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7 When variants become rare – sparse data 

7.a Customizing GWAs for rare variants association analyses  

7.b From GWAs to Sequence Analyses: recognizing and comparing 

words 

 

8 When effects become non-independent 

Biological vs statistical epistasis (future class) 
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7 When variants become rare – sparse data – expanding GWAs 

 

 

(slide Doug Brutlag 2010) 
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Detailed flow of a genome-wide association study 

 

(Ziegler 2009) 
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From arrays to sequence data 
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Work flow genome-wide association study with sequence data 

 

 

 

 

 

 

 

 

(Lee et al. 2014) 
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Common workflow for whole-exome and whole genome sequencing 

 

 

 

(Pabinger et al. 2013) 
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A primer on rare variant association testing 
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Outline 
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Common vs rare variants 
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Why rare variants? 
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Why rare variants? 

 

 

 



GBIO0002          

 

  Van Steen K 
 
 

Recall 
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Recall 
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Why rare variants? 
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Challenges 
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Challenges 

• A variant – genetic association test implies filling in the table below and 

performing a chi-squared test for independence between rows and 

columns  

 AA Aa aa 
Cases    
Controls    

 

 

• How many observations do you expect to have two copies of a rare allele? 

Example: MAF for a = 0.001 → expected aa frequency is 0.001 x 0.001 or 1 

out of 1 million 

Sum of entries = 

cases+controls 
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• In a chi-squared test of independence setting (comparing two variables in 

a contingency table to see if they are related): 

When MAF <<< 0.05 then some cells above will be  

sparse and large-sample statistics (classic chi-squared tests of 

independence) will no longer be valid. This is the case when there are less 

than 5 observations in a cell 

 

𝑋2 = ∑
(𝑂𝑖−𝐸𝑖)2

𝐸!
𝑎𝑙𝑙 𝑐𝑒𝑙𝑙𝑠 𝑖    (contrasting Observed minus Expected) 

 

• In a regression framework:  

The minimum number of observations per independent variable should be 

10, using a guideline provided by Hosmer and Lemeshow  (Applied Logistic 

Regression, one of the main resources for Logistic Regression) 
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Increased false positive rates 

Q-Q plots from GWAS data, unpublished 

  

N=~2500 

MAF>0.03 

N=~2500 

MAF<0.03 

N=~2500 

MAF<0.03 

Permuted 

N=50000 

MAF<0.03 

Bootstrapped  
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Remediation: do not look at a single variant at a time, but collapse 

• Rationale for aggregation tests 

- Alpha level of 0.05, corrected by number of bp in the genome= 1.6*10-11 

- One needs VERY LARGE samples sizes in order to be able to reach that 

level, even if you find “the variant”. 

• Remedy = aggregate / pool variants 

- Requires specification of a so-called “region of interest” (ROI) 

- A ROI can be anything really: 

o Gene 

o Locus 

o Intra-genic area 

o Functional set 
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Remediation: design alternatives to deep sequencing 
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How do aggregation tests for (rare) multiple variants work? 
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Corresponding regression models 
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The score statistic 
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The score test  vs the Wald Test 
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Burden tests 
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Burden tests 
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Burden tests 
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Key features of burden tests 

 

• Several flavors exist: 
- In general they all combine rare variants into a single genetic (risk) 

score 
Example: Combine minor allele counts into a single risk score (dominant 
genetic model) 

- Weighted or unweighted versions (f.i., to prioritize certain variant 
types, based on predictions about damaging effect) 
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Some problems with burden tests 

• Problem 1: When high linkage disequilibrium (LD) [allelic non-
independence] exists in the “region”, combined counts may be artificially 
elevated 

• Problem 2: Assumes that all rare variants in a set are causal and associated 
with a trait in the same direction 
- Counter-examples exist for different directionality (e.g. autoimmune 

GWAs) 
- Violations of this assumption leads to power loss 
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Adaptive burden tests 
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Variance components tests 
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Omnibus tests 
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Omnibus tests 
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General comments on aggregation tests 
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Meta-analysis 
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Variant selection: which variants to use?
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(Lee et al. 2014) 
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Other tests 

 

(Lee et al. 2014) 
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Other tests 

 

(Lee et al. 2014) 
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(Dering et al. 2014) 
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 (Dering et al. 2014) 
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Which tests to use? 
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8 DNA Sequence Analyses 

Comparing multiple sequences (see practical session) 

• After collection of a set of related sequences, how can we compare them as 

a set? 

• How should we line up the sequences so that the most similar portions are 

together? 

