses an expo-

nential sum of S2j , which is developed under a Bayesian

framework with a sparse alternative prior under the

assumption that only one variant in a gene or region is a

causal variant. The test statistic is

QEC ¼
Xm
j¼1

exp

 
S2j

2var
�
Sj
�!:

Because the exponential function increases very rapidly

as S2j increases, the EC test can have higher power than

burden or variance-component tests when only a very

small proportion of variants are causal. However, the EC

test can be less powerful than burden and variance-compo-

nent tests when moderate or large proportions of variants

are causal. The null distribution of QEC is unknown, and so

permutations are required for estimating p values.

Comparison of Single-Variant and Gene- or Region-Based Tests

As previously mentioned, gene- and region-based tests are

designed to increase power by aggregating association sig-

nals across multiple rare variants. Indeed, if multiple asso-

ciated variants can be grouped together, these approaches

can result in substantial gains of power. However,

compared to single-variant-based tests, gene- and region-

based tests can lead to loss of power when one or a very

few of the variants in a gene are associated with the trait,

when many variants have no effect, and when causal var-

iants are low-frequency variants. For example, Cruchaga

et al.30 illustrated that gene-based tests can outperform

single-variant analyses. Specifically, these authors identi-

fied the association between Alzheimer disease and PLD3

by using a gene-based test p value of 1.4 3 10�11, but no

single variant in the gene had a p value < 10�6. Many

rare variants in PLD3 were enriched among affected indi-

viduals, but their p values were not significant as a result

of their very low MAF; hence the gene-based test provided

better power by aggregating those rare variants. In study-

ing the association between blood lipids and BCAM and

CD300LG, Liu et al.79 found that single variants show clear

evidence of association but that gene-level tests show

weaker signal. This is most likely because these genes

contain a very small number of not-too-rare variants that

are associated with blood lipids.

Meta-analysis

Meta-analysis provides an effective way to combine data

from multiple studies.80–82 Rare-variant meta-analysis can
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Box 3. Meta-analysis of Rare Variants

Summary Statistics from Each Study

A region-based rare-variant meta-analysis combines score statistics for individual variants, which can usually achieve

the same efficiency as joint analysis. Suppose that yki is the phenotype of the ith individual (i ¼ 1,., nk) in the kth

study (k ¼ 1,., K), and Gki ¼ (Gki1, .,Gkim) is a vector of m genotypes in the region for the ith individual. For

meta-analysis, each study provides the following summary statistics:

1. MAF of each variant

2. Score statistics of each variant:

Skj ¼
Xnk
i¼1

Gkij

�
yki � bmki

�
3. Between-variant relationship matrix:

Fk ¼ G0
kPkGk;

where Gk is a genotype matrix and Pk is a projection matrix accounting for the fact that the effects of covariates are

estimated.85 Note that the matrix Fk is a covariance matrix of genotype G up to a scalar factor when there is only an

intercept in Equation 1.

Meta-analysis Test Statistics

Under the assumption that study cohorts share the same set of causal variants with the same effect size, i.e., homo-

geneous (hom) genetic effects, the meta-analysis test statistics are

Qmeta�SKAT hom ¼
Xm
j¼1

 XK
k¼1

wkjSkj

!2

and

Qmeta�burden ¼
 Xm

j¼1

XK
k¼1

wkjSkj

!2

for meta-analysis SKAT and burden tests, respectively. Here, wkj is a weight for variant j in study k.85 If causal variants

or their effect sizes differ by cohorts, the test power can be improved if heterogeneous genetic effects are accounted

for. The meta-SKAT test statistic under heterogeneous (het) genetic effects85 is

Qmeta�SKAT het ¼
Xm
j¼1

XK
k¼1

�
wkjSkj

�2
:

