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This tutorial is a learning resource that outlines the basic process and provides specific software tools for
implementing a complete genome-wide association analysis. Approaches to post-analytic visualization and
interrogation of potentially novel findings are also presented. Applications are illustrated using the free
and open-source R statistical computing and graphics software environment, Bioconductor software for
bioinformatics and the UCSC Genome Browser. Complete genome-wide association data on 1401 individuals
across 861,473 typed single nucleotide polymorphisms from the PennCATH study of coronary artery disease are
used for illustration. All data and code, as well as additional instructional resources, are publicly available through
the Open Resources in Statistical Genomics project: http://www.stat-gen.org. © 2015 The Authors. Statistics in
Medicine Published by John Wiley & Sons Ltd.
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1. Introduction

This brief tutorial is intended as a learning and teaching tool, offering the fundamental computational
skills for entry into the field of applied statistical genetics and bioinformatics. Unique from existing
resources, this tutorial offers the framework as well as complete and extensible R scripts to perform
a comprehensive genome-wide association (GWA) analysis and post-analytic interrogation. Familiarity
at an elementary textbook level [1–3] with basic statistical and genetics concepts for GWA studies is
assumed. The content of this tutorial builds and expands on several existing and highly recommended
resources on genetic and statistical concepts, including [4,5]. We begin the analysis after genotyping calls
are made and quality control and assurance measures are taken, as described, for example, in [6, 7]. An
alternative freely available software platform is PLINK, another toolset used for whole genome associa-
tion analysis. Additional post-analytic interrogation is also presented in this manuscript using the UCSC
Genome Browser. A companion website is available for this tutorial through the Open Resources in Sta-
tistical Genomics (ORSG) project (http://www.stat-gen.org) with all R coding examples fully embedded
in .Rmd files to be edited and weaved as dynamic and reproducible reports. A complete list of external
resources is provided in Supplementary Information A.
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The focus of this tutorial is on GWA analysis of common variants that involves testing association
of each single nucleotide polymorphism (SNP) independently and subsequently characterizing findings
through a variety of visual and analytic tools. In the rare variant setting, in which interest resides in inves-
tigating variations that are present in less than 1% of the population, alternative techniques are needed
that account for regional associations. The reader is referred to a rich literature that addresses rare vari-
ant analysis, including [8–10]. In the present manuscript, we focus on the analysis of data arising from
population-based GWA studies of unrelated individuals where primary interest resides in identifying
associations between SNPs and a single binary, for example, case or control status or quantitative pheno-
type. Extensive methods and tools specific to family-based investigations that account for within-family
correlation structures are also available (e.g., [11, 12]). Further extensions of the tools presented to cen-
sored survival or longitudinal outcomes can be achieved through application of an alternative modeling
framework in the association analysis of step 7. The data used for illustration here are limited to the 22
autosomal chromosomes, and both typed and 1000 Genomes [13] imputed SNPs are considered as poten-
tial predictor variables. Post-analytic interrogation of SNP-level findings is an essential part of GWA
analysis, and first steps, including mapping positive SNP findings to gene regions, are described herein.
We note that there exists a large literature on alternative analytical paradigms for simultaneous analysis

Figure 1. Genome-wide association (GWA) analysis workflow. GWA analysis is composed of 10 essential steps
that fall into four broadly defined categories as illustrated in this figure. Additional detail on the structure of the
data files, particularly the relationship of the .ped and .map files with the .bim, .bed, and .fam files, is provided
in Figure 2. This workflow is based on a single GWA analysis and may be modified in the context of a large
collaborative meta-analysis involving the combination of multiple GWA studies that require harmonization.
Additional detail on typical modifications in this context is provided in Section 6. *Substructure, also referred to
as population admixture and population stratification, refers to the presence of genetic diversity (e.g., different
allele frequencies) within an apparently homogenous population that is due to population genetic history (e.g.,

migration, selection, and/or ethnic integration).
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of multiple SNPs, including methods for gene-based (e.g., [14–16]) and pathway-based (e.g., [17, 18])
analysis, as well as growing literature on gene–environment interaction analysis in the context of GWA
studies [19].

