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ABSTRACT

A random forest (RF) predictor (Breiman 2001) is an ensemble of individual tree pre-

dictors. As part of their construction, RF predictors naturally lead to a dissimilarity measure

between the observations. One can also define an RF dissimilarity measure between unlabelled

data: the idea is to construct an RF predictor that distinguishes the ‘observed’ data from suit-

ably generated synthetic data (Breiman and Cutler 2003). The observed data are the original

unlabelled data while the synthetic data are drawn from a reference distribution. Here we de-

scribe the properties of the RF dissimilarity and make recommendations on how to use it in

practice.

An RF dissimilarity can be attractive because it handles mixed variable types well, is

invariant to monotonic transformations of the input variables, and is robust to outlying obser-

vations. The RF dissimilarity easily deals with a large number of variables due to its intrinsic

variable selection, e.g. the Addcl1 RF dissimilarity weighs the contribution of each variable

according to how dependent it is on other variables.

We find that the RF dissimilarity is useful for detecting tumor sample clusters on the basis

of tumor marker expressions. In this application, biologically meaningful clusters can often be

described with simple thresholding rules.

KEY WORDS: biomarkers; cluster analysis; dissimilarity; ensemble predictors; tumor markers
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1. INTRODUCTION

Machine learning methods are often categorized into supervised (outcome labels are used)

and unsupervised (outcome label are not used) learning methods. Interestingly, many supervised

methods can be turned into unsupervised methods using the following idea: one creates an

artificial class label that distinguishes the ‘observed’ data from suitably generated ‘synthetic’

data. The observed data are the original unlabelled data while the synthetic data are drawn

from a reference distribution. Some supervised learning methods distinguishing observed from

synthetic data yield a dissimilarity measure that can be used as input in subsequent unsupervised

learning methods (Liu et al. 2000; Hastie et al. 2001; Breiman and Cutler 2003). Breiman

and Cutler (2003) proposed to use random forest (RF) predictors to distinguish observed from

synthetic data. When the resulting RF dissimilarity is used as input in unsupervised learning

methods (e.g. clustering), patterns can be found which may or may not correspond to clusters

in the Euclidean sense of the word. The RF dissimilarity has been successfully used in several

unsupervised learning tasks involving genomic data: Breiman and Cutler (2003) applied RF

clustering to DNA microarray data, Allen et al. (2003) applied it to genomic sequence data, and

Shi et al. (2004) applied it to tumor marker data. In these real data applications, the resulting

clusters often made biological sense, which provides indirect empirical evidence that the method

works well in practice.

Many unsupervised learning methods require as input a dissimilarity measure between

the observations. Here we describe some important properties of the RF dissimilarity so that

potential users can decide when and how to use these dissimilarities in practice. We focus on the

properties of the RF dissimilarity when used in partitioning around medoid clustering (Kaufman

and Rousseeuw 1990) and in multi-dimensional scaling plots.

After a motivational example (section 1.1), we review the random forest dissimilarity in

section 2. We describe how to approximate the relationship between the RF dissimilarity and

its variables in section 3. We contrast two classes of RF dissimilarities in section 4. In section

5, we describe how to use the RF dissimilarity in practice. In the discussion, we review the

properties of the RF dissimilarity. In the appendix, we provide simple geometric examples.

1.1 MOTIVATION

The RF dissimilarity has been found to be useful for tumor class discovery on the basis
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of immunohistochemical tumor marker expressions (Shi et al. 2004). Tumor marker expressions

(protein abundances) are often scored by the percentage of cells staining. These tumor marker

expressions can have semi-continuous, highly skewed distributions since many observations may

take on the value 0 or 100 percent (Figure 1a).

One (but not the only) reason why the random forest dissimilarity is attractive for tumor

marker expressions is that it handles highly skewed variables well: it is invariant with respect to

monotonic transformations of the variables, obviating the need for symmetrizing skewed variable

distributions.

As an example, we describe the analysis of 307 cancer patients for which 8 tumor marker

measurements were available (Shi et al. 2004). The goal was to determine whether the cancer

patients fall into distinct clusters (unsupervised analysis) and if so, whether the clusters were

related to tumor recurrence? The RF dissimilarity was used as input in partitioning around

medoid (PAM) clustering (Kaufman and Rousseeuw 1990) to group the patients (tumor sam-

ples) into 2 clusters (referred to as RF clusters). For comparison, we also used the Euclidean

distance in PAM clustering and refer to the result as Euclidean distance clusters. When cross-

tabulating the patients according to their RF and Euclidean distance cluster memberships, we

find significant (p = 1.2e-15) agreement.

There is indirect empirical evidence that the RF clusters are clinically more meaningful

than the Euclidean distance based clusters with regard to post-operative patient survival. In

Figures 1b – 1d, we color the 223 tumor samples that fall into RF cluster 1 and Euclidean

distance cluster 1 in black, the 36 samples that fall into RF cluster 2 and Euclidean distance

cluster 2 in blue, the 25 samples in RF cluster 1 and Euclidean distance cluster 2 in red, and the

23 samples in RF cluster 2 and Euclidean distance cluster 1 in green. The Kaplan Meier plots

(Kaplan and Meier 1958) in Figure 1b visualize the survival time distributions: the two pairs

of curves, black/red and green/blue, are closer to each other than the black/green and red/blue

pairs, i.e. the RF clusters are clinically more meaningful than the Euclidean distance based

clusters. Using the logrank test (Cox and Oakes 2001), we find that the RF dissimilarity based

clusters have more distinct survival time distributions (p = 4e-9) than the Euclidean distance

based clusters (p = 0.019).

