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7 When variants become rare — sparse data
7.a Customizing GWAs for rare variants association analyses

7.b From GWAs to Sequence Analyses: recognizing and comparing
words

8 When effects become non-independent

Biological vs statistical epistasis (future class)
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7 When variants become rare — sparse data — expanding GWAs

(slide Doug Brutlag 2010)
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Detailed flow of a genome-wide association study

Laboratory

Low level analysis

High level analysis

Biological question Sampling —p= Selection of DNA chip |
DNA preparation —hL Chip hybridization J—b- Chip scan :
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(Ziegler 2009)
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From arrays to sequence data

S|enpIAIpuU| JO JoqWINN

Number of different SNPs
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Work flow genome-wide association study with sequence data

Set up analysis plan
@ ‘ Choose a genotyping/sequencing
platform
Variant calling and QC
\ =
3 | Check DNA contamination,
. global QC, and per-variant QC

Bioinformatics assay and functional annotation J

v

~

\
~ Test for rare-variant association |
L

v

!
Prioritization of association signals |

| Select genes or variants
3 ’ on the basis of statistical significance |
and biological relevance

|

|

-

" Replication of the top regions \

(S

(Lee et al. 2014)
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Common workflow for whole-exome and whole genome sequencing

Lab

Library Preparation, Exome Capturing, ...

[ Whole-Exome-Seq ] * Whole-Genome-Seq

NGS Platform

lllumina, SOLID, 454, ...

¥

Quality Assessment

Trimming, Filtering, ...

Y

Read Alignment O Prioritization / Filtering
Reference Genome =
= Y
Q Lab
E Validation

(Pabinger et al. 2013)
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A primer on rare variant association testing

Fan Li
BIOSTAT 790

January 28, 2016
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Outline

Overall goal: to understand the necessity of identifying rare
variants and the proposed statistical methods for rare-variant
association testing.

@ Rationale for studying rare variants (complex trait)
@ Sequencing and study designs
@ Rare-variant association tests

@ Summary
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Common vs rare variants

@ MAF: frequency at which the least common allele occurs in
population

@ Common variants: MAF > 5%
@ Low frequency variants: 0.5% <MAF< 5%
@ Rare variants: MAF < 0.5%
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Why rare variants?

@ Most of human variants are rare

NHLBI GO
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Why rare variants?

@ Functional variants tend to be rare
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Recall

* Mutations are changes to
the genetic information of
the cell. There are 2
different types of
mutations

— large scale — Chromosome
sections

* deletions, inversions,
translocations, & polyploidy

— point mutations —single
nucleotide

* Each mutation carries with
it the ability to alter the
phenotype of the individual
and, if in the cells that
create the gametes, all the
offspring of the individual.
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Recall

No mutation

DNA level TTC
MRNA level AAG
protein level Lys

INH,"

Point mutations
7 | S

Silent Nonsense Missense

conservative non-conservative

TTT ATC TCC TGC
AAA UAG AGG ACG
Lys STOP Arg Thr

NH,*
ng HaC\I/OH

basic
polar
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Why rare variants?

@ Further, since common variants explained limited variation in
the trait ...

@ Some argued rare variants could explain additional trait
variability

@ Advancement of sequencing technology (NGS), reduction in

cost
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Challenges

@ Require cost-effective study designs to genotype many
individuals

It can be shown that at least log(1 — #)/[2log(1 — MAF)]
individuals are needed to observe a variant with no less than #
chance. For 8 = 99.9%, we have

MAF (%) 10 1 0.1 0.01
Minimum sample size 33 344 3453 34537

@ Classical single-variant tests, developed for common variants
detection, are underpowered

@ Multiple testing
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Challenges

e A variant — genetic association test implies filling in the table below and

performing a chi-squared test for independence between rows and

columns

AA

Aa

dd

Cases

Controls

Sum of entries =
cases+controls

e How many observations do you expect to have two copies of a rare allele?
Example: MAF for a = 0.001 - expected aa frequency is 0.001 x 0.001 or 1

out of 1 million
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¢ In a chi-squared test of independence setting (comparing two variables in
a contingency table to see if they are related):
When MAF <<< 0.05 then some cells above will be
sparse and large-sample statistics (classic chi-squared tests of
independence) will no longer be valid. This is the case when there are less
than 5 observations in a cell

0;—E;)* : :
X2=Y_ Cellsi% (contrasting Observed minus Expected)

® In a regression framework:
The minimum number of observations per independent variable should be
10, using a guideline provided by Hosmer and Lemeshow (Applied Logistic
Regression, one of the main resources for Logistic Regression)
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Increased false positive rates