The PennCATH cohort data, arising from a GWA study of coronary artery disease (CAD) and cardio-
vascular risk factors based at University of Pennsylvania Medical Center [20], are used throughout this
tutorial as an illustrative example and have been made publicly available for training use to accompany the
tutorial. In this study, a total of n = 3850 individuals were recruited between July 1998 and March 2003.
A nested case-control study of European ancestry severe angiographic CAD cases and angiographic
normal controls were selected for genome-wide genotyping. De-identified data used in this tutorial are
composed of n = 1401 individuals with genotype information across 861,473 SNPs. Corresponding
clinical data, including age, sex, high-density lipoprotein (HDL)-cholesterol, low-density lipoprotein
cholesterol, triglycerides, and CAD status are available as well. HDL-cholesterol, low-density lipoprotein
cholesterol and triglycerides are all quantitative traits that are well-described cardiovascular disease
risk factors. Notably, PennCATH is one of the core GWA studies nested within the Coronary ARtery
DIsease Genome-wide Replication And Meta-analysis (CARDIoGRAM) consortium meta-data and
serves as a representative regional population with no admixture [20, 21].

Genome-wide association analysis strategies typically include four broadly defined components:
(i) data pre-processing; (ii) new data generation; (iii) statistical analysis; and (iv) post-analytic interroga-
tion. A primary goal of these investigations is identifying and characterizing the association among SNPs
and measures of disease progression or disease outcomes. In Sections 2 – 5 in the succeeding paragraphs,
we present the key aspects of each of the core analytic components, including a description of attributes
of the data, application of relevant software tools, and guidance on interpretation of findings. An overall
summary of the analytic approach we follow is provided in Figure 1. Notably, this figure highlights
multiple stages within each of the four broadly defined components of analysis. The resultant ten steps are
as follows: (1) reading data into R to create an R object; (2) SNP-level filtering (part 1); (3) sample-level
filtering; (4) SNP-level filtering (part 2); (5) principal component analysis (PCA); (6) imputation of
non-typed genotypes; (7) association analysis of typed SNPs; (8) association analysis of imputed data;
(9) integration of imputed and typed SNP results; and (10) visualization and quality control of association
findings. Further data interrogation using external resources is also discussed. In the following sections,
we elaborate on each of these steps. Notably, this workflow is typical for analysis of a single GWA study
and may be modified in the context of a large collaborative meta-analysis involving the combination
of multiple studies requiring harmonization. Additional detail on the analysis pipeline in this con-
text is provided in Section 6 where we also present a broader contemporary context and additional
available resources.

Figure 2. Genome-wide association data files. GWA data files are typically organized into either .ped and .map
files or .bim, .bed, and .fam files. Plink converts .ped and .map files into .bim, .bed, and .fam files. The later set is
substantially smaller because the .bed file contains a binary version of the genotype data. R can read in either set

of files although the later is preferable.
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2. Data pre-processing

In the example we present, samples were genotyped using the Affymetrix 6.0 GeneChip and provided
to us in .CEL format. The Birdseed calling algorithm, which is based on an expectation-maximization
type algorithm [20], was applied to generate genotypes and confidence scores for each sample at every
SNP. In turn, PERL and unix scripts were used to convert these to .ped and .map files. While R can read
.ped and .map files, it is generally preferable to first convert these two files to .bim, .bed, and .fam files.
This can be carried out using PLINK and is preferable as the conversion of the .ped file to a .bed file, a
binary formatted file, results in a substantial reduction in file size. In the following texts, we describe the
elements of each file type mentioned and their interrelatedness. A visual representation of the data files
is provided in Figure 2.