Figures 1c and 1d highlight the differences between the RF and the Euclidean distance

clusters in terms of the underlying tumor marker expressions. Figure 1c is a color-coded depiction

of the standardized tumor marker expressions (columns) across patients (rows). The patients
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have been sorted according to RF and Euclidean cluster membership. PAM clustering with

the Euclidean distance groups the black and green samples into one cluster and the blue and

red samples into the other cluster. This Euclidean distance based grouping makes sense when

considering the expression pattern of marker 4, which has the highest variance. However, it

makes no sense when considering the expression patterns of markers 1 – 3.

PAM clustering with the RF dissimilarity groups red and black patient samples into one

cluster and the green and blue samples into the other cluster. Figure 1c shows that this grouping

makes sense, especially when considering markers (columns) 1, 2, and 3 since markers 1 and 2

tend to be under expressed while marker 3 tends to be over-expressed in the green and blue

samples. Similarly, the scatterplot in Figure 1d shows that marker expressions 1 and 2 tend to

be low for the green and blue samples.

Thus, Figure 1c provides visual evidence that the 2 dissimilarities focus on different mark-

ers. The RF dissimilarity focuses on markers that are dependent. Dependent markers may

correspond to disease pathways, which drive the clinical outcomes of interest. Thus, another

reason why the RF dissimilarity is attractive for tumor marker expressions is that it weighs

the contributions of each covariate on the dissimilarity in a natural way: the more related the

covariate is to other covariates the more it will affect the definition of the RF dissimilarity.

Another reason why the RF dissimilarity is attractive for tumor marker expression is

that it intrinsically dichotomizes the tumor marker expressions. While the information from

all 8 tumor markers contributed to the clustering of the samples, RF cluster membership can

be predicted with the following rule: tumor samples with > 65% staining for tumor marker 1

and > 80% staining for marker 2 are classified into RF cluster 1 (only 9.4% misclassifications),

see Figure 1d. For clinical practice, it may be important to find threshold rules for defining

cluster membership in terms of a few tumor marker expressions. To arrive at such rules, one

can use a supervised learning method, e.g. we used a classification tree predictor (Breiman et

al. 1984) to predict cluster membership on the basis of the underlying variables. In several

tumor marker applications, we have found that RF clusters can be described by cuts along

dependent variables. These cuts naturally lead to thresholding rules for describing the resulting

clusters. Currently, it is standard practice to dichotomize tumor marker expressions for ease

of interpretation and reproducibility in the supervised analysis of tumor marker data. But

we caution against dichotomizing expressions in an unsupervised learning analysis since ad-

hoc external threshold values may reduce information or even bias the results. As detailed
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below, the random forest dissimilarity is based on individual tree predictors, which intrinsically

dichotomizes the tumor marker expressions in a principled, data-driven way.

In section 4.1.1, we provide a simulated example that further illustrates why random

forest clustering can be particularly useful for detecting clusters, which can be described with

thresholding rules.
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2. RANDOM FOREST DISSIMILARITIES

An RF predictor is an ensemble of individual classification tree predictors (Breiman 2001).

For each observation, each individual tree votes for one class and the forest predicts the class

that has the plurality of votes. The user has to specify the number of randomly selected variables

(mtry) to be searched through for the best split at each node. The Gini index (Breiman et al.

1984) is used as the splitting criterion. The largest tree possible is grown and is not pruned. The

root node of each tree in the forest contains a bootstrap sample from the original data as the

training set. The observations that are not in the training set, roughly 1/3 of the original data

set, are referred to as out-of-bag (OOB) observations. One can arrive at OOB predictions as

follows: for a case in the original data, predict the outcome by plurality vote involving only those

trees that did not contain the case in their corresponding bootstrap sample. By contrasting these

OOB predictions with the training set outcomes, one can arrive at an estimate of the prediction

error rate, which is referred to as the OOB error rate. The RF construction allows one to define

several measures of variable importance. In this article, we use the node purity based variable

importance measure. A discussion of the different importance measures is beyond the scope of

this article. Another by-product of the RF construction is the RF dissimilarity measure, which

is the focus of this article.

2.1 The RF Dissimilarity for Labelled Data

We will briefly review how to use random forests to arrive at a dissimilarity measure for

labelled data, i.e., an outcome is available (Breiman and Cutler 2003). Since an individual tree

is un-pruned, the terminal nodes will contain only a small number of observations. The training

data are run down each tree. If observations i and j both land in the same terminal node,

the similarity between i and j is increased by one. At the end of the forest construction, the

similarities are symmetrized and divided by the number of trees. The similarity between an

observation and itself is set equal to one. The similarities between objects form a matrix, SIM ,

which is symmetric, positive definite, and each entry lies in the unit interval [0, 1]. The RF

dissimilarity is defined as (DISSIMij) = (
√

1− SIMij). The RF dissimilarity can be used as

input of multi-dimensional scaling (MDS), which yields a set of points in an Euclidean space such

that the Euclidean distances between these points are approximately equal to the dissimilarities

(Cox and Cox 2001). The aim of MDS is to choose a low dimensional configuration of points
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which minimizes a ‘stress’ function. Different stress functions lead to different MDS procedures.

In this paper, we will use classical (cMDS) and isotonic (isoMDS) (Kruskal and Wish 1978;

Shepard, Romney, Nerlove and Board 1972) multidimensional scaling as implemented in the R

(R Development Core Team 2004) functions cmdscale and isoMDS, respectively. The function

cmdscale is in the standard distribution of R. The function isoMDS is implemented in the

contributed package MASS (Venables and Ripley 2002).

