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Analysis of CSFIR Expression in Prostate Cancer with
Clinical Stage, Tumor Grade and Pruunuis by Tissue Array
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Tissue Microarray
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DNA Microarray



Tissue Array Section

~700 Tissue
< Samples

0.6 mm 0.2mm




KI-6/7 Expression in Kidney
Cancer

High Grade Low Grade

Message: brown staining related to tumor grade



Multiple measurements per patient:
Several spots per tumor sample
and several “scores” per spot

« Each patients (tumor sample) is
usually represented by multiple spots

— 3 tumor spots
-1 matched normal spot

e Maximum intensity = Max

e Percent of cells staining = Pos

e Spots have a spot grade: NL,1,2,.




Properties of TMA Data

 Highly skewed, non-normal, semi-
continuous.

— Often a good idea to model as ordinal
variables with many levels.

e Staining scores of the same markers
are highly correlated



Histogram of tumor marker expression scores: POS and MAX
Percent of Cells Staining(POS)
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Thresholding methods for tumor
marker expressions

e Since clinicians and pathologists prefer
thresholding tumor marker expressions, it is
natural to use statistical methods that are based
on thresholding covariates, e.qg. regression trees,
survival trees, rpart, forest predictors etc.

e Dichotomized marker expressions are often fitted
in @ Cox (or alternative) regression model
— Danger: Over-fitting due to optimal cut-off selection.

— Several thresholding methods and ways for adjusting
for multiple comparisons are reviewed Iin

e Liu X, Minin V, Huang Y, Seligson DB, Horvath S (2004)
Statistical Methods for Analyzing Tissue Microarray Data. ] of
Biopharmaceutical Statistics. Vol 14(3) 671-685






Tumor Class Discovery

Molecular tumor classes=clusters of patients with similar
gene expression profiles

Main road for tumor class discovery

— DNA microarrays

— Proteomics etc

— unsupervised learning: clustering, multi-dimensional scaling plots
Tissue microarrays have been used for tumor marker
validation

— supervised learning, Cox regression etc

Challenge: show that tissue microarray data can be used in
unsupervised learning to find tumor classes

— road less travelled



Tumor Class Discovery using
DNA Microarray Data

Taw oot

 Tumor class discovery
entails using a
unsupervised learning
algorithm (e.g
hierarchical, k-means,
clustering etc.) to
automatically group
tumor samples based on
their gene expression
pattern.
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Bullinger et al. N Engl | Med. 2004
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Clusters involving TMA data may have
unconventional shapes:
Low risk prostate cancer patients are colored

HA18AC

80

100

In black.

eScatter plot involving 2
“dependent’ tumor markers. The
remaining, less dependent
markers are not shown.

el ow risk cluster can be described
using the following rule

Marker H3K4 > 45% and H3K18 >
/0%.

eThe intuition is quite different
from that of Euclidean distance
based clusters.



Unconventional shape of a
clinically meaningful patient cluster

e 3 dimensional scatter

' plot along tumor
3 markers
: ¥ | |
. * Low risk patients are
S A *“i [ € colored In black
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A dissimilarity measure is an essential
input for tumor class discovery

e Dissimilarities between tumor samples are
used in clustering and other unsupervised
learning techniques

e Commonly used dissimilarity measures
include Euclidean distance, 1 - correlation



Challenge

* Conventional dissimilarity measures that
work for DNA microarray data may not be
optimal for TMA data.

— Dissimilarity measure that are based on the
intuition of multivariate normal distributions
(clusters have elliptical shapes) may not be
optimal

— For tumor marker data, one may want to use a
different intuition: clusters are described using
thresholding rules involving dependent
markers.

— It may be desirable to have a dissimilarity that
is invariant under monotonic transformations
of the tumor marker expressions.






Kidney cancer:
Comparing PAM clusters that result from using
the RF dissimilarity vs the Euclidean distance
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The RF dissimilarity is determined by
dependent tumor markers

Tumor markers

* The RF dissimilarity
focuses on the most
dependent markers (1,2).

* |In some applications, it is

Patients good to focus on markers

EOfted that are dependent since
Y .

cluster they may constitute a

disease pathway.

 The Euclidean distance
focuses on the most
varying marker (4)

Marker1 2 3 4 > b i 8




Marker?2

The RF cluster can be described
using a thresholding rule involving
the most dependent markers
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* Low risk patient if

marker1>cut1 &
marker2> cut2

 This kind of

thresholding rule can
be used to make
predictions on
Independent data sets.

e Validation on

Independent data set



Random Forest Predictors

Breiman L. Random forests. Machine Learning 2001;45(1):5-32
http://stat-www.berkeley.edu/users/breiman/RandomForests/




Tree predictors are the basic unit
of random forest predictors

Classification and

Regression Trees

(CART)
by
— Leo Breiman
— Jerry Friedman

— Charles J. Stone
— Richard Olshen

e RPART library in R software
Therneau TM, et al.