If studies are naturally grouped on the basis of ancestry, we can extend the methods by assuming that the genetic

effects for the same ancestry group are homogeneous and that those for different ancestries are heteroge-

neous.85,88 In addition to SKAT and burden tests, SKAT-O, VT, and conditional tests were also developed on the basis

of this score-statistic-based framework.79,85–87
be carried out efficiently with simple study-specific sum-

mary statistics for the construction of rare-variant test sta-

tistics across large numbers of samples. Because detecting

rare-variant associations requires large sample sizes, we

expect that meta-analysis will play an important role in

rare-variant analysis. The simplest meta-analysis method

is to combine p values across studies by using Fisher’s or

Stouffer’s Z score methods.78,83,84 However, it is well

known that this approach is less powerful than joint

analysis of individual-level data and fixed-effects meta-

analysis.83

Recently, several groups developed rare-variant meta-

analysis frameworks that combine score statistics instead
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of p values79,85–87 (Box 3). Key advantages that these

frameworks have over the traditional Wald-test-based

meta-analysis include computational efficiency (given

that only a null model shared between markers needs to

be fit) and numerical stability (because one does not

need to estimate regression coefficients and their SEs,

which is difficult for rare variants). Fixed-effects meta-

analysis can use individual-level data to achieve power

essentially identical to that of joint analysis.79,85,87 These

frameworks require that each study provide score statistics

for individual variants and also between-variant covari-

ance matrices that reflect region-specific LD information

among variants. These matrices later allow asymptotic



p values to be calculated. Burden tests, SKAT, SKAT-O, and

VT have all been developed in this score-statistic-based

meta-analysis framework. Conditional analyses, which

can assess whether rare-variant associations are shadows

of nearby significant common or rare variants, can also

be carried out in these frameworks.79

Genetic effects can be heterogeneous across studies,

and power can be increased if meta-analysis methods prop-

erly account for between-study heterogeneity.88,89 For

example, Morris88 developed a single-variant transethnic

meta-analysis method by using a Bayesian partition model

that takes into account the expected heterogeneity be-

tween diverse ancestry groups. Lee et al.85 developed a

rare-variant meta-analysis method that allows for different

levels of heterogeneity between studies or ancestry groups

by imposing varying correlation structure among genetic-

effect parameters.

Different sequencing platforms and strategies can pro-

duce different types of sequencing errors, artifacts, and

biases.90 Careful variant filtering and quality control are

important for avoiding the identification of associations

that are driven by between-platform heterogeneity. In

addition, we recommend systematic validation of any

findings that rely on combining data across different plat-

forms and/or sequencing strategies. Case-control imbal-

ances across different sequencing platforms might also

increase type I error rates, given that traditional large-

sample-based association tests of individual low-frequency

variants might not be well calibrated for case-control

imbalances.70 Addressing these issues will require more

research.

Other Analytic Issues for Rare-Variant Association

Studies

Population-Stratification Adjustment

Population stratification is a major confounding factor for

case-control association studies and can result in false-

positive associations.91,92 In GWASs, principal-component

analysis (PCA) and linear mixed models are commonly

used to adjust for population stratification.93 PCA is a

statistical method for finding directions of the largest

variability of the data.94 Principal components often

reflect the geographical distance of ancestral popula-

tions.95 The advantage of linear mixed models over PCA

is that they can adjust simultaneously for population strat-

ification, family structure, and cryptic relatedness.93,96 A

number of computationally efficient methods, including

EMMAX,96 Fast-LLM,97,98 and GEMMA,99 have been

developed to fit linear mixedmodels for quantitative traits.