N=~2500
MAF>0.03

N=~2500
MAF<0.03

Permuted

d

Q-Q plots from GWAS data, unpublished

N=~2500
MAF<0.03

N=50000
MAF<0.03
Bootstrapped
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Remediation: do not look at a single variant at a time, but collapse

e Rationale for aggregation tests
- Alpha level of 0.05, corrected by number of bp in the genome= 1.6*10!!
- One needs VERY LARGE samples sizes in order to be able to reach that
level, even if you find “the variant”.
e Remedy = aggregate / pool variants
- Requires specification of a so-called “region of interest” (ROI)
- A ROl can be anything really:
o Gene
o Locus
o Intra-genic area
o Functional set
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Remediation: design alternatives to deep sequencing

@ Low-depth whole-genome sequencing: sequencing depth refers
to the average number of reads that cover each base; limited
accuracy

@ Exome sequencing: limited to exome
@ High-priority region sequencing: limited to the target region

In summary, either the sequenced range or accuracy is compromised
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How do aggregation tests for (rare) multiple variants work?

@ Region-based: gene, regulatory region
o |dentify multiple genetic variants within a region

@ Evaluate the joint effects of these variants while adjusting for
covariates

@ Caution: These tests rely on assumptions for genetic model
(e.g.: mode of inheritance), and the power depends on the
true disease model h(p(Y))
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Corresponding regression models

@ nsubjects (i =1,..., n)

@ m variants in a region

@ Allele counts in a region G; = (Gj1, .. ., Gim)', (Gj =0.1.2)
@ g-dimensional covariates X; (age, gender, PC scores etc.)

@ [he disease model is given by a GLM
h(p(Y:)) = ao + a'X; + B'G; (1)
@ Now the interest is in the null of no genetic-region effect:

Ho : [3 = (51 ce .ﬁm)f = Omxl
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The score statistic

@ All the tests are in some sense a modification of the score test
for the previous Hy

@ Under Hp, the score statistic for a single variant j (marginally)

S =Y Gy(Yi— ).
=1

where [i; is estimated under the null model with 3 set to zero
vector
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The score test vs the Wald Test

- Likelihood-Ratio Test

O / _____________________
=

—_—_——— e ———— —_—
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Burden tests

@ Collapse information on multiple genetic variants into a single
genetic score

@ Essentially an association test between the score and trait

@ Define a weight for each variant w = (wy, ..., Wm)', the score
is developed as

h(i(Y:)) = ao+ a'X; +3'G;
= Qg+ (I!X; —+ 3 W’G,‘ (2)
—

scalar C;

@ Under Hp : ; = 0, the score statistic is
Qburden — (Z;‘il V'st)z
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Burden tests

@ If w=1, we can collapse rare variants the following way
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Burden tests

@ Choice of w accommodates different assumptions about
disease mechanism

@ e.g., the cohort allelic sums test (CAST)

C — {1 when 1'G; > 0,

0 otherwise.

@ Limitation: strong assumption about the same
direction /magitude of effect (post to weight adjustment); loss
of power
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Key features of burden tests

e Several flavors exist:
- In general they all combine rare variants into a single genetic (risk)
score
Example: Combine minor allele counts into a single risk score (dominant
genetic model)
— Weighted or unweighted versions (f.i., to prioritize certain variant
types, based on predictions about damaging effect)
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Some problems with burden tests

e Problem 1: When high linkage disequilibrium (LD) [allelic non-
independence] exists in the “region”, combined counts may be artificially
elevated

e Problem 2: Assumes that all rare variants in a set are causal and associated
with a trait in the same direction

— Counter-examples exist for different directionality (e.g. autoimmune

GWA:s)
— Violations of this assumption leads to power loss
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Adaptive burden tests

@ [o obtain tests that are robust to null variants and allow for
different effect directions

@ Let the data speak!

@ e.g. the data-adaptive sum test (aSum)

e Estimate direction of each variant in marginal models

e Use the burden test framework with w; = 1 if the coef is likely
to be positive and w; = —1 otherwise

o Require permutation (How?) to obtain the null distribution

o Further modification based on model-selection allowing for
zero weight

e Limitations: although more robust, marginal models are
unstable; permutation requires extensive calculation
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Variance components tests

@ |s there another way to pool/group the rare variants in a
region?
@ Yes, resort to random-effects models

@ [o evaluate the distribution of genetic effects for a group of
variants
@ Suppose [3; ~ N(O, sz"r), corr(3j, Bk) = p
o e.g., the widely-used sequence kernel association test (SKAT,
p=0)tests Hy: 7 =0
o QskaT = Z;n:l WJ?SJ?, a weighted sum of squares of single
variant scores, approx follows a mixture of Chi-squared dist

e Robust to different directions of effects, but ...
o Can lead to inflated test size in small effective sample size
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Omnibus tests

@ [o achieve robust power
@ Often referred to as “combined tests”
@ How to combine different tests?