2.2 The RF Dissimilarity for Unlabelled Data

We will now review how to use random forests to arrive at a dissimilarity measure for

unlabelled data (Breiman and Cutler 2003). The idea is to use the similarity matrix generated

from a RF predictor that distinguishes observed from ‘synthetic’ data. The observed data are

the original, unlabelled data while the synthetic data are drawn from a reference distribution. A

synthetic class outcome is defined by labelling the observed data by class 1 and the synthetic data

by class 2. By restricting the resulting labelled similarity measure to the observed data, one can

define a similarity measure between unlabelled observations. The similarity measure strongly

depends on how the synthetic observations are generated. We focus on two methods that have

been implemented in the randomForest function of the contributed R package randomForest

(Liaw and Wiener 2002). The function provides an R interface for Breiman’s original FORTRAN

implementation of RF.

In Addcl1 sampling, synthetic data are added by randomly sampling from the product

of empirical marginal distributions of the variables. The tree predictors of the random forest

aim to separate synthetic from observed data. Hence each tree will be enriched with splitting

variables that are dependent on other variables. Thus the resulting RF dissimilarity measure

will be built on the basis of dependent variables. In general, we find that this sampling option

works best in practice. For example, it was used the motivating example described above.

In Addcl2 sampling, synthetic data are added by randomly sampling from the hyper-

rectangle that contains the observed data, i.e. the variables of synthetic observations have a

uniform distribution with range determined by the minimum and maximum of the corresponding

observed variable. The Addcl2 sampling option has been removed from the recent versions of

Breiman’s FORTRAN implementation, but it is still implemented in the R package.

We use the RF dissimilarity as input for partitioning around medoids (PAM) clustering
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which is implemented in the R function pam in the contributed package cluster. But many

other clustering procedures (e.g. hierarchical clustering) could be used as well. Since we have

found that the Addcl1 dissimilarity often works best in practice (see for example the wine data

example below), we refer to the combination of RF dissimilarity and PAM clustering as RF

clustering. But to highlight some of the theoretical properties of RF dissimilarities, we will also

consider Addcl2 sampling. Another artificial sampling scheme that leads to a simple geometric

interpretation, is described in example ExNULL in the Appendix.
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3. APPROXIMATING THE RF DISSIMILARITY

There are several approaches for disentangling the relationship between an RF dissimilarity

and its variables. The RF variable importance measure can be used to determine which variables

are important for defining the RF dissimilarity. By construction, the variable importance is

determined by how the distribution of the observed (class 1) data differs from that of the

synthetic (class 2) data. It is often useful to model the RF clusters in terms of their underlying

variables using graphs or easily interpretable supervised learning methods. For example, one can

study how important variables vary across the clusters (e.g., parallel coordinate plots, boxplots)

or use the cluster label as outcome in a classification tree.

When dealing with quantitative (interval scale) variables, one can sometimes find a Euclid-

ean distance-based approximation of the Addcl1 RF dissimilarity if each variable is equally im-

portant for distinguishing observed from synthetic observations. This is done by i) replacing the

variable values by their ranks, ii) standardizing the result to mean 0 and variance 1, and iii)

using the resulting variables in a Euclidean distance. To motivate i), note that the RF dissimi-

larity depends only on variable ranks (scale invariance) since the underlying tree node splitting

criterion (Gini index) considers only variable ranks. To motivate ii) note that standardization

puts the variables on a more equal footing in a Euclidean distance.

In several real data applications, e.g. the wine example below, we have found that this

approximation works quite well. But in general, the two dissimilarity measures can differ sub-

stantially, see example ExAddcl1, table 1, and example ExX in the Appendix section, which

shows that the RF dissimilarity is in general not invariant to rotations in the variable space.

3.1 Real Data Example: The Wine Data

The wine data set (in the R library mlbench) contains 13 variables that describe the

chemical analysis results of wines from three different cultivars in Italy. We interpret the cultivars

as external, true clusters and compare the RF clustering results with it using the adjusted Rand

index (Rand 1971; Hubert and Arabie 1985), which is a commonly used measure of agreement

between two partitions. The Rand index assumes its maximum of 1 in case of perfect agreement

while its expected value in the case of random partitions is 0. We find that Addcl1 RF clustering

coupled with classical MDS leads to the highest clustering agreement (adj. Rand=0.93), while

Addcl2 clustering with either cMDS (adj. Rand = 0.19) or isoMDS (adj. Rand = 0.21) does not
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perform well (the first and second column of Figure 2). The RF variable importance measure

shows that variables 6 and 7 are important (third column in Figure 2). These two variables

also have the highest correlation coefficient (0.86) among all variable pairs, which is consistent

with our explanation of Addcl1 clustering: the trees preferentially use variables that are highly

dependent.

We find that Addcl1 RF clustering (adjusted Rand = 0.93) is far superior to PAM clus-

tering with a Euclidean distance (adj. Rand = 0.37). There are two possible reasons for this

superior performance: First, the random forest dissimilarity is based on the ranks of the vari-

ables while the Euclidean distance is scale dependent. Standardizing each variable (mean = 0,

variance = 1) improves the performance of the Euclidean distance based PAM clustering con-

siderably (adj. Rand = 0.74). Second, the RF dissimilarity may focus on those variables that

contain information that relate to the cultivars, i.e. its intrinsic feature selection selects the

variables that matter for the external cluster label.