An example of CART

* Goal: For the patients admitted into ER, to
predict who is at higher risk of heart
attack

* Training data set:

— No. of subjects =215

— Outcome variable = High/Low Risk
determined

— 19 noninvasive clinical and lab variables were
used as the predictors



CART
ngh 17{:%3 @
Low 83% Construction

Is BP >91?
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Low 83%}

High 70%
Low 30%

Is BP > 917
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CART

Classified as low risk!
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Low 83% Construction
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High 2% High 23%
Low 98% Low 77%

Is ST present?

Classified as high risk!

High 50% High 11%
Low 50% Low 89%

Classified as low risk!




CART Construction

* Binary
-- split parent node into two child nodes

e Recursive

-- each child node can be treated as parent
node

e Partitioning

-- data set is partitioned into mutually
exclusive subsets in each split



RF Construction




RF Construction




RF Construction
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Random Forest (RF)

* An RF is a collection of tree predictors such that
each tree depends on the values of an
independently sampled random vector.




Prediction by plurality voting

e The forest consists of N trees

* Class prediction:
— Each tree votes for a class; the predicted class

C for an observation is the plurality, max. 2,
[f(x,T) = C]






Intrinsic Similarity Measure

e Terminal tree nodes contain few
observations

e [f case i and case j both land in the same
terminal node, increase the similarity
between i and j by 1.

e At the end of the run divide by 2 X no. of
trees.

* Dissimilarity = sqrt(1-Similarity)



. Age BP ...
High 170/ ; Patient 1: 50 85
L Patient 2: 45 80
Is BP > 917 Patient 3:
o
High 70% High 12%
Low 30% Low 88%
Is age <= 62.57?
YE% 5 \1\]{:)‘
High 2% High 23%
Low 98% Low 77%

Is ST present?

1

e patients 1 and 2 end up in
the same terminal node

* the proximity between
them 1is increased by 1

High 50%
Low 50%

High 11%
Low 890/1:}




Unsupervised problem as a
Supervised problem
(RF implementation)

e Key Idea (Breiman 2003)

— Label observed data as class 1

— Generate synthetic observations and label
them as class 2

— Construct a RF predictor to distinguish class 1
from class 2

— Use the resulting dissimilarity measure in
unsupervised analysis



Two standard ways of generating
synthetic covariates

B independent sampling from each of the univariate
distributions of the variables (Addcl1l =independent
marginals).

B independent sampling from uniforms such that each
uniform has range equal to the range of the

corresponding variable (Addcl2).

The scatter plot of

original (black) and
synthetic (red) data x

based on Addcl2 '
sampling. a

x1'



RF clustering

e Compute distance matrix from RF
— distance matrix = sqrt(1-similarity matrix)
* (Conduct partitioning around medoid
(PAM) clustering analysis

— input parameter = no. of clusters k






Abstract:
Random forest dissimilarity

Intrinsic variable selection focuses on dependent variables
— Depending on the application, this can be attractive

Resulting clusters can often be described using
thresholding rules—2>attractive for TMA data.

RF dissimilarity invariant to monotonic transtormations of
variables

In some cases, the RF dissimilarity can be approximated
using a Euclidean distance of ranked and scaled features.

RF clustering was originally suggested by L. Breiman (RF manual).
Theoretical properties are studied as part of the dissertation work of
Tao Shi. Technical report and R code can be found at

www.genetics.ucla.edu/labs/horvath/RFclustering/RFclustering.htm
www.genetics.ucla.edu/labs/horvath/kidneypaper/RCC.htm




Geometric interpretation of RF clusters

m RF cuts along the feature axes that isolate synthetic

from observed observations will lead to clusters.
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Geometric interpretation of RF clusters

B RF cuts along the feature axes that isolate synthetic

from observed observations will lead to clusters.
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Geometric interpretation of RF clusters

B RF cuts along the feature axes that isolate synthetic

from observed observations will lead to clusters.
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Geometric interpretation of RF clusters

B RF cuts along the feature axes that isolate synthetic

from observed observations will lead to clusters.
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Geometric interpretation of RF clusters

B RF cuts along the feature axes that isolate synthetic

from observed observations will lead to clusters.
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var2

Geometric interpretation of RF clusters

B RF cuts along the feature axes that isolate synthetic

from observed observations will lead to clusters.
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RF clustering is not rotationally invariant

A
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a) D)
Cuts along the axes do not Cuts along the axes succeed at
separate observed from synthetic separating observed data from

(turquoise) data. Synthetic data.