Although both PCA andmixed-effects models have been

successful at adjusting for population stratification for

common variants, it is not yet clear whether these

methods will be effective for rare variants. PCA and mixed

models both assume a smooth distribution of MAFs over

geographical (or ancestry) space. Because rare variants are

often sharply localized, PCA and mixed models might

fail to correct for population stratification if the distribu-
T

tion of disease risk is also sharply localized.100 Listgarten

et al.101 reported that Fast-LLM-Select, which uses a small

number of phenotype-selected variants to construct the

kinship matrix, can address the inflation of type I error

rates, but this approach can also reduce power substan-

tially when causal rare variants are spatially clustered.102

There have been several publications regarding the use of

PCA to correct for population stratification for rare-variant

association tests.103–105 PCA performance heavily depends

on the underlying risk distribution and population struc-

ture,100 and alternative strategies to using PCA as covari-

ates, such as using PCA to guide the matching of affected

and control individuals, might be useful.34 Moreover,

recent studies have shown that performing PCA with

only rare variants is no more effective in controlling for

population stratification than is performing PCA on the

basis of all, or only common, variants.103,104 If a large

pool of control individuals is available, it is possible to

use estimated ancestry scores to control for population

stratification.34 Off-target reads can also be used for

controlling for population stratification in targeted

sequencing studies.34

Genotype Imputation

Genotype imputation106 (or in silico genotyping) is a sta-

tistical technique for predicting genotypes at variants

that are not directly genotyped through the identification

of shared haplotype segments in densely typed reference

samples. A number of methods, including IMPUTE,107

Mach,108 and Beagle,109 have been developed for imputa-

tion. Recently, a prephasing strategy was developed to in-

crease computational efficiency of imputation with a large

number of reference samples.110

Development of sequencing technologies will result in a

large number of WGS reference samples, which could

enable the imputation of genotypes of low-frequency

and rare variants from existing GWAS samples without

additional experimental costs. Phase I of the 1000

Genomes Project provides a reference panel of 1,092

sequenced individuals. Across many sequencing projects,

we estimate that there are now>20,000 sequenced human

genomes, and many of these will be combined in a refer-

ence panel to facilitate imputation. In a recent example,

Auer et al.111 imputed more than 13,000 African American

samples by using the NHLBI ESP as a reference, pointing to

several novel low-frequency variants associated with blood

phenotypes, including missense variants associated with

white blood cell count in LCT (MIM 603202) and variants

associated with elevated platelet count in MPL (MIM

159530). Similarly, a rare variant associated with Alzheimer

disease (MIM 104300) in APP (MIM 104760)16 and a rare

frameshift variant associated with T2D in PDX1 (MIM

600733)112 were identified through large-scale imputation

with the use of WGS data of Icelanders as a reference.

Imputation accuracy decreases as MAF decreases, mak-

ing it challenging to impute very rare variants. Because

imputation accuracy increases with the number of
he American Journal of Human Genetics 95, 5–23, July 3, 2014 15



reference individuals,113 the range of MAFs with suffi-

ciently accurate imputation accuracy should widen as

larger reference panels become available. With increasing

reference-panel sizes, we expect that imputation will

recover genotypes for low-frequency or moderately rare

variants with higher confidence.

Follow-Up Studies

Many sequencing experiments will not be able to convinc-

ingly associate rare variants with the trait of interest. Repli-

cation GWASs, which examine top-ranked variants in

additional samples, are an important strategy for identi-

fying true positive association. For rare-variant studies,

replication will be equally important and will often require

sequencing or genotyping large numbers of individuals.

Effective strategies for replication will depend on a study

budget and the discovered variants’ characteristics, in-

cluding MAFs and effect sizes.

If the follow-up studies target high-priority variants

identified in the discovery phase, targeted genotyping of

the selected variants in additional individuals can be

undertaken. For example, after deep sequencing 350

affected individuals and 350 control individuals in the dis-

covery phase, a genetic study of inflammatory bowel dis-

ease (MIM 266600) genotyped 70 protein-coding variants

(MAF ~ 0.001–0.05) in >16,000 individuals with Crohn

disease, >12,000 individuals with ulcerative colitis, and

>17,000 healthy control individuals.14 The study identi-

fied a protective splice variant in CARD9 (OR ¼ 0.29) and

additional disease-associated variants in IL18RAP (MIM

604509), CUL2 (MIM 603135), C1orf106, PTPN22 (MIM

600716), and MUC19 (MIM 612170).