@ Fisher's combination method

Fisher = —2log(pskat) — 210g(Ppurden)

@ Combining test statistic

Qp = (1 - P) Qskat + P Qburdens P € [0 1]
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Omnibus tests

e Limitation: it might have lower power than SKAT or burden
tests if the assumption underlying one of these tests are
largely true

@ For unknown genetic architecture, this is an attractive choice
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General comments on aggregation tests

@ [he tests are designed to boost power assuming the rare
variants can be grouped together

@ This point is shown by simulation work by Li and Neal, 2008

@ Power loss occurs (relative to single-variant tests) when only a
very few of the variants are associated with the trait and when
many variants have no effects

@ e.g., Liu et al. studied the association between blood lipids
and BCAM and CD300LG, but found weaker signal using

gene-level test than single-variant test
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Meta-analysis

@ Combine data from multiple studies
o Rare variants association detection requires large sample

@ Popular frameworks combine score statistic from different
studies instead of combing p-values

o only requires summary statistics
o allows study-specific covariates

@ Methods should account for heterogeneity of genetic effects
(how? see Lee et al 2013 AJHG) across studies to increase
power (diff in ancestries)
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Variant selection: which variants to use?

@ Can use all the variants

@ Obtain a refined subset on the basis of MAF, impact of amino
acid sequence

@ A subset based on the predicted functional role of variants
(with bioinformatics tool)
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REVIEW

Rare-Variant Association Analysis:
Study Designs and Statistical Tests

Seunggeung Lee,! Gongcalo R. Abecasis,! Michael Boehnke,! and Xihong Lin2~*

Despite the extensive discovery of trait- and disease-associated common variants, much of the genetic contribution to complex traits
remains unexplained. Rare variants can explain additional disease risk or trait variability. An increasing number of studies are underway
toidentify trait- and disease-associated rare variants. In this review, we provide an overview of statistical issues in rare-variant association
studies with a focus on study designs and statistical tests. We present the design and analysis pipeline of rare-variant studies and review
cost-effective sequencing designs and genotyping platforms. We compare various gene- or region-based association tests, including
burden tests, variance-component tests, and combined omnibus tests, in terms of their assumptions and performance. Also discussed
are the related topics of meta-analysis, population-stratification adjustment, genotype imputation, follow-up studies, and heritability
due to rare variants. We provide guidelines for analysis and discuss some of the challenges inherent in these studies and future research
directions.

(Lee et al. 2014)
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Other tests

Description

Methods

Advantage

Disadvantage

Software Packages”

Burden tests

Adaptive bunden tests

Vardance-component
tests

collapse rare vardants
into genetic scores

use data-adaptive
weights or thresholds

test vadance of genetic
effects

ARIEL test,™ CAST,”'
CMC method, ™
MZ test,”” W55

aSum,” Step-up,””
EREC test,” VT,™
KBAC method,™
RBTJ!:I

SKAT,”" 88U test,”
C-alpha test””

are powerful when a
large proportion of
varants are causal and
effects are in the same
direction

are more robust than
burden tests using fixed
weights or thresholds;
some tests can improve
result interpretation

are powerful in the
presence of both trait-
increasing and trait-
decreasing variants or a
small fraction of causal
varants

lose power in the presence
of both trait-increasing and

EPACTS, GRANVIL,
PLINE/SEC), Bvtests,

trait-decreasing variants ora SCORE-5eq, SKEAT, VAT

small fraction of causal
variants

are often computationally
intensive; VT requires the

EPACTS, KBAC,
PLIMNE/SEC), Bviests,

same assumptions as burden S5C0RE-Seq, VAT

tests

are less powerful than
burden tests when maost
variants are causal and
effects are in the same
direction

EPACTS, PLINK/SEQ,
SCORE-5eq, SEAT, VAT

(Lee et al. 2014)
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Other tests

Combined tests combine burden and SEAT-0," Fisher are more robust with can be slightly less EPACTS, PLINE/SECQ),
variance-component method,”” MiST™" respect to the percentage powerful than burden MiST, SKAT
tests of causal vadants and Or vafance-component
the presence of both tests if their assumptions
trait-increasing and trait- are largely held; some
decreasing variants methods (e.g., the

Fisher method) are
computationally intensive

EC test exponentially combines EC test™ is powerful when a very is computationally no software is available
score statistics small proportion of intensive; is less powerful vet
vaniants are causal when a moderate or large
proportion of variants are
causil

Abbreviations are as follows: ARIEL, accumulation of rare variants integrated and extended locus-specific; aSum, data-adaptive sum test; CAST, cohort allelic sums
test; CMC, combined multivariate and collapsing; EC, exponential combination; EPACTS, efficient and parallelizable assodation container toolbox; EREC, esti-
mated regression coefficient; GRAMVIL, gene- or region-based analysis of variants of intermediate and low frequency; KBAC, kernel-based adaptive cluster;
MiST, mixed-effects score test for continuous outcomes; MZ, Morris and Zeggini; RET, replication-based test; Rvtests, rare-variant tests SKAT, sequence kernel

association test; 35U, sum of squared score; VAT, variant association tools; VT, variable threshold; and W3S, weighted-sum statistic.
“More information is given in Table 3.