• .ped and .map files: The .ped file contains information on each study participant including family ID,
participant ID, father ID, mother ID, sex, phenotype, and the full typed genotype. Here, each SNP
is bi-allelic (i.e., only two nucleotides are observed at any given SNP across study participants) and
coded as a pair of nucleotides (A, C, T, or G). Notably, the ordering in the pair is non-informative
in the sense that the first alleles listed for each of the two SNPs are not necessarily on the same
chromosome. The .map file contains a row for each SNP with rsNumber (SNP) and corresponding
chromosome (chr) and coordinate (BPPos) based on the current genome build.

• .bim, .bed, and .fam files: The .bim file contains the same information as the .map file as well as the
two observed alleles at each SNP (A1 and A2) from the .ped file. It contains a row for each SNP
and six columns, containing information for the chromosome number, rsNumber, genetic distance,
position identifier, allele 1, and allele 2. The .bed file contains a binary version of the genotype data.
This is the largest of the three files because it contains every SNP in the study, as well as the genotype
at this SNP for each individual. The .fam file contains the participant identification information,
including a row for each individual and six columns, corresponding the same columns described for
the .ped file with the exception of the genotype data. Note that not all of these columns contain unique
information. That is, in a population-based study of unrelated individuals, ‘family ID number’ and
‘individual ID number’ will be the same.

• Clinical data file: An additional ascii .txt or .csv file is typically available, which includes clinical
data on each study subject. The rows of this file represent each subject, and the columns correspond
to available covariates and phenotypes. There may be redundancies in this file and the data contained
in the columns labeled ‘sex’ and ‘phenotype’ in the .fam file.

We begin by installing packages and setting up global parameters in R. This tutorial utilizes several
packages available from Bioconductor, an open-source bioinformatic software repository. Of these, we
make the most use of snpStats, which includes functions to read in various formats of genotype
data and carry out quality control, imputation, and association analysis. SNPRelate is also well uti-
lized and includes functions for sample-level quality control and computationally efficient principal
component (PC) calculation. Other packages include functionalities for data visualization (ggplot2,
LDheatmap, postgwas), data manipulation (plyr), and parallel processing (doParallel), as well
as their dependencies.

We additionally specify the parameters used in the data processing and analysis. Of particular note, we
set the location of the GWA data set (available at https://www.mtholyoke.edu/courses/afoulkes/Data/
GWAStutorial/) and specify input and output files.
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2.1. Reading and formatting data in R (step 1)

In order to read the .fam, .bim, and .bed files in R, we use the read.plink() function in the
Bioconductor snpStats package. The genotype slot of the resulting list contains an SnpMa-
trix object, which is a matrix of genotype data with a column for each SNP and a row for each
study participant.

The clinical data (GWAStutorial_clinical.csv) can be read in the familiar way as a comma delimited
text file.

Finally, we subset the data at this stage to include only individuals who have data available in both the
genotype and phenotype files.

In the data example provided, genotype information is available for 861,473 typed SNPs across n = 1401
individuals with available phenotype data.

As illustrated in Figure 1, once we have read in the the genotype and clinical information, we are ready
to proceed with the next steps of the GWA data pre-processing. This involves two stages of filtering the
data, at SNP and sample levels, respectively. Each of these is described in more detail in the succeeding
texts, accompanied by the appropriate R code for implementation. We note again that the order of analysis
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may vary depending on whether a single GWA analysis is being performed (as described herein) or the
analyst is preparing results to be incorporated into a larger meta-analysis that requires data harmonization
across multiple studies. In the latter case, the following filtering steps (steps 2, 3, and 4) may be excluded
or performed centrally after analysis (steps 7 and 8) as summary level data are combined across studies.