To show that the RF dissimilarity can be approximated with the Euclidean distance based

procedure outlined above, consider the 4th column of Figure 2: the Addcl1 RF dissimilarities are

strongly correlated (Spearman correlation = 0.90) with the Euclidean distance approximations.

the Addcl2 RF dissimilarities are much less correlated (correlation = 0.48) with the Euclidean

distances in this example.
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4. THE Addcl1 AND Addcl2 RF DISSIMILARITIES

In the following, we describe several simulated examples that highlight properties of the

Addcl1 and Addcl2 RF dissimilarity.

4.1 Simulated Examples

4.1.1 Example ExRule

This example is meant to illustrate why the RF dissimilarity works better in the moti-

vational example involving tumor marker expressions. The underlying cluster structure can be

described using a simple thresholding rule. There are 2 signal variables. For observations in

cluster 1 and cluster 2, the 2 signal variables X1 and X2 have random uniform distributions on

the intervals U [0.8, 1.0] and U [0, 0.8], respectively. Thus cluster 1 observations can be predicted

using the threshold rule X1 > 0.8 and X2 > 0.8. We simulate 150 cluster 1 observations and 150

cluster 2 observations. Noise variable X3 is simulated to follow a binary (Bernoulli) distribution

with hit probability 0.5, which is independent of all other variables. Noise variables X4, . . . , X10

are simulated by randomly permuting variable X1, i.e. they follow the same distribution of X1

but are independent of all other variables.

In Figure 3 the observations have been colored as follows: black if X1 > 0.8 and X3 = 1,

red if X1 > 0.8 and X3 = 0, blue if X1 ≤ 0.8 and X3 = 0, and green if X1 ≤ 0.8 and X3 = 1.

The Addcl1 RF dissimilarity focuses on variables X1 and X2 in its construction since these

are the only variable that are dependent. This can can be seen from the RF variable importance

measures depicted in Figure 3c. Figures 3a and b show that when the Addcl1 RF dissimilarity is

used as input of classical or isotonic multidimensional scaling, it results in distinct point clusters

that correspond to whether or not X1 > 0.8.

In contrast, the Addcl2 RF dissimilarity focuses on variable X3 in its construction since

its binary distribution in the observed data is quite different from its uniform distribution in

the synthetic data. This can be seen from the RF variable importance measures depicted in

Figure 3f. Since the RF Addcl2 definition is driven by variable X3, the point clouds that result

in classical and isotonic MDS plots, are defined by the values of X3, see Figure 3d and e. To a

lesser extent the Addcl2 dissimilarity is also defined by variables 1 and 2 since their dependence

can also be used to distinguish observed from synthetic observations.
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Similar to the Addcl2 RF dissimilarity, the Euclidean distance is determined by variable

X3 as can be seen from the coloring of the point clouds in classical and isotonic MDS plots

(Figures 3g and h. The reason for this is that X3 is the variable with the highest variance

(Figure 3i).

Example ExRule illustrates why the RF clusters in the motivational example were differ-

ent from those of the Euclidean distance. In this tumor expression data example, the Euclidean

distance also focused on tumor marker with the highest variance while the RF distance focused

on the most dependent tumor markers. In both examples, the clusters could be described using

a simple thresholding rule.

4.1.2 Example ExDep

This example shows the effects of highly collinear variables. In this example, all variables

have independent, random uniform distributions except that variable 1 equals variable 2. More

specifically, the data consists of 150 observations with 5 random uniform variables U [0, 1]. Vari-

ables 2 through 5 are independent while variable 1 equals variable 2. The synthetic data that

results from Addcl1 sampling have 5 independent, random uniform variables. Since variables

1 and 2 are highly dependent in the observed but not in the synthetic data, they are most

important for distinguishing observed from synthetic data. Thus the Addcl1 RF dissimilarity,

which is identical to the Addcl2 RF dissimilarity in this case, focuses on variables 1 and 2 in its

construction. This can be seen from the multidimensional scaling plot in Figure 4. The points

fall along a U-shape. The color coding of the points reveals that the U-shape corresponds to

high, medium, and low values of variable 1. Similarly, when the RF dissimilarity is used as input

of PAM clustering (k = 3 clusters), the resulting 3 clusters correspond to low, medium, and high

values of variable 1. Depending on the application this may or may not be an interesting result.

If the 2 variables measure the expression levels of distinct tumor markers, tight co-expression

may reflect the disease pathway. In this case, it may be important to define clusters on the basis

of the expression levels of the tumor markers in the pathway. However, if the 2 variables simply

represent redundant variables (e.g. weight and body mass index) the corresponding clusters may

be trivial. This potential problem is not particular to the RF dissimilarity but plagues other

dissimilarities as well. As a data preparation step, it is often advisable to remove redundant
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variables.