Simulated Cluster structure

Scatter plot of 2 signal variables Histogram of noise variables
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Example ExRule

Addcl1, cMDS Addcl1, Variable Imp.
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The clustering results
for example ExRule

e Addcll dissimilarity focuses on most dependent
variables—> clusters are determined by cuts along
variables X1 and X2.

e Resulting clusters can be described using a simple
thresholding rule.

e Euclidean distance focuses on most varying variable X3
- PAM clusters and MDS point clouds are driven by X3.



Typical Addcl2 Example

Few independent covariates contains cluster
info (binary signal), rest are noise

Pairwise scatter plot

Example: i

warl

One binary variable

Rest random uniform
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Nature of Addcl2 RF clustering
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RF Distance

RF dissimilarity vs. Euclidean
distance (DNA Microarray Data)
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Theoretical reasons for using an
RF dissimilarity for TMA data

¢ Main reasons

— natural way of weighing tumor marker contributions to the
dissimilarity

e The more related a tumor marker is to other tumor markers the
more it contributes to the definition of the dissimilarity

— Nno need to transform the often highly skewed features
e based feature ranks
— Chooses cut-off values automatically

— resulting clusters can often be described using simple
thresholding rules

e Other reasons

— elegant way to deal with missing covariates
— intrinsic proximity matrix handles mixed variable types well

« CAVEAT: The choice of the dissimilarity should be determined by
the kind of patterns one hopes to find. There will be situations when
other dissimilarities are preferrable.






Global histone modification patterns predict
risk of prostate cancer recurrence

Dawnid B. Seligson'*, Steve Horvath™**, Tao Shi™*, Hong Yu', Sheila Tze',
Michael Grunstemn” and Saavash K Kuodistang®

ts of ‘Pathology and Laboratory Medicine, “Human Genetics and

‘Biostaustics m the School of Publie Health, and “Biologacal Chenustry, David

Geffen School of Medicine, Unuversity of Califormia, Los Angeles, California

90095, USA

Aberratons in post-translatonal modifications of histones have been shown

to occur in cancer cells bur only ar individual promorers' and have not been related to
clinical outcome. Histone modifications, such as acervladon and methylation of
lysines (K) and arginines (R), also occur over large regions of chromarin including
non-promoter sequences’ referred to as “global histone modifications.” Here we
asked whether changes in global levels of individual histone modifications are also
associated with cancer and, importantly, whether these changes are predictive of
clinical outcome. Through immunohistochemical staining of 183 primary
prostatectomy samples, we determined the percentage of cells that stain for histone
acervlation (Ac) and di-methyladon (diMe) of five different residues in histones HJ
and H4. Grouping of samples with similar patterns of modificatons identified rwo
disease sub.types with distinct risks of ramor recurrence among patients with low-.
grade prostate cancer. These patterns were predictors of outcome independent of
umor grade, stage, pre-operative prostate-specific antigen (PSA) levels, and capsule
invasion. Thus, widespread changes in specific histone modifications represent
novel molecular heterogeneiry in prostate cancer, and may underlie the broad range
of clinical behavior displaved by cancer patients.



Analysis Outline

Used RF clustering to find distinct patient
clusters without regard to outcome

Relating the clusters to clinical information
showed that patient clusters have distinct PSA
recurrence profiles

Constructed a rule for predicting cluster
membership

Applied this rule to an independent validation
data set to show that the rule predicts PSA
recurrence



Cluster Analysis

of Low Gleason Score Prostate Samples
(UCLA data)

Low pavents only Test dataset (UCLA)
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1) Construct a tumor marker rule for
predicting RF cluster membership.
2) Validate the rule predictions in an
Independent data set

Threshold Rule Validation
Vahdation dataset (U Michigan)
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Discussion Prostate TMA Data

* Very weak evidence that individual
markers predict PSA recurrence

* None of the markers validated individually

* However, cluster membership was highly
predictive, I.e the rule could be validated In

an independent data set.



Summary

e We have been motivated by the special features
of TMA data and explored the use of RF
dissimilarity in clustering analysis.

* We have carried out theoretical studies to gain
more insights into RF clustering.