2.2. Single nucleotide polymorphism-level filtering – part 1 (step 2)

The second data pre-processing step involve removing (also referred to as ‘filtering’) SNPs that will not
be included analysis. Well-described reasons for this exclusion include large amounts of missing data, low
variability, and genotyping errors (e.g., [22]). Typically, SNP-level filtering based on a large amount of
missing data and lower variability is performed first. This is followed by sample-level filtering (see step 3
in the succeeding texts), and finally, SNP-level filtering based on possible genotyping errors (see step 4
in the succeeding texts) is performed. The rationale for this is that both sample-level relatedness and
substructure (for which we filter in step 3) can influence the Hardy–Weinberg equilibrium (HWE) crite-
rion (step 4) used for filtering SNPs based on genotyping errors. An iterative procedure that repeats the
SNP and sample-level filtering until no additional samples are removed is also common. In our setting,
however, no samples are filtered, deeming this loop unnecessary.

• SNP-level filtering: call rate. The call rate for a given SNP is defined as the proportion of individuals
in the study for which the corresponding SNP information is not missing. In the following example,
we filter using a call rate of 95%, meaning we retain SNPs for which there is less than 5% missing
data. More stringent cut points (e.g., less than 5%) may be employed in smaller sample settings.

• SNP-level filtering: minor allele frequency (MAF). A large degree of homogeneity at a given SNP
across study participants generally results in inadequate power to infer a statistically significant
relationship between the SNP and the trait under study. This can occur when we have a very small
MAF so that the large majority of individuals have two copies of the major allele. Here, we remove
SNPs for which the MAF is less than 1%. In some instances, particularly small sample settings, a
cut point of 5% is applied.

We filter simultaneously on call rate and MAF using the following script.

In the data example provided, we filter 203,287 SNPs based on call rate < 0.95 and/or MAF < 0.01.

2.3. Sample-level filtering (step 3)

The third stage of data pre-processing involves filtering samples, that is, removing individuals who we
select to be excluded from analysis. Criteria for sample-level filtering are generally based on missing data,
sample contamination, correlation (for population-based investigations), and racial, ethnic, or gender
ambiguity or discordance. Each of these is described later. Additional detail on sample-level filtering is
available in, for example, [22].
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• Sample-level filtering: call rate. Similar to SNP-level filtering based on call rate, we exclude individ-
uals who are missing genotype data across more than a pre-defined percentage of the typed SNPs.
This proportion of missingness across SNPs is referred to as the sample call rate, and we apply
a threshold of 95%. That is, individuals who are missing genotype data for more than 5% of the
typed SNPs are removed. A new reduced dimension SnpMatrix genotype object is created, which
incorporates this filter.

• Sample-level filtering: heterozygosity. Heterozygosity refers to the presence of each of the two alleles
at a given SNP within an individual. This is expected under HWE to occur with probability 2 ∗ p ∗
(1 − p), where p is the dominant allele frequency at that SNP (assuming a bi-allelic SNP). Excess
heterozygosity across typed SNPs within an individual may be an indication of poor sample quality,
while deficient heterozygosity can indicate inbreeding or other substructure in that person [23]. Thus,
samples with an inbreeding coefficient |F| = (1 − O∕E) > 0.10 are removed, where O and E are
respectively the observed and expected counts of heterozygous SNPs within an individual. Note that
we calculate the expected counts for each individual based on the observed SNPs for that individual.

We filter on sample call rate and heterozygosity simultaneously in the following script:

Because the PennCATH data provided are pre-filtered, no additional samples are filtered based on an
inbreeding coefficient |F| > 0.10.

• Sample-level filtering: cryptic relatedness, duplicates, and gender identity. Population-based cohort
studies are often limited to unrelated individuals, and the generalized linear modeling approach
described in step 7 (association analysis of typed SNPs) later assumes independence across indi-
viduals. Further discussion of alternative data structures and associated analysis tools is provided in
Section 6. Importantly, in regional cohort studies (e.g., hospital-based cohort studies) of complex
diseases, individuals from the same family can be recruited unintentionally. A common measure
of relatedness (or duplication) between pairs of samples is based on identity by descent (IBD). An
IBD kinship coefficient of greater than 0.10 may suggest relatedness, duplicates, or sample mixture.
Typically, the individual of a related pair with lower genotype call rate is removed. We note that
gender identity can also be checked at this stage to confirm that self-reported gender is consistent
with the observed X and Y chromosomes; however, in the data example provided, sex chromosomes
are not available, and thus, an example of filtering on gender identity is not provided.