4.1.3 Example ExAddcl1

This example is used to describe a situation where the Addcl1 RF dissimilarity leads

to clusters while the Addcl2 RF dissimilarity does not. Further, it shows that the Addcl2

RF dissimilarity may give rise to spuriously distinct point clouds in classical multi-dimensional

scaling plots. The example was originally motivated from the study of tumor marker data (Shi et

al. 2004). As discussed in the motivational example, tumor marker expressions are often scored

by the percentage of cells staining. These tumor marker scores (percentages) can have semi-

continuous, highly skewed distributions since many observations may take on the value 0 and/or

100 percent. The data set ExAddcl1, contains 120 observations with 18 independent binary

noise variables and 2 signal variables defined as follows. The first signal variable contains random

uniform values for the first 60 observations but is set to 0 for the remaining 60 observations. The

second signal variable is set to 0 for the first 60 variables but has random uniform values in the

remaining 60 observations. Thus a scatter plot of the data along the 2 signal variables would

exhibit an ‘L’ shape. Figure 5 shows that when the Addcl1 dissimilarity is used as input of

classical MDS, one finds 2 distinct point clouds. These 2 distinct point clouds correspond to the

arms of the ‘L’ in the aforementioned scatter plot of the signal variables. The variable importance

measure shows that the first 2 (semi-continuous) variables are most important for defining these

point clouds. In contrast, the Addcl2 dissimilarity leads to 4 distinct point clouds in a classical

MDS plot. The coloring reveals that the point clouds do not correspond to the underlying true

clustering structure determined by variables 1 and 2 (see also the variable importance plot). In

additional (unreported) simulation examples, we have found that the Addcl2 RF dissimilarity

may give rise to spuriously distinct point clouds when used as input of classical multi-dimensional

scaling. Therefore, we advise to use isotonic MDS for the Addcl2 RF dissimilarity.

4.1.4 Example ExAddcl2

This example is used to describe a situation where the Addcl2 RF dissimilarity leads to

clusters while the Addcl1 RF dissimilarity does not. The data consisted of 100 simulated ob-

servations with 20 uncorrelated variables. The first variable was simulated to have a Bernoulli

(binary) distribution with hit probability 0.5 while the remaining 19 variables were drawn from

a random uniform distribution. Here, we assume that the first variable be treated as numeric
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(not categorical) so that for the Addcl2 RF dissimilarity, synthetic are generated by sampling

from the hyper-rectangle that contains the observed data, i.e. the variables have independent

uniform distributions. Figure 6 shows that only the Addcl2 dissimilarity in conjunction with

isoMDS scaling leads to distinct point clouds corresponding to the values of the binary variable.

In contrast, an MDS plot involving the Addcl1 RF dissimilarity does not exhibit any distinct

point clouds. This result can be explained as follows. If the observed data have several uni-

formly distributed variables and few binary variables, synthetic and observed data can only be

distinguished by the binary variables, i.e. these variables will be important for the definition

of the RF dissimilarity. This can be seen from the variable importance plot in Figure 6: for

Addcl2 sampling, only the binary variable is recognized to be important. For Addcl1 sampling,

the variable importance measure tells the opposite story. Here the synthetic data have the

same distribution as the observed data, i.e. the synthetic class outcome has no relation to the

variables. In this case, the Gini criterion will favor splitting variables that assume many values.

4.2 Which RF Dissimilarity Should Be Used?

The examples above illustrate which patterns and clusters can be detected as a result of

using the Addcl1 or the Addcl2 RF dissimilarity as input in PAM clustering or multidimensional

scaling plots. These patterns may or may not correspond to clusters in the Euclidean distance

sense of the word. Depending on the research goal, the user should decide before the analysis

whether the patterns found using a particular RF dissimilarity would be of interest.

To be more specific, consider example Addcl2 for which one variables is binary (an extreme

case of a mixture distribution with well separated components) and the remaining variables

follow random uniform distributions. All variables are independent. A Euclidean distance and

the Addcl2 RF dissimilarity lead to distinct point clouds (clusters) in a multi-dimensional scaling

plot. However, the Addcl1 RF dissimilarity does not lead to distinct point clouds in an MDS

plot. How one judges the performance of the Addcl1 dissimilarity in this case depends on the

research goal. In many applications, one would want that the MDS plot leads to two distinct

point clouds corresponding to the values of the binary variable. Then the Addcl1 dissimilarity

would be unsuitable. However, if the binary variable encodes patient gender, the resulting point

clusters would probably be uninteresting. Then the Addcl1 RF dissimilarity would be suitable.
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5. USING THE RF DISSIMILARITY IN PRACTICE

We find that the RF clustering results are robust with respect to the choice of the RF

parameter mtry (the number of variables considered at each node split). This can be illustrated

by studying noised up versions of example ExAddcl1, see Table 1. To be specific, noise was sim-

ulated to have a uniform distribution between U [0, L] for different noise levels L = 0.1, 0.2, 0.3.

The noise was added to the signal variables of those observations that had a signal variable value

of 0. As is to be expected, the Addcl2 RF dissimilarity fails completely in this example and we

discuss the performance of the Addcl1 RF dissimilarity in the following. Table 1 records how

the Rand index changes as a function of mtry. Reasonably large values of mtry (default is the

square root of the number of variables) lead to good agreement (high Rand index) between RF

clusters and the underlying true cluster label. Relatively large values of mtry ensure that the

signal variables have an increased chance of being chosen as node splitters. Very low values of

mtry lead to inferior performance. Other (unreported) simulations show that very high values

of mtry can lead to poor clustering performance if the cluster structure is determined by many

variables.

We find that the value of mtry that minimizes the out-of-bag error rate does not necessarily

lead to the best clustering performance. This can again be illustrated using Table 1: the values

of mtry that lead to the smallest error rate, do not necessarily lead to the highest Rand index.

The OOB error rate simply measures how different the observed data are from the synthetic

data according to the RF predictor.

Roughly speaking, there is an inverse relationship between OOB error rate and the cluster

signal in the data. This can be seen in Figure 7, which depicts the relationship between the

adjusted Rand index and the out-of-bag error rate for different noised up versions of examples

ExAddcl1 and ExAddcl2. Low noise levels (high signal) lead to a low OOB error rate, which in

turn correspond to high values of the Rand index. Figure 7 also shows that an OOB error rate

of 50% may correspond to high signal data in Addcl1 sampling.

