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Abstract

Summary: A polygenic risk score (PRS) is a sum of trait-associated alleles across many genetic loci,

typically weighted by effect sizes estimated from a genome-wide association study. The application

of PRS has grown in recent years as their utility for detecting shared genetic aetiology among traits

has become appreciated; PRS can also be used to establish the presence of a genetic signal in under-

powered studies, to infer the genetic architecture of a trait, for screening in clinical trials, and can act

as a biomarker for a phenotype. Here we present the first dedicated PRS software, PRSice (‘precise’),

for calculating, applying, evaluating and plotting the results of PRS. PRSice can calculate PRS at a

large number of thresholds (“high resolution”) to provide the best-fit PRS, as well as provide results

calculated at broad P-value thresholds, can thin Single Nucleotide Polymorphisms (SNPs) according

to linkage disequilibrium and P-value or use all SNPs, handles genotyped and imputed data, can cal-

culate and incorporate ancestry-informative variables, and can apply PRS across multiple traits in a

single run. We exemplify the use of PRSice via application to data on schizophrenia, major depres-

sive disorder and smoking, illustrate the importance of identifying the best-fit PRS and estimate a

P-value significance threshold for high-resolution PRS studies.

Availability and implementation: PRSice is written in R, including wrappers for bash data manage-

ment scripts and PLINK-1.9 to minimize computational time. PRSice runs as a command-line pro-

gram with a variety of user-options, and is freely available for download from http://PRSice.info

Contact: jack.euesden@kcl.ac.uk or paul.oreilly@kcl.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The polygenic model of human phenotypes has long been

hypothesized, but only in recent years have the results from genome-

wide association study (GWAS) revealed that much of the genetic

basis for most complex traits comprises small effects of hundreds or

even thousands of variants. For clinical outcomes, this polygenic ef-

fect can be considered a genetic liability to disease risk. While pre-

diction of phenotype from an individual’s genetic profile is

compromised by this polygenicity, the application of polygenic risk

scores (PRS) has shown that prediction is sufficiently accurate for a

number of applications.

A PRS for an individual is a summation of their genotypes at

variants genome-wide, weighted by effect sizes on a trait of interest.

Effect sizes are typically estimated from published GWAS results,

and only variants exceeding a P-value threshold, PT, are included

(Dudbridge, 2013). Since even large GWAS achieve only marginal

evidence for association for many causal variants, PRS are usually

calculated at a set of P-value thresholds, e.g. PT ¼ 1� 10�5;

1� 10�4; . . . ; 0:05; 0:1; . . . ;0:5. A common application of PRS is to

test for shared genetic aetiology between traits. Here PRS on the

base phenotype are calculated, using GWAS results, in individuals

from an independent data set, and these are used as predictors of the

target phenotype in a regression (see Supplementary Note S1). This

technique was first applied by the International Schizophrenia

Consortium (2009), demonstrating that genetic risk for

schizophrenia (SCZ) is a predictor of bipolar disorder. This study

also acted as a proof-of-principle for PRS, showing that PRS based

on thousands of common variants genome-wide, including many
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with no effect and using effect size estimates from published GWAS,

can provide a reliable indicator of genetic liability. This has moti-

vated several other applications, including polygenic Mendelian

Randomisation (Hung et al., 2014), where causality of potential

intermediate phenotypes in a disease pathway can be tested (Ehret

et al., 2011), use of PRS as biomarkers, and the enrolment of clinical

trial participants according to risk (Hu et al., 2013).

Here we describe the first dedicated and fully automated soft-

ware package for the application of PRS - PRSice. PRSice has a

high-resolution option that returns the best-fit PRS, has a flexible set

of user options intended to capture current standard practices in

PRS studies and the different applications of PRS, and produces

plots for inspection of results. We also perform a simulation study

to estimate a P-value significance threshold for high-resolution PRS

studies.

2 Overview of PRSice

PRSice has been developed to fully automate PRS analyses, substan-

tially expanding the capability of PLINK-1.9 (Chang et al., 2014). A

key feature of PRSice is that it can calculate PRS at any number of

P-value thresholds (PT) and can thus identify the most predictive

(precise) threshold. It requires only GWAS results on a base pheno-

type and genotype data on a target phenotype as input (base and tar-

get phenotype may be the same); it outputs PRS for each individual

and figures depicting the PRS model fit at a range of PT. PRSice

allows users to include or remove SNPs in linkage disequilibrium,

handles genotyped and imputed data, and can calculate ancestry-in-

formative dimensions for use as covariates. These features integrate

R code with computations performed in PLINK-1.9 and extensive

bash scripts to minimize computational time. PRSice is a command-

line program that allows users to apply a large number of PRS,

under different parameter settings or across multiple base and target

traits. In addition to the standard approach, there is an option to use

summary statistics for the target as well as the base data, using the

gtx package (Johnson, 2013). For future updates of PRSice, see the

website: http://PRSice.info.