We begin by applying linkage disequilibrium (LD) pruning using a threshold value of 0.2, which
eliminates a large degree of redundancy in the data and reduces the influence of chromosomal
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artifacts [6]. This dimension reduction step is commonly applied prior to both IBD analysis and PCA,
applied in the succeeding texts for ancestry filtering, and results in large computational savings.

This reduces the number of SNPs from 658,186 at the end of step 2 to 72,812. Next, we calculate
pairwise IBD distances to search for sample relatedness. A strategy is employed that iteratively
removes subjects with the highest number of pairwise kinship coefficients > 0.1.

In our example, none of the samples are filtered based on the IBD kinship coefficient >0.10.
• Sample-level filtering: ancestry. PCA is one approach to visualizing and classifying individuals into

ancestry groups based on their observed genetic makeup. We do this for two reasons: First, self-
reported race and ethnicity can differ from clusters of individuals that are based solely on genetic
information, and second, the presence of an individual not appearing to fall within a racial/ethnic
cluster may be suggestive of a sample-level error. Note that we use the subset of 72,812 SNPs after LD
pruning (step 3-c) as the input for the PCA. An alternative strategy to first-stage LD pruning, which
also improves computational efficiency, is the ‘HapMap rooted’ analysis, which involves first per-
forming PCA in a reference panel, for example, HapMap or 1000 Genomes, and then projecting the
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study sample onto the resulting space. This approach is not presented herein but can be implemented
with existing functionalities of the Kinship-based INference for Gwas (KING) software [24].

No additional samples are filtered based on visual inspection of PCA plots. Again, we expect this as
the PennCATH data provided are pre-filtered.

2.4. Single nucleotide polymorphism-level filtering – part 2 (step 4)

• SNP-level filtering: HWE. Violations of HWE can be an indication of the presence of population
substructure or the occurrence of a genotyping error. While they are not always distinguishable, it is
a common practice to assume a genotyping error and remove SNPs for which HWE is violated. If
case-control status is available, we limit this filtering to analysis of controls as a violation in cases
may be an indication of association. Departures from HWE are generally measured at a given SNP
using a 𝜒2 goodness-of-fit test between the observed and expected genotypes. We remove SNPs for
which the HWE test statistic has a corresponding p-value of less than 1 × 10−6 in controls.

We filter out an additional 1,296 SNPs based on HWE p < 1 × 10−6 in CAD controls. This results
in 656,890 typed SNPs to be considered in the association analysis.

3. New data generation

After completion of SNP and sample-level filtering, we generate two new types of data prior to per-
forming our statistical analysis. The first are PCs that are intended to capture information of latent
population substructure that is typically not available in self-reported race and ethnicity variables. The
second are genotypes of untyped SNPs that may have a functional relationship to the outcome and there-
fore provide additional power for identifying association. Each of these is described in more detail in the
succeeding texts.

3.1. Creating principal components for capturing population-substructure (step 5)

Substructure, also referred to as population admixture and population stratification, refers to the presence
of genetic diversity (e.g., different allele frequencies) within an apparently homogenous population that
is due to population genetic history (e.g., migration, selection, and/or ethnic integration). PCs based on
observed genotype data capture information on substructure and are straightforward to generate using the
snpgdsPCA() function in the SNPRelate package based on the full genotype data. Notably, we again
apply LD pruning prior to the PCA. Typically, the first 10 PCs are considered as possible confounders.
This number is routine, but arbitrary, and one alternative is to select the number of PCs based on a pre-
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defined proportion of variability that they explain. The 𝜆-statistic is typically used to evaluate whether
inclusion of PCs is necessary. This is described further in step 10 (quantile–quantile (Q–Q) plots and the
𝜆-statistic).