(Lee et al. 2014)
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A comprehensive evaluation of collapsing methods using
simulated and real data: excellent annotation of
functionality and large sample sizes required

Carmen Dering’, Inke R. Kdnig', Laura B. Ramsey®, Mary V. Relling?, Wenjian Yang® and

Andraas Zlaglar™##

! insoiut fir Medrnisdhe Bometne und Staostik, Universiar zu Libeok Universtatskinkym SchleswigHobn, Libed, Gemany
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The adwent of next genaration saquancing (MGE! technologies enabled the imvastigation
of the rare variant-common diseasa hypothesis in unrelated individuals, aven on the
genome-wide level. Analysis of this hypothesis requires tailored statistical methods as
singhe marker tests fail on rare variants. An entire class of statistical methods collapsas
rare variants from a genomic region of interest (RO, thereby aggregating rare variants.
In an extensive simulation study using data from the Ganetic Analysis Workshop 17
we compared the performance of 15 collapsing methods by means of 2 varety of
pre-defined BOls ragarding minor allele freguency thresholds and functionality. Findings
of the simulation study were sdditionally confirmed by 3 resl data sat investigating tha
association between methotrexate clearance and the SLCOTET gens in patients with
scute lymphoblastic leukemia. Our analyses showed substantizlly inflated type | arror
levels for many of the proposed collapsing methods. Only four approaches yielded valid
type | armors in all considerad scenarios. None of the statistical tests was able 1o detect
true associations ower a substantial proportion of replicates in the simulated data. Detailed
annotation of functionality of varants is crucial to detact true associations. Thesa findings
were confirmed in the analysis of the real data. Recent thaoretical work showed that karga
power is achieved in gene-based anakysas only if large sample sizes are available and 3
substantial proporiion of cawsing rare vanants is present in the gene-basad analysis. Many
of the investigated statistical approachas use permutation reguiring high computational
cost. There is a clear need for valid, powerful and fast to calculate test statistics for studias
investigating rare variants.

(Dering et al. 2014)
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Which tests to use?

@ First acknowledge that relative performance depends on the
unknown disease architecture

@ Use available prior information

o the region has a large fraction of causal rare variants, majority
increase disease risk — burden tests

e exist both risk-increasing and risk-decreasing variants —
variance-component tests

@ |f no prior information, one can try multiple methods or use
the omnibus test

Van Steen K
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8 DNA Sequence Analyses
Comparing multiple sequences (see practical session)

e After collection of a set of related sequences, how can we compare them as
a set?

e How should we line up the sequences so that the most similar portions are
together?

e What do we do with sequences of different length?
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Sequence alignment
VS

Investigating frequencies of occurrences of words
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Introduction

e Words are short strings of letters drawn from an alphabet

e |n the case of DNA, the set of lettersis A, C, T, G

e A word of length k is called a k-word or k-tuple

e Differences in word frequencies help to differentiate between different
DNA sequence sources or regions

e Examples: 1-tuple: individual nucleotide; 2-tuple: dinucleotide; 3-tuple:
codon

e The distributions of the nucleotides over the DNA sequences have been
studied for many years = hidden correlations in the sequences (e.g., CpGs)
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Probability distributions

Probability is the science of uncertainty

1. Rules = data: given the rules, describe the likelihoods of various
events occurring
Probability is about prediction — looking forwards
Probability is mathematics

Van Steen K
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Statistics is the science of data

1. Rules € data: given only the data, try to guess what the rules were.
That is, some probability model controlled what data came out, and
the best we can do is guess — or approximate — what that model was.
We might guess wrong, we might refine our guess as we obtain /
collect more data

2. Statistics is about looking backward. Once we make our best
statistical guess about what the probability model is (what the rules
are), based on looking backward, we can then use that probability
model to predict the future

3. Statistics is an art. It uses mathematical methods but it is much more
than mathematics alone

4. The purpose of statistics is to make inference about unknown
guantities from samples of data.
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Statistics is the science of data

e Probability distributions are a fundamental concept in statistics.

e Before computing an interval or test based on a distributional assumption,
we need to verify that the assumption is justified for the given data set.

e For this chapter, the distribution does not always need to be the best-fitting
distribution for the data, but an adequate enough model so that the
statistical technique yields valid conclusions.