5.1 Computational Considerations

When dealing with labelled data, RF predictors do not overfit the data: the more trees a

forest contains, the more accurate it is (Breiman 2001). When using RF to arrive at a dissimi-

larity measure, a similar property holds: the more trees are grown, the better the dissimilarity
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measure will be able to separate observations. In the examples of this paper, we typically used

2000 trees per forest.

We find that the RF dissimilarity can vary considerably as a function of the particular

realization of the synthetic data. When it comes to the RF dissimilarity, we strongly recommend

to average the results of multiple forest constructions. The RF dissimilarity is subject to Monte

Carlo fluctuations if few forests are grown or if the total number of trees is low. To study how

the cluster performance depends on the number of forests and the number of trees per forest,

we averaged the results of several of simulated examples described above. We used the Rand

index to measure the agreement between the RF cluster label and the true (simulated) cluster

label. Figure 8 shows boxplots that visualize the distribution of the Rand index for different

numbers of forests. The total number of trees was fixed to 5000 and the number of trees per

forest was chosen accordingly. Overall, we find that the results are fairly robust with respect

to the number of forests as long as the proximities of at least 5 forests are averaged. On the

other end of the spectrum (e.g. 5000 forests with 1 tree each), the clustering performance is

diminished. Incidentally, we averaged the RF similarities of at least 8 different forests in the

examples of this paper. As pointed out by a reviewer: instead of averaging the proximities of

several forests, it may be easier to run a single forest with a very large second class (suitably

re-weighted).

The computation of the RF dissimilarity can be parallelized in 2 ways: the tree compu-

tations can be parallelized and the forest computations can be parallelized since the final RF

dissimilarity is the average over the forest dissimilarities.

5.2 Software Implementation

An R software tutorial of the random forest clustering method and sample data sets

can be obtained from the following website: http://www.genetics.ucla.edu/labs/horvath/

RFclustering/RFclustering.htm. The tutorial is based on the randomForest function of the

contributed R package randomForest (Liaw and Wiener 2002). The function provides an R

interface for Breiman’s original FORTRAN implementation of RF.
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6. DISCUSSION

Our motivational example provides evidence that the RF dissimilarity can be particularly

useful for detecting clusters that are described by thresholding rules. It has been found that

such clusters are clinically meaningful in tumor marker expression studies (Shi et al. 2004).

In general, random forest dissimilarities are a class of dissimilarities that are highly de-

pendent on how the synthetic data are generated. Example ExNull in the appendix provides an

extreme example for showing that the RF dissimilarity may be very different from the Euclidean

distance when synthetic observations are chosen in an artificial way. Further, the PAM cluster-

ing results reported in table 1 show that the RF dissimilarity is in general very different from

the Mahalanobis distance.

We describe the patterns and clusters that can be detected as a result of using different

random forests dissimilarities in PAM clustering or multidimensional scaling plots. Depending

on the research goal, the user should decide before the analysis whether the patterns found

using a particular RF dissimilarity would be of interest. For the motivational example (tumor

marker data), the clusters have a rectangular shape along highly dependent variables, which is

attractive in this application.

It is relatively difficult to provide a geometric interpretation of RF clustering, which is

why we have discussed several strategies for disentangling the relationship between variables

and the RF dissimilarity (a Euclidean distance approximation, tree predictors, boxplots, etc).

In the appendix, we list several examples that allow for a simple geometric interpretation.

Important properties of the RF dissimilarity derive from the underlying tree predictors

and the forest construction.

The RF dissimilarity handles mixed variable types well, i.e. it can handle both categorical

and ordered variables in a simple and natural way. It inherits this property from the underlying

tree predictors (Breiman et al. 1984).

The RF dissimilarity is invariant with respect to monotonic transformations of the variable

values and it is robust to outlying observations. This is because the node splits only depend on

the variable ranks (Breiman et al. 1984). But it is not invariant to orthogonal transformations

(rotations) in the original Euclidean space as demonstrated by example ExX in the appendix.

The RF dissimilarity allows for several straightforward approaches of dealing with missing

variable values. On the one hand are approaches that have been suggested for tree predictors,
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e.g. the use of surrogate splits (Breiman et al. 1984) or the ‘missings together’(MT) approach

(Zhang and Bracken 1996). On the other hand, is an iterative imputation approach suggested

by Breiman and Cutler (2003). A study of these missing data approaches is beyond the scope

of this manuscript.

The RF dissimilarity easily deals with a large number of variables due to its intrinsic

variable selection. The Addcl1 RF dissimilarity weighs the contribution of each variable on the

dissimilarity according to how dependent it is on other variables. In general, the RF dissimi-

larity will use those variables in its construction that distinguish observed from synthetic data

according to the underlying tree predictors.

The Addcl1 RF dissimilarity can be used as input of classical or isotonic (non-parametric)

MDS plots. Usually, we use classical MDS for the Addcl1 dissimilarity. But we strongly recom-

mend to use isoMDS for the Addcl2 RF dissimilarity to avoid the detection of spurious patterns

(see example ExAddcl1).

The Addcl2 RF dissimilarity favors discrete variables over continuous variables as illus-

trated in example ExAddcl2. This may or may not be a desirable property of the Addcl2 RF

dissimilarity as discussed in section 4.2. In general, we advocate the use of the Addcl1 RF dis-

similarity over the use of the Addcl2 RF dissimilarity. Breiman’s recent Fortran program only

implements the Addcl1 dissimilarity.