• What do we do with sequences of different length? 
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Sequence alignment 

vs 

Investigating frequencies of occurrences of words 
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Introduction  
 

• Words are short strings of letters drawn from an alphabet 

• In the case of DNA, the set of letters is A, C, T, G 

• A word of length k is called a k-word or k-tuple 

• Differences in word frequencies help to differentiate between different 

DNA sequence sources or regions 

• Examples: 1-tuple: individual nucleotide; 2-tuple: dinucleotide; 3-tuple: 

codon 

• The distributions of the nucleotides over the DNA sequences have been 
studied for many years → hidden correlations in the sequences (e.g., CpGs) 
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Probability distributions 

 

Probability is the science of uncertainty 

 

1. Rules → data: given the rules, describe the likelihoods of various 

events occurring 

2. Probability is about prediction – looking forwards 

3. Probability is mathematics 
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Statistics is the science of data 

1. Rules  data: given only the data, try to guess what the rules were. 

That is, some probability model controlled what data came out, and 

the best we can do is guess – or approximate – what that model was. 

We might guess wrong, we might refine our guess as we obtain / 

collect more data 

2. Statistics is about looking backward. Once we make our best 

statistical guess about what the probability model is (what the rules 

are), based on looking backward, we can then use that probability 

model to predict the future 

3. Statistics is an art. It uses mathematical methods but it is much more 

than mathematics alone 

4. The purpose of statistics is to make inference about unknown 

quantities from samples of data. 
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Statistics is the science of data 

• Probability distributions are a fundamental concept in statistics.  

• Before computing an interval or test based on a distributional assumption, 

we need to verify that the assumption is justified for the given data set.  

• For this chapter, the distribution does not always need to be the best-fitting 

distribution for the data, but an adequate enough model so that the 

statistical technique yields valid conclusions.  

• Simulation studies: one way to obtain empirical evidence for a probability 

model 
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Expected values and variances 

• Mean and variance are two important properties of real-valued random 

variables and corresponding probability distributions. 

• The “mean” of a discrete random variable X taking values x1, x2, . . . (de- 

noted EX (or E(X) or E[X]), where E stands for expectation, which is another 

term for mean) is defined as: 

E(X) =∑ 𝑥𝑖  𝑃(𝑋 = 𝑥𝑖)𝑖  

 

- E(Xi)= 1 ×pA+0 × (1 −pA) if xi = A or {another letter} 

- If Y=c X, then E(Y) = c E(X) 

- E(X1 +… + Xn) = E(X1) + … + E(Xn) 

• Because Xi are assumed to be independent and identically distributed (iid): 

E(X1 +… + Xn) = n E(X1) = n pA 
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Expected values and variances 

• The idea is to use squared deviations of X from its center (expressed by the 
mean). Expanding the square and using the linearity properties of the 
mean, the Var(X) can also be written as: 
 

𝑉𝑎𝑟(𝑋) = 𝐸(𝑋2) − [𝐸(𝑋)]2] 
 

- If Y=c X then Var (Y) = c2 Var (X) 
- The variance of a sum of independent random variables is the sum of 

the individual variances 
 

• For the random variables Xi taking on values A or sth else: 

Var (Xi) = [12  × 𝑝𝐴 +  02  ×′ (1 − 𝑝𝐴)] −  𝑝𝐴
2 = 𝑝𝐴(1 − 𝑝𝐴) 

    Var (N) = n Var (X1) = 𝑛𝑝𝐴(1 − 𝑝𝐴)
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Expected values and variances 

• The expected value of a random variable X gives a measure of its location. 
Variance is another property of a probability distribution dealing with the 
spread or variability of a random variable around its mean. 

 
𝑉𝑎𝑟(𝑋) = 𝐸 ( [𝑋 − 𝐸(𝑋)]2 ) 

 
- The positive square root of the variance of X is called its standard 

deviation sd(X) 
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Independence 

• Discrete random variables X1, …, Xn are said to be independent if for any 

subset of random variables and actual values, the joint distribution equals 

the product of the component distributions 

 

Is independence equivalent to correlation 0? 
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Occurrences of 1-letter words 

Assumptions 

• Notation for the output of a random string of n bases may be: L1, L2, …, Ln  

(Li = base inserted at position i of the sequence) 

- The values lj  for Lj will come from a set 𝜒 (with J possibilities) 

- For a DNA sequence, J=4 and 𝜒 =  {𝐴, C, T, G } 

• Simple rules specifying a probability model: 