e Simulation studies: one way to obtain empirical evidence for a probability
model
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Expected values and variances

e Mean and variance are two important properties of real-valued random
variables and corresponding probability distributions.

e The “mean” of a discrete random variable X taking values x3, x5, . . . (de-
noted EX (or E(X) or E[X]), where E stands for expectation, which is another
term for mean) is defined as:

E(X) =X x; P(X = x;)

- E(Xi)=1 Xpa+0 X (1 —pa) if x; = A or {another letter}
- If Y=c X, then E(Y) = c E(X)
- E(X1+... + X,) = E(X1) + ... + E(X;)
e Because X;are assumed to be independent and identically distributed (iid):
E(X1 +... + Xn) = n E(X1) = n pa
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Expected values and variances

e The idea is to use squared deviations of X from its center (expressed by the
mean). Expanding the square and using the linearity properties of the
mean, the Var(X) can also be written as:

Var(X) = E(X?) — [E(X)]?]

- If Y=c X then Var (Y) = c?Var (X)
- The variance of a sum of independent random variables is the sum of
the individual variances

e For the random variables X; taking on values A or sth else:

Var (X)) = [1* X py + 0% x' (1 =pa)] — P4 =pa(1 —p4)
Var (N) =nVar (X1) =np4(1 —p,)

Van Steen K
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Expected values and variances

e The expected value of a random variable X gives a measure of its location.
Variance is another property of a probability distribution dealing with the
spread or variability of a random variable around its mean.

Var(X) = E ([X — E(X)]?)

- The positive square root of the variance of X is called its standard
deviation sd(X)

Van Steen K
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Independence

e Discrete random variables Xy, ..., X, are said to be independent if for any
subset of random variables and actual values, the joint distribution equals
the product of the component distributions

Is independence equivalent to correlation 0?

Van Steen K
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Occurrences of 1-letter words
Assumptions

e Notation for the output of a random string of n bases may be: L3, L, ..., L,
(Li = base inserted at position i of the sequence)
- The values [; for L; will come from a set y (with J possibilities)
- For a DNA sequence, J=4and y = {4,C, T,G }
e Simple rules specifying a probability model:
- First base in sequence is either A, C, T or G with prob pg, pc, p1, ps
- Suppose the first r bases have been generated, while generating the
base at position r+1, no attention is paid to what has been generated
before.

Van Steen K
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e Then we can actually generate A, C, T or G with the probabilities above
e According to our simple model, the Li are independent and hence
P(Li=ly,Lo=ly, ..., La=l1)=P(Li=11) P(L2=13) ...P(Ln=I1n)
e If p;is the prob that the value (realization of the random variable L) /;
occurs, then
" py, by =20andp; + ...+ p; =1
e The probability distribution (probability mass function) of L is given by the
collection py, ..., p;
- P(L=l) =pj, j=1, ..., )
e The probability that an event S occurs (subset of y) is P(L € S) =

Zj:lj €S (Pj)

Van Steen K



GBIO0002

Probability distributions of interest

e What is the probability distribution of the number of times a given pattern
occurs in a random DNA sequence Ly, ..., L,? Simple pattern = “A”
- New sequence Xy, ..., X:
Xi=1 if Li=A and X;=0 else
- The number of times N that A appears is the sum
N=X1+...4+Xn
- The prob distr of each of the X;:
P(Xi=1) = P(Li=A)=pa
P(Xi=0) =P(Li=CorGorT)=1-pa

e What is a “typical” value of N?

- Depends on how the individual X; (for different i) are interrelated
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The binomial distribution

e The binomial distribution is used when there are exactly two mutually
exclusive outcomes of a trial. These outcomes are appropriately labeled
"success" and "failure". The binomial distribution is used to obtain the
probability of observing x successes in a fixed number of trials, with the
probability of success on a single trial denoted by p. The binomial
distribution assumes that p is fixed for all trials.

e The formula for the binomial probability mass function is :

P(N =j) = (7) p/(1—-p)*7,j=0,1, ..,n
n
J

(n) _ n!
J7 i (n=j)r
and jI=j(j-1)(j-2)...3.2.1, 0!=1

with the binomial coefficient ( ) determined by
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The binomial distribution

e The mean is np and the variance is np(1-p)
e The following is the plot of the binomial probability density function for
four values of p and n = 100.