There is empirical evidence that the Addcl1 RF dissimilarity can be superior to standard

distance measures in several applications (Allen et al. 2003; Shi et al. 2004). But it is clear

that other dissimilarity measures will be superior in other applications. For example, when it is

desirable to weigh the variable contributions according to their scale, the RF dissimilarity may

be a bad choice since it only considers feature ranks. If possible, the choice of the dissimilarity

should be guided by the research goal and by domain knowledge.
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APPENDIX: SIMPLE GEOMETRIC EXAMPLES

Here we provide rather artificial examples that allow for a simple geometric interpretation

of RF clustering and that highlight some important properties. But these examples are not

meant to show the advantages of the RF dissimilarity directly.

Example ExNULL: This example allows for a simple geometric interpretation of RF

clustering and illustrates that the RF dissimilarity may be very different from the Euclidean

distance when synthetic observations are chosen in an artificial way. The data consisted of 100

observations with 20 independent, random uniform variables, i.e. there are no clusters in the

Euclidean distance sense of the word (Figure 9a). However, by generating synthetic observations

in an artificial way, one can arrive at an RF dissimilarity that leads to 4 distinct point clouds in

a multi-dimensional scaling plot. Specifically, synthetic data are simulated such that the first 2

variables are constant with value equal to 0.5 while the remaining 18 variables have independent

random uniform distributions. Clearly, variables 1 and 2 distinguish observed from synthetic

data. Note that both MDS plots show 4 distinct point clouds in the observed data (Figures 9c

and d). The four point clouds correspond to the four quadrants in Figures 9b and the boundaries

of the quadrants correspond to hyperplanes that separate synthetic from observed data. In this

example, the RF clusters have a simple geometrical interpretation: RF clusters are delineated by

hyper-rectangles along (important) variable axes that isolate observed data from synthetic data.

In general, the RF construction can lead to much more flexible boundaries between observed

and synthetic data. But in this particular example, we find that hyper-rectangles are a good

approximation. It is clear that the hyper-rectangles originate from the underlying tree predictors

which recursively partition the feature space along the variable axes.

Example ExX: This example is used to illustrate that RF clustering is in general not

rotation invariant in a Euclidean space. Further, it allows for a simple geometric interpretation

of RF clustering. The data consisted of 300 points that formed a cross in the 2-dimensional

Euclidean plane. There are two versions of the data: one where the cross lines up with the

coordinate axes (Figure 10b) and one where the cross is rotated by 45 degrees (Figure 10a).

The RF construction aims to separate observed from synthetic data by cuts along variable axes.

When the synthetic data are generated by Addcl2 sampling, this is not possible and RF clustering

fails to detect the 4 cross arms (Figure 10a). However, when the data are rotated by 45 degrees,

cuts along variable axes succeed at separating observed from synthetic data (Figure 10b).
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Table 1: Simulation study ExAddcl1. Different levels of noise are added to the signal variables.

The RF clustering performance (measured by the adj. Rand index) is recorded for different

ways of generating synthetic data(Addcl1 and Addcl2), different MDS procedures (classical and

isotonic MDS), and different numbers of random variables (mtry). We also report the Rand

indices when a Euclidean or a Mahalanobis distance is used on the same data. Note that the

Addcl1 dissimilarity leads to the highest Rand indices while the other dissimilarities fail to detect

the clusters.

Addcl1 Addcl2 Euclidean Mahalanobis

noise mtry Error Rand Rand Error Rand Rand Rand Rand

(cMDS) (isoMDS) (cMDS) (isoMDS)

0.1 1 0.6 0 0 0 0.014 0 0.011 0.002

0.1 3 0.61 0.24 0.27 0 0 0 0.011 0.002

0.1 6 0.66 0.75 0.81 0 0.01 0 0.011 0.002

0.1 12 0.55 0.81 0.69 0 0 0 0.011 0.002

0.1 15 0.57 0.63 0.75 0 0 0 0.011 0.002

0.2 1 0.55 0.003 0.001 0 0.02 0 0.011 0.003

0.2 3 0.62 0.004 0.12 0 0.02 0 0.011 0.003

0.2 6 0.61 0.48 0.43 0 0 0.002 0.011 0.003

0.2 12 0.58 0.53 0.44 0 0 0 0.011 0.003

0.2 15 0.56 0.53 0.48 0 0 0 0.011 0.003

0.3 1 0.66 0.012 0.038 0 0 0 0.055 0.005

0.3 3 0.6 0 0.074 0 0 0 0.055 0.005

0.3 6 0.61 0.44 0.17 0 0 0 0.055 0.005

0.3 12 0.61 0.39 0.39 0 0 0 0.055 0.005

0.3 15 0.61 0.48 0.44 0 0 0 0.055 0.005
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FIGURE CAPTIONS

Figure 1. a) The histogram of the first tumor marker expression illustrates that tumor marker

expressions tend to be highly skewed. b) Kaplan-Meier plots visualize the survival time distri-

butions of tumor sample groups defined by cross-tabulating random forest cluster membership

with the Euclidean distance based cluster membership. Clearly, the RF dissimilarity leads to

clusters that are more meaningful with respect to post-operative survival time. c) A heatmap

depiction of the tumor marker expressions which are standardized to mean 0 and variance 1 for

each marker. Rows correspond to tumor samples and columns to tumor markers. The samples

are sorted according to the colors defined in b). The column-side color bar represents the dif-

ferent group memberships as shown in a). Clearly, samples in RF cluster 2 (blue and green side

bar colors) show low expressions in tumor markers 1 and 2. d) A scatter plot involving tumor

markers 1 and 2, which have been colored according to RF and Euclidean cluster membership

defined in b). The horizontal and vertical lines correspond to threshold values found when using

a tree predictor for predicting cluster membership on the basis of the 2 tumor markers. The

upper right hand corner (tumor marker 1 expression > 65% and marker 2 expression > 80%) is

enriched with red and black points, i.e. with RF cluster 1 samples.