3 Results

Here we illustrate the use of PRSice to test for shared genetic aeti-

ology between traits. We first investigate the genetic relationship be-

tween schizophrenia (SCZ) and major depressive disorder (MDD),

both known to be complex and comorbid. We apply PRSice to repli-

cate the finding by Smoller et al. (2013) that SCZ PRS can predict

MDD status, using the RADIANT-UK MDD case-control data set

(Supplementary Note S2, Lewis et al., 2010). Applying PRSice, we

remove SNPs in linkage disequilibrium and include principal com-

ponents to control for population structure. We find significant evi-

dence that SCZ PRS predict MDD status, and under the approach of

only testing PRS at several broad P-value thresholds find the most

predictive threshold at PT¼0.05 (Fig. 1). Next we repeat the ana-

lysis using high-resolution PRS (Supplementary Note S3) and find

the most predictive PRS at PT ¼ 0:0265 (Fig. 2). The PRS at

PT ¼ 0:05 explains 1.5% of the variation in MDD (Nagelkerke R2;

P ¼ 1:3� 10�9) whereas the high-resolution best-fit PRS explains

2.1% (P ¼ 2:1� 10�12) and is based on 5252 fewer SNPs (12148

rather than 17400).

Next we apply PRSice to two tobacco-related phenotypes from

the TAG consortium (Thorgeirsson et al., 2013) and the RADIANT-

UK MDD data. These analyses reveal, for the first time, shared

genetic aetiology between the dichotomous trait ‘ever smoked’ and

MDD, but not between smoking consumption, as a quantitative

trait, and MDD (Supplementary Fig. S1). In the former, high-reso-

lution scoring again produces a substantially different best-fit PRS

than that from broad PT, in terms of model fit, significance and

number of SNPs included (Supplementary Fig. S1b).

Under high-resolution PRS in particular, multiple tests are

performed and so the P-value of the best-fit PRS will be inflated.

Therefore, we perform a permutation study utilizing the SCZ and

MDD data described above, and estimate an adjusted significance

threshold for the best-fit PRS of P¼0.004 (Supplementary Note

S4). Prior to a more extensive study, we suggest a more conservative

significance threshold of P¼0.001 if using the best-fit PRS for

association testing in PRS studies.

4 Discussion

Here we have described our PRSice software, illustrating its use with

three PRS studies. We have illustrated the potential benefit of ob-

taining the best-fit PRS and have estimated a corresponding signifi-

cance threshold. There is great potential for the future application of

PRS in genetics: for gaining insights into the genetic architecture of a

trait by comparing observed PRS with theoretical expectations

across a range of PT (International Schizophrenia Consortium,

2009), for assessing the genetic overlap of a trait(s) across popula-

tions, for use as biomarkers, as instrumental variables, or even to

provide evolutionary insights (Berg and Coop, 2014). The PRS ap-

proach, and PRSice software, could be extended to test the effects of

copy number variants, epigenetic markers and more. We believe
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Fig. 1. Bar plot from PRSice showing results at broad P-value thresholds for

Schizophrenia PRS predicting MDD status. A bar for the best-fit PRS from the

high-resolution run is also included

Fig. 2. High-resolution PRSice plot for SCZ predicting MDD status. The thick

line connects points at the broad P-value thresholds of Fig.1
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that PRSice can simplify PRS studies greatly, expand the application

of PRS and aid the implementation of best-practice in PRS studies.

Funding

MRC studentship (to JE), EU FP7 no. 279227(PsychDPC), and the NIHR

Biomedical Research Centre at SLaM and KCL.

Conflict of Interest: none declared.

References

Berg,J.J. and Coop,G. (2014). A population genetic signal of polygenic adapta-

tion. PLoS Genet., 10, e1004412.

Chang,C.C. et al. (2014). Second-generation PLINK: rising to the challenge of

larger and richer datasets. ArXiv e-prints.

Dudbridge,F. (2013). Power and predictive accuracy of polygenic risk scores.

PLoS Genet., 9, e1003348.

Ehret,G.B. et al (2011). Genetic variants in novel pathways influence blood

pressure and cardiovascular disease risk. Nature, 478, 103–109.

Hu,Y. et al. (2013). The benefits of using genetic information to design preven-

tion trials. Am. J. Hum. Genet., 92, 547–557.

Hung,C.F. et al. (2014). Relationship between obesity and the risk of clinically

significant depression: Mendelian randomisation study. Brit. J. Psychiatr.,

205, 24–28.

International Schizophrenia Consortium (2009). Common polygenic vari-

ation contributes to risk of schizophrenia and bipolar disorder. Nature, 460,

748–752.

Johnson,T. (2013). gtx: Genetics ToolboX. R package version 0.0.8.

Lewis,C.M. et al. (2010). Genome-wide association study of major recurrent

depression in the u.k. population. Am. J. Psychiatr., 167, 949–957.

Smoller,J.W. et al. (2013). Identification of risk loci with shared effects on five

major psychiatric disorders: a genome-wide analysis. Lancet, 381,

1371–1379.

Thorgeirsson,T.E. et al. (2013). A common biological basis of obesity and

nicotine addiction. Transl. Psychiatr., 3, e308.

1468 J.Euesden et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/31/9/1466/200539 by U
niversity of Liege user on 24 O

ctober 2018