0z Einomial PDF (P=0.1, N=1ad) i Binemial POF(P=0.25, N=100)
m m
B 0.5 # 0.075
= =
2 =y
= o4 5 008
g g
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gt g- ———
a  z2a am:m 81 100 a 20 -muxm 81 10a
Binomial PDF(P=050, N=1040) Binomial PDF{P=0.75, N=100)
0.8 a1
007
ﬁ 006 Eﬂ.ﬂ?ﬁ'
; 05 ;
E gna = ans
Fa) Fal
B 003 g
o 1 7] |
gz a0z £ 0.5
Q41 i
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Simulating from probability distributions

e The idea is that we can study the properties of the distribution of N when
we can get our computer to output numbers Ny, ..., Nx having the same
distribution as N

- We can use the sample mean to estimate the expected value E(N):

N= (N, + ..+ N)/k

- Similarly, we can use the sample variance to estimate the true variance
of N:

k
1 _
2 _ A2
S _k—l,Z(N‘ M)
=

Why do we use (k-1) and not k in the denominator?
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Simulating from probability distributions

e What is needed to produce such a string of observations?

- Access to pseudo-random numbers: random variables that are
uniformly distributed on (0,1): any number between O and 1 is a
possible outcome and each is equally likely

e In practice, simulating an observation with the distribution of X1:

- Take a uniform random number u

- SetX1=1ifU <p = p, and 0 otherwise.

- Why does this work? ... P(X;=1)=P(U < pa) =pa

- Repeating this procedure n times results in a sequence Xy, ..., Xn from
which N can be computed by adding the X’s
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Simulating from probability distributions

o FYI:

Simulate a general DNA sequence of bases A, C, T, G:
Divide the interval (0,1) in 4 intervals with endpoints
0,P4,Pa + Pc,Pa+Pc+ P61
If the simulated u lies in the leftmost interval, L1=A
If u lies in the second interval, L1=C; if in the third, L1=G and otherwise
L,=T
Repeating this procedure n times with different values for U results in a
sequence Ly, ..., Ly

e Use the “sample” function in R:

pi <- ¢(0.25,0.75)

x<-c(1,0)

set.seed(2009)
sample(x,10,replace=TRUE,pi)
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Simulating from probability distributions

e By looking through a given

500
|

simulated sequence, we can count

400
|

the number of times a particular

pattern arises (for instance, the
base A)
e By repeatedly generating

Frequency
ano
L

200
|

100
|

sequences (k times) and analyzing —

1

each of them, we can get a feel for | | | | ' |

200 220 240 260 280 300

whether or not our particular Number of successes
pattern of interest is unusual
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Simulating from a known probability distribution

e Using R code:

x<- rbinom(2000,1000,0.25)

mean(x)

sd(x)"2

hist(x,xlab="Number of successes",main="")
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R documentation

Binomial {stats}

Description

Density, distribution function, quantile function and random generation for the binomial distribution with parameters size and prob.

This is conventionally interpreted as the number of ‘successes’ in size trials.

Usage

dbinom(x, size,
pbinom(g, size,
gbinom(p, size,

rbinom(n, size,

Arguments

Xl’ q

prob, log = FARLSE)

prob, lower.tail
prob, lower.tail
prob)

vector of quantiles.

vector of probabilities.

number of observations. If 1ength (n) > 1, the length is taken to be the number required.

size

TRUE, log.p
TRUE, log.p

number of trials (zero or more).

FALSE)
FALSE)

The Binomial Distribution

R Documentation

(https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Binomial.html)
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Simulating from a known probability distribution

e Using R code:

x<- rbinom(2000,1000,0.25)

mean(x)

sd(x)"2

hist(x,xlab="Number of successes",main="")

How many entries are taken to.compute the mean(x)?

Number of sequences = 2000 = k

100 200 300 400 500

N

Number of trials = 1000 = n teen K
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Back to our original question

e Suppose we have a sequence of 1000bp and assume that every base occurs
with equal probability. How likely are we to observe at least 300 A’s in such
a sequence?
- Exact computation using a closed form of the relevant distribution
- Approximate via simulation
- Approximate using the Central Limit Theory
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Exact computation via closed form of relevant distribution

e The formula for the binomial probability mass function is :

P(N =j) = (7) pI(1—p)"7,j=0,1,..n
and therefore
1000
P(N > 300) = z (10].00) (1/4)7 (1 — 1/4)1000~J
j=300

= 0.00019359032194965841

e Note that the probability P(N = 300) is estimated to be 0.0001479292 via

1-pbinom(300,size=1000,prob=0.25)
pbinom(300,size=1000,prob=0.25,lower.tail=FALSE)
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Method 1. exact binomial calculation
Method 2. approximation viz normal

Method 3. approximation via Poisson

Method 1. exact binomial calculation
Method 2. approximation viz normal

Method 3. approximation viz Poisson

Method 1. exact binomial calculation
Method 2. approximation viz normal

Method 3. approximation viz Poisson

P: exactly 300 out of 1000
0.00004566114740576488

0.000038

F: 300 or fewer out of 1000

0.9995520708293378

0.999585

F: 300 or more out of 1000
0.00019359032194565841

0.000153

15 testing

0 or more out of 1000

One-Tail
Method 1. exact binomial calculation 0.000193590321945%65841 0.0003025705168772097
Method 2. approximation viz normal 0.000153 0.000306
. approximation via Poisson - | ------
e — —