- First base in sequence is either A, C, T or G with prob pA, pC, pT, pG 

- Suppose the first r bases have been generated, while generating the 

base at position r+1, no attention is paid to what has been generated 

before.  
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• Then we can actually generate A, C, T or G with the probabilities above 

• According to our simple model, the Li are independent and hence 

P(L1=l1,L2=l2, …,Ln=ln)=P(L1=l1) P(L2=l2) …P(Ln=ln) 

• If pj is the prob that the value (realization of the random variable L) lj 

occurs, then 

▪ 𝑝1, … , 𝑝𝐽  ≥ 𝑂 and 𝑝1 +  … +  𝑝𝐽 = 1 

• The probability distribution (probability mass function) of L is given by the 

collection 𝑝1, … , 𝑝𝐽 

- P(L=lj) = pj, j=1, …, J 

• The probability that an event S occurs (subset of 𝜒) is P(L ∈ 𝑆) = 

∑  (𝑝𝑗𝑗:𝑙𝑗 ∈𝑆 ) 
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Probability distributions of interest 

• What is the probability distribution of the number of times a given pattern 

occurs in a random DNA sequence L1, …, Ln? Simple pattern = “A” 

- New sequence X1, …, Xn: 

Xi=1 if Li=A and Xi=0 else 

- The number of times N that A appears is the sum 

N=X1+…+Xn 

- The prob distr of each of the Xi: 

P(Xi=1) = P(Li=A)=pA 

P(Xi=0) = P(Li=C or G or T) = 1 - pA 

• What is a “typical” value of N? 

- Depends on how the individual Xi  (for different i) are interrelated  
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The binomial distribution 
 

• The binomial distribution is used when there are exactly two mutually 
exclusive outcomes of a trial. These outcomes are appropriately labeled 
"success" and "failure". The binomial distribution is used to obtain the 
probability of observing x successes in a fixed number of trials, with the 
probability of success on a single trial denoted by p. The binomial 
distribution assumes that p is fixed for all trials. 

• The formula for the binomial probability mass function is : 

𝑃(𝑁 = 𝑗) = (
𝑛
𝑗 ) 𝑝𝑗(1 − 𝑝)𝑛−𝑗, j = 0,1, …,n 

with the binomial coefficient (
𝑛
𝑗 ) determined by 

(
𝑛
𝑗 ) =  

𝑛!

𝑗! (𝑛 − 𝑗)!
, 

and j!=j(j-1)(j-2)…3.2.1, 0!=1 
  



GBIO0002          

 

  Van Steen K 
 
 

The binomial distribution 

 

• The mean is np and the variance is np(1-p) 

• The following is the plot of the binomial probability density function for 

four values of p and n = 100. 
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Simulating from probability distributions 

• The idea is that we can study the properties of the distribution of N when 

we  can get our computer to output numbers N1, …, Nk having the same 

distribution as N 

- We can use the sample mean to estimate the expected value E(N): 

�̅� =  (𝑁1 +  … +  𝑁𝑘)/𝑘 

- Similarly, we can use the sample variance to estimate the true variance 

of N: 

𝑠2 =  
1

𝑘 − 1
 ∑(𝑁𝑖 −  �̅�)2

𝑘

𝑖=1

 

Why do we use (k-1) and not k in the denominator?  
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Simulating from probability distributions 

• What is needed to produce such a string of observations? 

- Access to pseudo-random numbers: random variables that are 

uniformly distributed on (0,1): any number between 0 and 1 is a 

possible outcome and each is equally likely 

• In practice, simulating an observation with the distribution of X1: 

- Take a uniform random number u 

- Set X1=1 if 𝑈 ≤ 𝑝 ≡  𝑝𝐴  and 0 otherwise.  

- Why does this work?   …  

- Repeating this procedure n times results in a sequence X1, …, Xn from 

which N can be computed by adding the X’s 

  



GBIO0002          

 

  Van Steen K 
 
 

Simulating from probability distributions 

 

• FYI: Simulate a general DNA sequence of bases A, C, T, G: 

- Divide the interval (0,1) in 4 intervals with endpoints 

0,𝑝𝐴, 𝑝𝐴 + 𝑝𝐶 , 𝑝𝐴 + 𝑝𝐶 + 𝑝𝐺 , 1 

- If the simulated u lies in the leftmost interval, L1=A 

- If u lies in the second interval, L1=C; if in the third, L1=G and otherwise 

L1=T 

- Repeating this procedure n times with different values for U results in a 

sequence L1, …, Ln 

• Use the “sample” function in R: 
pi <- c(0.25,0.75) 

x<-c(1,0) 

set.seed(2009) 

sample(x,10,replace=TRUE,pi) 
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Simulating from probability distributions 