When analysis of the discovery sample is based on func-

tional units rather than single variants, a more desirable

follow-up strategy could be to resequence the top func-

tional units, given that the association might be driven

by multiple rare variants, only a subset of which will

have been identified in the discovery sample. Although

follow-up resequencing is still more expensive than

follow-up genotyping, rapid advances in sequencing and

target-capture technologies114 will substantially reduce

the cost of the follow-up sequencing.

Note that replication of associations does not imply cau-

sality. For inferring the role of variants in disease mecha-

nism, careful consideration should be made for LD with

nearby variants and for the potential to detect false signals

that result from artifacts of population structure.

After identification of a robust association signal in dis-

covery and replication studies, experiments can be under-

taken to link the discovered variants or genes to molecular

or cellular functions. Various types of experiments can be

carried out depending on the nature of discovered variants:

in silico analysis using bioinformatic tools, analysis of

expression quantitative trait loci, in vitro protein assay,

chromatin-structure assay, and model-organism experi-

ments, to name a few. Reviews of this subject can be found

elsewhere.115,116 Such studies are often the logical next
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step once clear statistical evidence of association has

been established and localized.

Estimation of Heritability Due to Significantly Associated

Low-Frequency and Rare Variants

It is of substantial interest to estimate the proportion of

heritability due to low-frequency and rare variants. To do

this, one can examine the numbers of common, low-fre-

quency, and rare variants in the genome, specify the prob-

ability that common and rare variants are causal, and

specify their effect sizes. We performed these calculations

under several scenarios by using the 6,500 exomes

sequenced by the NHLBI ESP to estimate the fraction of

variants in different frequency bins (Box 4).

We found that the actual proportion of heritability due

to low-frequency and rare variants varied from 18% to

84% across six scenarios (Box 4; Figure 2). Because power

to detect low-frequency- and rare-variant associations is

lower than the power to detect common-variant associa-

tions, the observed proportion of heritability due to low-

frequency and rare variants in finite samples might be

substantially smaller than the actual value if heritability

is calculated with only significantly associated variants,

say those reaching a ¼ 5 3 10�8, by the single-variant

test (Box 4; Figure 2).

For example, when rare-variant association studies are

carried out in a sample of 10,000 individuals, most rare

causal variants will show no significant association. In

this case, the apparent proportion of variance due to

rare variants might be <0.1%, even when rare variants

actually explain most of the heritability. As sample sizes

grow, more rare causal variants will be significantly

associated, and the estimated proportions of variance due

to rare alleles become closer to the true value. Still, even

after 1,000,000 individuals are studied, the estimated

proportion of variance due to rare variants remains

underestimated.

These results illustrate the possibility that even if rare

variants account for a large proportion of heritability, iden-

tifying them might require extremely large samples, a

finding that is consistent with several recent publica-

tions.117,118 Note that we could capture a higher fraction

of heritability if we used more powerful gene- or region-

based tests instead of a single-variant test, but the overall

qualitative conclusion would be similar. Currently, there

is no clear evidence as to which scenario represents the

true genetic architecture of common complex diseases,

and it is likely to vary across diseases and traits. As addi-

tional sequencing studies are performed, our understand-

ing will increase.