(http://faculty.vassar.edu/lowry/binomialX.html)
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Approximate via simulation

e Using R code and simulations from the theoretical (“known”) distribution,
P(N = 300) can be estimated as 0.000196 via

x<- rbinom(1000000,1000,0.25)
sum(x>=300)/1000000
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Approximate via Central Limit Theory

e The central limit theorem offers a 3" way to compute probabilities of a
distribution

e |t applies to sums or averages of iid random variables

e Assuming that Xy, ..., X, are iid random variables with mean u and variance

a?, then we know that for the sample average
1

Xn == X1+ .+ Xp),
— _ 0.2
E(X,,) =uand Var (X,) = —

e Hence,

Xp— u _ Xp— u _
E(a/ﬁ>_°’var<a/ﬁ>_l
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Approximate via Central Limit Theory
e The central limit theorem states that if the sample size n is large enough,

P (a < Xk < b> ~ ¢(b) — ¢(a),

N
with ¢ (.) the standard normal distribution defined as

5(2) = P(Z <7) = j b (x)dx
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Normal Curve

Standard Deviation

7T\

19.1%|[19.1%

15.0% 15.0%

0.1% 0.5%

3 25 -2 415 A -0.5 0 0.5
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Approximate via Central Limit Theory
e Estimating the quantity P(N = 300) when N has a binomial distribution
with parameters n=1000 and p=0.25,
E(N) =nu = 1000 x 0.25 = 250,

1 3

sd(N) = Vno = [1000 X=X = ~ 13.693
N 474

N—250 300 — 250)

13.693 ~ 13.693

P(N > 300) = p(

~ P(Z > 3.651501) = 0.0001303560

e R code:
pnorm(3.651501,lower.tail=FALSE)

How do the estimates of P(N > 300) compare?

Van Steen K



GBIO0002

Approximate via Central Limit Theory

e The central limit theorem in action using R code:

bin25<-rbinom(1000,25,0.25)

av.bin25 <- 25*0.25

stdev.bin25 <- sqrt(25*0.25*0.75)
bin25<-(bin25-av.bin25)/stdev.bin25
hist(bin25,xlim=c(-4,4),ylim=c(0.0,0.4),prob=TRUE,xlab="Sample size
25", main="")

x<-seq(-4,4,0.1)

lines(x,dnorm(x))
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Approximate via Central Limit Theory

< /\
]
(]
g
=
iy] i
T © |
0
S_
/ N
o | [ e —
L]
[ I I I |
4 2 ] 2 4

1 5i7e 25

Van Steen K



GBIO0002

Occurrences of 2-letter words

e Concentrating on abundances, and assuming the iid model for Ly, ..., Lx:
P(Li=1;=CLiys =lix1 =G) =py, 0y,
e Has a given sequence an unusual dinucleotide frequency compared to the
iid model?

- Compare observed O with expected E dinucleotide numbers

2 _ (0—E)?
= —

with E = (n — 1)p,.p;

i+1°

Where have we seen this statistic before? How many df?
Why (n-1) as factor in E above? How many df?
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Comparing to the reference

e How to determine which values of x?are unlikely or extreme?

- If the observed nr is close to the expected number, then the statistic
will be small. Otherwise, the model will be doing a poor job of
predicting the dinucleotide frequencies and the statistic will tend to be
large...

- Recipe:

= Compute the number c given by
B {1 +2py, — 3pf, ifl; = liyg
T -Bpupn,,s il # L
XZ
C
= |f this ratio is larger than 3.84 then conclude that the iid model is
not a good fit. Note that qgchisq(0.95,1) =3.84

= Calculate the ratio &, where ¥?is given as before
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Occurrences of 3-letter words

Amino acids

e There are 61 codons that specify amino acids and three stop codons = 64
meaningful 3-words.

e Since there are 20 common amino acids, this means that most amino acids
are specified by more than one codon.
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Amino acids