 

• By looking through a given 

simulated sequence, we can count 

the number of times a particular 

pattern arises (for instance, the 

base A) 

• By repeatedly generating 

sequences (k times) and analyzing 

each of them, we can get a feel for 

whether or not our particular 

pattern of interest is unusual 
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Simulating from a known probability distribution 

• Using R code: 
 
x<- rbinom(2000,1000,0.25) 
mean(x) 
sd(x)^2 
hist(x,xlab="Number of successes",main="") 
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R documentation 

 

(https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Binomial.html) 

 

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Binomial.html
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Simulating from a known probability distribution 

• Using R code: 
 
x<- rbinom(2000,1000,0.25) 
mean(x) 
sd(x)^2 
hist(x,xlab="Number of successes",main="") 

                              

                                   

                                        How many entries are taken to compute the mean(x)? 

  

Number of sequences = 2000 = k 

Number of trials = 1000 = n 
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Back to our original question 

• Suppose we have a sequence of 1000bp and assume that every base occurs 

with equal probability. How likely are we to observe at least 300 A’s in such 

a sequence? 

- Exact computation using a closed form of the relevant distribution 

- Approximate via simulation  

- Approximate using the Central Limit Theory 

 

  



GBIO0002          

 

  Van Steen K 
 
 

Exact computation via closed form of relevant distribution 

• The formula for the binomial probability mass function is : 

𝑃(𝑁 = 𝑗) = (
𝑛
𝑗 ) 𝑝𝑗(1 − 𝑝)𝑛−𝑗, j = 0,1, …,n 

   and therefore 

𝑃(𝑁 ≥ 300) =  ∑ (
1000

𝑗
) (

1000

𝑗=300

1/4)𝑗(1 − 1/4)1000−𝑗  

      = 0.00019359032194965841  

 

• Note that the probability 𝑃(𝑁 ≥ 300) is estimated to be 0.0001479292 via  
 

1-pbinom(300,size=1000,prob=0.25) 
pbinom(300,size=1000,prob=0.25,lower.tail=FALSE) 
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(http://faculty.vassar.edu/lowry/binomialX.html)  
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Approximate via simulation 

• Using R code and simulations from the theoretical (“known”) distribution, 

 𝑃(𝑁 ≥ 300) can be estimated as 0.000196 via 

x<- rbinom(1000000,1000,0.25) 
sum(x>=300)/1000000 
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Approximate via Central Limit Theory 

• The central limit theorem offers a 3rd way to compute probabilities of a 

distribution 

• It applies to sums or averages of iid random variables 

• Assuming that X1, …, Xn are iid random variables with mean 𝜇 and variance 

𝜎2, then we know that for the sample average 

�̅�𝑛 =  
1

𝑛
 (𝑋1 +  … +  𝑋𝑛), 

E(�̅�𝑛) = 𝜇 and Var (𝑋̅̅ ̅
𝑛) = 

𝜎2

𝑛
 

• Hence,  

𝐸 (
�̅�𝑛 −  𝜇

𝜎/√𝑛
) = 0, 𝑉𝑎𝑟 (

�̅�𝑛 −  𝜇

𝜎/√𝑛
) = 1 
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Approximate via Central Limit Theory 

• The central limit theorem states that if the sample size n is large enough,  

𝑃 (𝑎 ≤  
�̅�𝑛− 𝜇

𝜎

√𝑛

 ≤ 𝑏) ≈  𝜙(𝑏) −  𝜙(𝑎), 

with 𝜙(. ) the standard normal distribution defined as 

𝜙(𝑧) = 𝑃(𝑍 ≤ 𝑧) =  ∫ 𝜙(𝑥)𝑑𝑥
𝑧

−∞
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Approximate via Central Limit Theory 

• Estimating the quantity 𝑃(𝑁 ≥ 300) when N has a binomial distribution 

with parameters n=1000 and p=0.25, 

𝐸(𝑁) = 𝑛𝜇 = 1000 × 0.25 = 250, 

𝑠𝑑(𝑁) =   √𝑛 𝜎 = √1000 ×
1

4
×

3

4
 ≈ 13.693 

𝑃(𝑁 ≥ 300) = 𝑃 (
𝑁 − 250

13.693
 >  

300 − 250

13.693
) 

 

                                       ≈ 𝑃(𝑍 >  3.651501) =  0.0001303560 

• R code: 
pnorm(3.651501,lower.tail=FALSE) 