In this calculation, we focused on quantifying the herita-

bility explained by significantly associated low-frequency

and rare variants. If the goal is a more accurate estimation

of heritability, we might need to use all variants rather

than only significantly associated variants. For common

variants, mixed models have been successfully used to

calculate heritability due to all common variants,119 and



Box 4. Estimation of the Proportion of Heritability Due to Low-Frequency and Rare Variants

We considered several scenarios of the distribution of effect sizes. In the first scenario, common (MAF R 5%), low-

frequency (0.5%%MAF< 5%), and rare (MAF< 0.5%) variants were equally likely to be causal (r¼ 1), and their effect

sizes were identical regardless of MAF (Figure 2). The parameter r is a ratio of the probability that a rare or low-fre-

quency variant is causal to the probability that a common variant is causal. In the second and third scenarios, a

low-frequency or rare variant was four (r ¼ 4) or ten (r ¼ 10) times more likely to be causal. We also considered sce-

narios in which the effect sizes were assumed to be a decreasing function of MAF for low-frequency and rare variants.

In particular, regression coefficients in Equation 1 were modeled as b ¼ qjlog10MAFj∕ jlog100:05j when MAF % 0.05

and b ¼ q when MAF > 0.05, where the parameter q ¼ 0.183 provided power ¼ 0.8 at level a ¼ 5 3 10�8 when the

sample size was 50,000 and MAF was 0.05. For the first three scenarios of the constant effect size, we assumed that

b ¼ 0:183 regardless of MAFs. We estimated the observed proportion of heritability explained by low-frequency

and rare variants at different sample sizes ranging from 10,000 to 1,000,000 provided that the heritability was calcu-

lated with only significantly associated variants at level a ¼ 5 3 10�8. Specifically, we used the following formula:

PropH ¼
r
P

j;commonpjqj
�
1� qj

�
b2
jP

j˛commonqj
�
1� qj

�
b2
j þ r

P
j;commonqj

�
1� qj

�
b2
j

;

where pj is an estimated power of single-variant test for variant j at a¼ 53 10�8, qj is theMAF of variant j, and the sum

is over the MAF spectrum of the NHLBI ESP data. Note that the denominator estimates the total heritability due to all

variants. The true population proportion of heritability explained by low-frequency and rare variants was computed

with pj ¼ 1.
we expect that this approach can be extended to low-fre-

quency and rare variants.

Conclusions

In this review, we have focused on rare-variant association

analysis, especially on study design and association testing

methods. Because of the costs of deep WGS, several inter-

mediate, more affordable strategies for study design—

including targeted sequencing, exome sequencing, low-

depth WGS, and array-based genotyping—are currently

being used. Some of these, particularly array-based studies,

which routinely use imputation, will be enhanced further

as larger panels of sequenced samples become available.

We expect that these alternative designs will retain an

important role until the cost of WGS drops enough to

make them obsolete.

One strategy to improve power is to use publicly avail-

able data to augment the control set by selecting

ancestry-matched controls. This strategy has been success-

fully applied for identifying the association between

rare variants in CFH (MIM 134370) and age-related macu-

lar degeneration.33 Because different genotyping and

sequencing platforms have different genotyping qualities

and error rates, this approach should be used with extreme

caution; otherwise, it can severely increase false-positive

rates.120,121 We recommend using this strategy only in

the discovery phase to identify candidate genes or regions.

A single platform should be used for genotyping case and

control samples for replicating association signals.

Rare-variant studies are being conducted on diverse plat-

forms, and so one challenge is combining different types of

data. Indeed, different platforms have different characteris-
T

tics, including coverage of rare variants and genotyping

error rates. We expect that meta-analysis methods can be

used for this purpose after proper variant filtering to pre-

vent artifacts, but more systematic research on the effects

of using diverse platforms on association tests is required.

Although the burden of many diseases, such as infec-

tious diseases, is substantially higher in Africa and South

America than in other continents, genetic epidemiologic

studies in these continents have been underrepresented.

Several recent efforts, such as the Human Heredity and

Health in Africa Initiative, have been made to increase

genetic research in Africa. These ongoing efforts to survey

genetic variation in African populations and to design

effective arrays for African-ancestry samples will help to

facilitate studies of these understudied populations.

Several approaches that we have discussed here would

have to be customized for studying these populations.