3.2. Imputing non-typed single nucleotide polymorphisms using 1000 Genomes data (step 6)

Typed SNPs measured using chip array technology typically capture approximately one-million poly-
morphisms, which vary in at least 1% of the general population. More generally, interest lies in analyzing
association of genotypes of non-typed SNPs with disease outcomes because functional (causal) variants
may not be measured. Using the extensive externally derived resources on reference haplotypes and their
LD structure, such as HapMap and 1000 Genomes data, we can impute the unmeasured genotype data.
Three well-described and recommended stand-alone packages for SNP-level imputation are IMPUTE2,
MACH, and BEAGLE. Imputed genotypes can be reported as the ‘best guess’ genotype or as the pos-
terior probability of each genotype at a given location on the genome. Importantly, the uncertainty in
this estimation process needs to be accounted for in the association analysis, and thus, we distinguish
between genotyped and imputed data henceforth. Methods that specifically account for the uncertainty
in the imputed SNP data are described in step 8 later.

After imputation, a quality control step is performed to filter imputed data with high degrees of
uncertainty. Common measures of uncertainty are the information content and R2 [25]. We apply an
R2 threshold of 0.7 for inclusion in association analysis where in this case, R2 is the value association
with the linear model regressing each imputed SNP on regional typed SNPs. This is described further in
the snpStats package documentation. Additionally, we exclude SNPs at this stage with a MAF, after
assignment of the highest posterior probability genotype, of less than 0.01. For the purpose of illustra-
tion, we use the snp.imputation() and impute.snps() functions in the R package snpStats
to impute a limited set of 1000 Genome SNPs on the same chromosome (chromosome 16) as the geno-
typed SNPs identified as genome-wide significant in the GWA association analysis (step 7). In practice,
imputation is often performed across all chromosomes, resulting in up to 12.5 million typed and imputed
SNPs on which association analysis can be performed [13].
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We then remove failed imputations, imputed SNPs with high degrees of associated uncertainty, and
imputed SNPs with low estimated MAF.

This analysis results in 162,565 1000 Genomes imputed SNPs on chromosome 16 that are carried forward
in step 8 for association analysis. We again emphasize that the uncertainty in imputation needs to be
considered in the context of association analysis, and thus, these SNPs are considered separately from
the typed SNPs analyzed in step 7.

4. Genome-wide association analysis

4.1. Association analysis of typed single nucleotide polymorphisms (step 7)

Association analysis typically involves regressing each SNP separately on a given trait, adjusted for
patient-level clinical, demographic, and environmental factors. The assumed underlying genetic model
of association for each SNP (e.g., dominant, recessive, or additive) will impact the resulting findings;
however, because of the large number of SNPs and the generally uncharacterized relationships to the
outcome, a single additive model is typically selected. In this case and as illustrated in the code pro-
vided, each SNP is represented as the corresponding number of minor alleles (0, 1, or 2). Notably,
coding SNP variables based on alternative models (e.g., dominant or recessive) is straightforward, and
the association analysis described proceeds identically [26, 27]. In practice, a Bonferonni-corrected
genome-wide significance threshold of 5 × 10−8 is used for control of the family-wise error rate. This
cutoff is based on research, suggesting approximately one-million independent SNPs across the genome
(e.g., [28]), so tends be applied regardless of the actual number of typed or imputed SNPs under
investigation.

© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2015, 34 3769–3792
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In our data example, we use inverse normally transformed HDL-cholesterol as the response, adjust-
ing for age, sex, and the first 10 PCs. HDL-cholesterol is a complex trait associated with cardiovascular
disease, for which age and sex are established risk factors. These two covariates and the arbitrary choice
of 10 PCs are routine for cardiovascular disease trait association studies (e.g., [20, 26, 27]). Importantly,
as in any model fitting procedure, it is essential to evaluate the appropriateness of model assumption and
specifically the normality of the trait under study. Visual inspection of a histogram of HDL-cholesterol
(code provided but plot not shown) reveals some extreme values, and therefore, an inverse normal trans-
formation is selected. Alternative transformations, such as the log-transformation, may also be reasonable
and have the advantage of maintaining the relative distance between observations. We do not emphasize
this in the present tutorial as standard statistical modeling practice can be applied. The following code
prepares the phenotype data for analysis.