H O H O

2nd base in codon x m—c—ton nn—¢—doon
H OO H OO HN—C—C—OH Ci =
U C A G HN—C—C—OH HiN—C—C—OH c—1
( H
Glycine (Gly) Alanine (Ala) Valine (Val) Leucine (Leu) Isoleucine (lle)
Phe Ser T}"l C]ITI- U oo
LJ| Phe |Ser | Tyr | Cys C o b o L
< Leu | Ser | STOP|stoP | A | 2 ] - i g 5 o
g I_El.-l Ser STDP Trp G g L ‘Ll‘fﬁH 1 H:.\l—(“—(‘—OH H:N’—Li‘—(‘—OH H:N—(l‘—c—OH
o Leu | Pro | His | Ag | U o h ‘ | ‘
E Leu P lu His Arg c 3' Proline (Pro) Methionine (Met) Cysteine (Cys) Serine (Ser) ]hre(\lnllm'((;”w]
a : Leu Pro Gin AF!’ A i Ill <”) i (H) Hz\'f(‘l‘f‘([‘foll
] LEU Fl'l:l GIH AF G g 1? (‘? H:N—L"—C—OH 1‘1 (H) H:N—L"—(—L)H I
0 H,;N—C—C—OH CH H,N—C—C—OH H
Asn 5 1] o T O
'In-i ] IE Thl’ AE 5 er c = I H |
< Al ve | T n | Ser
] IE Thr Lw Ar A r\-p.|rli‘c .\: id (Asp) Glutamic acid (Glu) \sp.imgim‘('\\n) C]\ll.!ll‘;:n(‘ (Glu) Lysine ‘(| ys)
Met Thr E—FS ﬁ[u [ H O
\J’ai .I'-"Llﬂ AEI'I GI_'," U H:N~(|’~CAOH Lo
G Val Ala Asp Gly C H O Mo H:N—("—(‘LOH H oo
val | Ala | G | Gy | A aNCon g edon \‘ e
Val Ala Glu Gly (2
:\rgix\;l\\' (Arg) I (i«(“dim‘(l {is) Phenylalanine (Phe) Tyrosine (Tyr) Tryptophan (Trp)

e This has led to the use of a number of statistics to summarize the "bias" in
codon usage: An amino acid may be coded in different ways, but perhaps
some codes have a preference? (higher frequency?)
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Transcription
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Translation

(https://www.nature.com/scitable)
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Predicted relative frequencies

e For a sequence of independent bases L, Ly, ..., L, the expected 3-tuple
relative frequencies can be found by using the logic employed for
dinucleotides we derived before

e The probability of a 3-word can be calculated as follows:

P(Li == rl?L¢+1 — TQ?L?H_Q e ?“3) —
P(Li — TI)P(L—;H — Tz)ED(L@Jrg = ?’q)

assuming the iid model

e This provides the expected frequencies of particular codons, using the
individual base frequencies. It follows that among those codons making up
the amino acid Phe, the expected proportion of TTT is

P(TTT)
P(TTT) + P(TTC)
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The codon adaptation index

e One can then compare predicted and observed triplet frequencies in coding
sequences for a subset of genes and codons from E. coli.

e Médigue et al. (1991) clustered different genes based on codon usage
patterns, and they observed three classes.

e For instance for Phe, the observed frequency differs considerably from the
predicted frequency, when focusing on highly expressed genes (so-called
“class Il genes” in the work of Médigue et al. (1999) - see also next slide

e Checking the gene annotations for class Il genes: highly expressed genes
(ribosomal proteins or translation factors)
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e Table 2.3 from Deonier et al 2005: figures in parentheses below each gene

class show the number of genes in that class.

Observed
Gene Class I Gene Class 11

Codon Predicted (502) (191)

Phe TTT 0.493 0.551 0.201
TTC 0.507 0.449 0.709

Ala  GCT 0.246 0.145 0.275
GCC 0.254 0.276 0.164

GCA 0.246 0.196 0.240

GCG 0.254 0.382 0.323

Asn  AAT 0.493 0.409 0.172
AAC 0.507 0.591 0.828

Class Il : Highly expressed genes

Class | : Moderately expressed genes

Main reference of foregoing material in this chapter: Deonier et al. Computational

Genome Analysis, 2005, Springer (Ch 6,7)
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Supporting doc to this class (complementing course slides)

v

REVIEW

Rare-Variant Association Analysis:
Study Designs and Statistical Tests

Seunggeung Lee,! Goncalo R. Abecasis,! Michael Boehnke,! and Xihong Lin**

Despite the extensive discovery of trait- and disease-associated common variants, much of the genetic contribution to complex traits
remains unexplained. Rare variants can explain additional disease risk or trait variability. An increasing number of studies are underway
to identify trait- and disease-assodated rare variants. In this review, we provide an overview of statistical issues in rare-variant association
studies with a focus on study designs and statistical tests. We present the design and analysis pipeline of rare-variant studies and review
cost-effective sequencing designs and genotyping platforms. We compare various gene- or region-based association tests, induding
burden tests, variance-component tests, and combined omnibus tests, in terms of their assumptions and performance. Also discussed
are the related topics of meta-analysis, population-stratification adjustment, genotype imputation, follow-up studies, and heritability
due to rare variants. We provide guidelines for analysis and discuss some of the challenges inherent in these studies and future research
directions.

AJHG 2014, 95, 5-23
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Questions?