For example, more effective array-based approaches will

require a more extensive survey of low-frequency and

rare variants in samples of African and South American

ancestry. Likewise, imputation-based analyses will most

likely require larger reference panels of African-ancestry

samples to achieve the same level of accuracy as in the

European population13 because of higher genetic diversity

and lower LD levels in African populations.122,123 In these

populations, direct sequencing might be more attractive

for fine-mapping and association studies.123

Because of cost considerations, current rare-variant

studies largely focus on exome regions. We expect that

the focus will gradually extend as the cost of WGS de-

creases. Challenges for whole-genome rare-variant analysis

include limited available information for prioritizing and
he American Journal of Human Genetics 95, 5–23, July 3, 2014 17



Figure 2. Using Single-Variant Tests to
Estimate the Proportion of Heritability
Explained by Significantly Associated
Low-Frequency and Rare Variants
Dashed lines represent the true proportion
of heritability explained by low-frequency
and rare variants, and solid lines represent
the estimated (by single-variant tests)
observed proportion of heritability due to
significantly associated low-frequency and
rare variants at level a ¼ 5 3 10�8. From
top to bottom, the three curves correspond
to the situation when a low-frequency
(0.5% % MAF < 5%) or rare (MAF < 0.5%)
variant is ten timesmore (r¼10), four times
more (r ¼ 4), or equally (r ¼ 1) likely to be
causal than a common variant.
(A)Effect sizesof causalvariants areassumed
to be constant regardless of MAF: b ¼ q.

(B) Effect sizes of causal variants of rare or low frequency are assumed to be a decreasing function of MAF: b ¼ qjlog10MAFj∕ jlog100:05j.
The parameter q is set at q¼ 0.183, which provides power¼ 0.8 at level a¼ 53 10�8 when the sample size is 50,000 and theMAF is 0.05.
annotating most likely functional variants, which is

important for grouping variants for multimarker tests

and interpreting results. Progress in annotating the func-

tional consequences of nonexome variants37,124 will facil-

itate future genome-wide sequencing-based association

studies.

We have provided a review of numerous recently devel-

oped methods for rare-variant association testing. Given

that the relative performance of these methods depends

on the underlying genetic architectures of complex traits,

it is difficult to have a test that is optimal for all scenarios.

Omnibus tests that combine different tests provide an

attractive alternative for balancing power and robustness.

When more is learned about genetic architectures of com-

plex diseases and traits, this knowledge can be incorpo-

rated in association tests to increase power and prioritize

variants for replication studies and functional analysis.

Because of space limitations, we have primarily focused

in this paper on population-based rare-variant association

studies. Family-based association studies provide an attrac-

tive and complementary approach for studying rare vari-

ants. Family-based studies can allow multiple copies of

rare variants to be sampled and are useful for studying de

novo mutations,125 and indeed, several methods of per-

forming rare-variant association tests in families have

been developed.126–130 Because family studies often have

much smaller sample sizes than population-based studies,

integrating information from population-based studies

and family-based studies can be useful in investigating

rare-variant effects.131 In addition to the frequentist

approaches we have primarily covered in this paper,

Bayesian methods can provide an alternative framework

for evaluating rare-variant association. Bayesian methods

can incorporate model uncertainty or prior information

to improve analysis power132,133 and provide insights

into the genetic architecture of traits by localizing causal

variants.134

As more large-scale sequencing studies are conducted,

more rare variants associated with disease and quantitative
18 The American Journal of Human Genetics 95, 5–23, July 3, 2014
traits will be discovered. Integrated analysis with other

types of ‘‘omic’’ data is increasingly carried out to facilitate

more powerful discovery and result interpretation and

to inform the functional roles of the discovered vari-

ants.135–138 These efforts will help us better understand

the genetic architecture of complex diseases. Integration

of sequence-based genetic and genomic data with environ-

mental and clinical data will facilitate a better translation

of molecular information in population and clinical

practice to advance disease prevention, intervention, and

treatment.
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