* We have applied RF clustering to different types
of genomic data such as TMA, DNA microarray,
genomic sequence (Allen et al. 2003) and SAGE
(unpublished) data.
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TMA Data

* 366 patients with Renal Cell Carcinoma

(RCC) admitted to UCLA between 1989
and 2000.

* Immuno-histological measures of 8 tumor
markers were obtained from tissue
microarrays constructed from the tumor
samples of these patients.



MDS Plot of All the RCC
Patients

* Colored by their
LU RF cluster and labeled

: by tumor subtypes.
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Survival

Interpreting the clusters in
terms of survival

K-M curves
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Hierarchical clustering with Euclidean
distance leads to less satisfactory results

Cluster Dendrogram

Cluster-| Non | Clear a _ |
ing clear cell )
label | Cell | patients
patients
1 9 286
(20) | (307) | %
2 | 41 | 30
(30) )

* RF clustering grouping in red




Molecular grouping is superior to
pathological grouping

Molecular Grouping Pathological Grouping

p =9.03e-05

"

° | wmm 327 patients in cluster 1

Survival
Survival

_ . | w316 clear cell patients
== 39 patients in cluster 2 === 50 non-clear cell patients

Time to death (years) Time to death (years)



Identify “irregular” patients

. Clustering | Non clear Clear cell
| label Cell patients
patients
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‘Regular’ Clear Cell Patients
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g 1 <
ﬁ E
L
| $3
<
£
nx.
\ p = 4 82e-(0
g' 1_1‘—1
w— Chuster 1 —dd-a
o | = Clusier 2
ﬁq L L n L " B
(] r, 4 & 4 10 14
Time to death (years)
» D
K-M curves Mean variable values for each cluster
- w= 122 high-grade patients
20 ineguiar low-grade patients
o}l = 199 reQuis low -grade patients
- p = 8.680-10
- -
ggd n‘liﬂlﬂl*-‘ﬂl"l—.i -
g
':- E |
o
< E
oy E
D

0 2 4 & 8 10
Time to death (years)




‘Regular’ Clear Cell Patients
(cont.)

Molecular Grouping Pathological Grouping
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Detect novel cancer subtypes

A MDS Plot
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Results TMA clustering

* (Clusters reproduce well known clinical subgroups

— Example: global expression differences between clear
cell and non-clear cell patients

* RF clustering allows one to identity “outlying”
tumor samples.

* Can detect previously unknown sub-groups

* Empirical evidence suggests that RF clustering is
better than standard clustering in this setting
(prostate data, unpublished)
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Casting an unsupervised problem into
a supervised problem

¢ g(z) = L= {x1,29,...,2n8}
e golz) = L' = {x},25,..., Ty}

e The combined data of £ and £’ can be considered a random sample drawn
from the mixture density (g(x) + go(x))/2.

e If one assigns the value Y = 1 to each sample point drawn from g(z) and
Y = 0 those drawn from golx). then

glxr) glx)/golx)

wz)=E{Y|z) = ——m—— =
g(x) + go(z) 14 glx)/qo(x)

can be estimated by supervised learning using the combined sample

(¥1,x1), (Y2, 22),..., (Yon . ToN)

as training data. The resulting estimate ji(xr) can be inverted to provide
an estimate for g(x)

_ pilx)
glr) = glr)——
l — p(x)

Ref. Hastie et al. 2001
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RF variable importance vs.

The more important a
gene is according to RF,
the more important it is
for survival prediction

Message:

The more correlated a gene is
With other genes the more
Important it is for the Def
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Which multi-dimensional
scaling method to use?

B cmdscale

usually works

well with

Addcl1 but not
with Addcl2
because it may
lead to spurious

clusters.

B However

isoMDS works

well with
Addcl2!
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Frequency

Frequency plot of the same tumor
marker in 2 independent data sets

DATA SET 1

1

| | I

|

0 20 40 60 al 100
Marker Expressi uﬁ

Frequency

Validation Data Set 2

The cut-off corresponds roughly to the 66% percentile.

Thresholding this tumor marker allows one to stratify the cancer patients

into high risk and low risk patients. Although the distribution looks very different
the percentile threshold can be validated and is clinically relevant.



	Capture d’écran 2018-10-23 à 22.13.51
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	Capture d’écran 2018-10-23 à 22.15.49
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	Capture d’écran 2018-10-23 à 22.19.25
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	Capture d’écran 2018-10-23 à 22.20.26
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	Capture d’écran 2018-10-23 à 22.24.52
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	Capture d’écran 2018-10-23 à 22.25.59
	Capture d’écran 2018-10-23 à 22.26.06
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