Figure 2. The wine data are depicted in two dimensional scaling plots. The observations are

labelled by the cultivar (external label) and colored by RF cluster membership. The figures in

the first and second row correspond to the Addcl1 and the Addcl2 RF dissimilarity, respectively.

The figures in the first and second column correspond to classical and isotonic MDS plots.

The last column contains scatter plots of the RF dissimilarities versus the Euclidean distance

involving the standardized variable ranks.

Figure 3. The ExRule data are depicted in 2 dimensional MDS plots. Plots in the first

and second columns use classical and isotonic MDS, respectively. The MDS plots in the upper,

middle and lower rows are based on the Addcl1 RF, Addcl2 RF, and the Euclidean dissimilarity,

respectively. The coloring of the points is explained in the text. Note that the Addcl1 RF dissim-

ilarity leads to 2 point clouds that are determined by variables 1 and 2, see also the RF variable

importance plot in c). In contrast, the Addcl2 RF dissimilarity and the Euclidean distance lead

to point clouds that are mainly distinguished by variable 3. The RF variable importance plot in

f) shows that the Addcl2 RF dissimilarity focuses on variable 3 in its construction. The variance
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plot in i) shows that variable 3 has the highest variance, which explains why it dominates the

definition of the Euclidean distance.

Figure 4. The ExDep data (5 random uniform variables) are depicted using the first two

(highly dependent) variables, var1 and var2. The observed values lie on the diagonal (var1 =

var2) and are colored and labelled by the Addcl1 RF clustering label, i.e. the result of using the

RF dissimilarity as input of PAM clustering (k = 3 clusters). The synthetic data are colored

in turquoise and labelled by ‘5’. b) Classical multi-dimensional scaling plot of the Addcl1 RF

dissimilarity. The order of the colors in the 2 figures reveals that the RF clusters correspond to

low, medium, and high values of the variable var1.

Figure 5. The ExAddcl1 data are depicted in 2 dimensional scaling plots. The observations are

labelled and colored by the true underlying cluster structure (the arms of the ‘L’ shape defined

by signal variables 1 and 2). The MDS plots in the top and bottom row depict the Addcl1

and Addcl2 dissimilarities, respectively. Plots in the first and second column use classical and

isotonic MDS, respectively. The RF variable importance measure is plotted in the third column.

The variables are enumerated on the x-axis and the corresponding variable importance on the

y-axis.

Figure 6. The ExAddcl2 data are depicted in 2 dimensional scaling plots. The observations

are labelled and colored by the true underlying cluster structure (the values of the binary vari-

able). The MDS plots in the top and bottom row depict the Addcl1 and Addcl2 dissimilarities,

respectively. Plots in the first and second column use classical and isotonic MDS, respectively.

The RF variable importance measure (based on node purity) is plotted in the third column:

variables are listed on the x-axis, variable importance is on the y-axis.

Figure 7. The relationship between the adjusted Rand index and the out-of-bag error rate.

a) The results for the Addcl1 RF dissimilarity for noised up versions of Example ExAddcl1, see

also Table 1. High dependency between variables 1 and 2 (low noise levels) lead to low OOB

error rates, which in turn correspond to high values of the Rand index. b) The analogous results

of the Addcl2 RF dissimilarity for noised up versions of Example ExAddcl2.

Figure 8. Boxplots of the Rand index of agreement (between cluster labels and simulated
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underlying true dependence structure) versus the number of forests used. The number of trees

per forest was chosen such that the total number of trees was 5000. The middle line in each

boxplot represents the median; the upper and lower hinges of the box show the median of the

upper and lower halves of the data. The ends of the line segments attached to the box extend

to the smallest data value and the largest data value.

Figure 9. a) The ExNULL data are depicted using only the first two variables, var1 and var2.

No dependence structure is present. b) Same plot as in a) but 100 synthetic points have been

inserted in the center of the plot (colored in turquoise). The original observations are labelled

and colored by the same color and label as in plot c). c) An isotonic MDS plot that uses the RF

dissimilarity as input. Clearly, 4 distinct point clouds emerge. The coloring and the labelling

shows that the 4 point clouds correspond to the 4 quadrants around the point (0.5, 0.5) in plot

b). d) Classical MDS plot that uses RF dissimilarity as input.

Figure 10. Scatterplot of the ExX data along the two variable axes. Points are labelled

by the arm of the cross (k = 1, . . . , 4) and colored by their RF cluster label. The synthetic

data are generated by Addcl2 sampling and are represented by solid, turquoise points. The RF

construction aims to separate observed from synthetic data by cuts along variable axes. In figure

a) this is difficult and RF clustering assigns the points along intervals of the x-axis. In figure

b) cuts along variable axes succeed at separating synthetic from observed observations and the

resulting RF clusters correspond to the 4 arms of the cross. Incidentally, when a Euclidean

distance is used as input of k = 4 medoid (PAM) clustering, the resulting clusters correspond

to the arms of the cross irrespective of the orientation of the cross.
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