 

How do the estimates of 𝑷(𝑵 ≥ 𝟑𝟎𝟎) compare? 
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Approximate via Central Limit Theory 

 

• The central limit theorem in action using R code: 

bin25<-rbinom(1000,25,0.25) 
av.bin25 <- 25*0.25 
stdev.bin25 <- sqrt(25*0.25*0.75) 
bin25<-(bin25-av.bin25)/stdev.bin25 
hist(bin25,xlim=c(-4,4),ylim=c(0.0,0.4),prob=TRUE,xlab="Sample size 
25",main="") 
x<-seq(-4,4,0.1) 
lines(x,dnorm(x))   



GBIO0002          

 

  Van Steen K 
 
 

Approximate via Central Limit Theory 
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Occurrences of 2-letter words 

 

• Concentrating on abundances, and assuming the iid model for L1, …, Ln: 

𝑃(𝐿𝑖 = 𝑙𝑖 = 𝐶, 𝐿𝑖+1 = 𝑙𝑖+1 = 𝐺) = 𝑝𝑙𝑖 𝑝𝑙𝑖+1  

• Has a given sequence an unusual dinucleotide frequency compared to the 

iid model? 

- Compare observed O with expected E dinucleotide numbers 

χ2 =  
(O−E)2

E
, 

   with 𝐸 = (𝑛 − 1)𝑝𝑙𝑖
𝑝𝑙𝑖+1

.  

 

Where have we seen this statistic before? How many df? 

Why (n-1) as factor in E above? How many df?  
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Comparing to the reference 

• How to determine which values of χ2are unlikely or extreme? 

- If the observed nr is close to the expected number, then the statistic 

will be small. Otherwise, the model will be doing a poor job of 

predicting the dinucleotide frequencies and the statistic will tend to be 

large… 

- Recipe:  

▪ Compute the number c given by  

𝑐 = {
1 + 2𝑝𝑙𝑖 −  3𝑝𝑙𝑖

2 ,  if 𝑙𝑖 =  𝑙𝑖+1

1 − 3𝑝𝑙𝑖
𝑝𝑙𝑖+1

,        if 𝑙𝑖  ≠  𝑙𝑖+1
  

▪ Calculate the ratio 
χ2

c
, where χ2is given as before 

▪ If this ratio is larger than 3.84 then conclude that the iid model is 

not a good fit.  Note that  qchisq(0.95,1) = 3.84 
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Occurrences of 3-letter words 

Amino acids 

• There are 61 codons that specify amino acids and three stop codons → 64 

meaningful 3-words. 

• Since there are 20 common amino acids, this means that most amino acids 

are specified by more than one codon.  
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Amino acids 

 

• This has led to the use of a number of statistics to summarize the "bias" in 

codon usage: An amino acid may be coded in different ways, but perhaps 

some codes have a preference? (higher frequency?) 
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Transcription 

 

 

 

(https://www.nature.com/scitable) 
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Transcription and  

Translation 

 

 

 

 

 

 

 

 

(https://www.nature.com/scitable) 
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Predicted relative frequencies 

• For a sequence of independent bases L1, L2, ... , Ln the expected 3-tuple 

relative frequencies can be found by using the logic employed for 

dinucleotides we derived before 

• The probability of a 3-word can be calculated as follows: 

assuming the iid model 

• This provides the expected frequencies of particular codons, using the 

individual base frequencies.  It follows that among those codons making up 

the amino acid Phe, the expected proportion of TTT is 

P(TTT)

P(TTT) +  P(TTC)
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The codon adaptation index 

• One can then compare predicted and observed triplet frequencies in coding 

sequences for a subset of genes and codons from E. coli.  

• Médigue et al. (1991) clustered different genes based on codon usage 

patterns, and they observed three classes. 

• For instance for Phe, the observed frequency differs considerably from the 

predicted frequency, when focusing on highly expressed genes (so-called 

“class II genes” in the work of Médigue et al. (1999) - see also next slide 

• Checking the gene annotations for class II genes: highly expressed genes 

(ribosomal proteins or translation factors) 
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• Table 2.3 from Deonier et al 2005: figures in parentheses below each gene 

class show the number of genes in that class.  
                   

 

 

 

Main reference of foregoing material in this chapter: Deonier et al. Computational 

Genome Analysis, 2005, Springer (Ch 6,7) 

Class II  : Highly expressed genes 

Class I   : Moderately expressed genes 
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Supporting doc to this class (complementing course slides) 
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Questions? 

 