Running a GWA analysis in parallel, that is, simultaneously across several cores, is recommended
because of the large number of models that require fitting. Each core runs the GWA analysis for a subset
of the SNPs, and when computation is completed across all cores, the output is returned to its original
order. In the succeeding texts, we describe a cross-platform approach to running the analysis in parallel on
MAC, Unix, and Windows operating systems. The detectCores() function can be used to determine
the available number of workers. To run the analysis in parallel, we use the dopar() function in the
doParallel package, indicating the number of workers. The output of doPar() is an ascii text
file. These are contained in the GWAA() function that we developed, and is available in Supplementary
Information B of this manuscript.

In our setting, two genotyped SNPs in the cholesteryl ester transfer protein (CETP) gene region,
rs1532625 and rs247617, are suggestive of association (p < 5 × 10−6) with respective p-values of
8.92× 10−8 and 1.25× 10−7. CETP is a well-characterized gene that has been associated previously with
HDL-C (e.g., [26]). More information on these SNPs and the process of post-analytic interrogation is
provided in steps 9 and 10 later.
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4.2. Association analysis of imputed data (step 8)

Several stand-alone packages can be applied to conduct association analysis of imputed SNPs using the
corresponding posterior probabilities. These include, for example, MACH2qtl/dat [29], ProbABEL [30],
BEAGLE [31], BIMBAM [32], and SNPTEST [25]. Reviews and comprehensive comparisons of these
approaches can be found in [33,34]. The R package snpStats also has functions to read in imputed data
based on which imputation package was used (e.g., BEAGLE, IMPUTE, and MACH). For illustrations,
we use the single.rhs.tests() function in R package snpStats using the imputation rules
generated in step 6.

In total, we identify 22 imputed SNPs on chromosome 16 that are significant at a suggestive associ-
ation threshold of 5 × 10−6. Next, we select only those SNPs within the region of CETP (±5 Kb) to
report. Here, we use the map2gene() function we developed, which is also available in Supplementary
Information B, that identifies the set of SNPs that belong to a specified gene region. This function uses
gene coordinates based on Genome Reference Consortium GRCh37 (hg19), provided in the file ProCod-
gene_coords.csv. Further interrogation of these SNPs and the CETP region is provided in Figures 5a
and 6 as well as associated text.

At this stage, we map 70 imputed SNPs to the CETP region, of which 16 are significant at the suggestive
association threshold of 5 × 10−6.

5. Post-analytic visualization and genomic interrogation

5.1. Data integration (step 9)

At this stage, it is also common to ascribe SNPs to loci and report chromosome and base pair locations,
also referred to as coordinates or positions. Notably, the SNP coordinate is dependent on the genome
build, and in our data example, we use the Genome Reference Consortium GRCh37 (hg19) build. A
typical presentation of results includes gene and locus name; SNP name; chromosome number; base pair

© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2015, 34 3769–3792
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location, according to a specified build; the coefficient estimate (or odds ratio) from the model fitting
procedure; the corresponding standard error; and the associated p-value.

An additional step is required to combine the imputed data results and the typed SNP results. Notably,
genotype imputation can involve imputing all SNPs, including both unobserved and typed SNPs. Thus,
the analyst may chose to select from the imputation results only SNPs that were not typed or did not pass
the SNP-level filtering. In our example (step 6), we imputed non-typed SNPs as well as SNPs that did not
pass SNP-level filtering (steps 2 and 4). GWA significant SNPs in this combined set can then be further
visualized and interrogated as described in step 10.

Figure 3. Manhattan plot of genome-wide association analysis results. This figure illustrates the level of statisti-
cal significance (y-axis), as measured by the negative log of the corresponding p-value, for each single nucleotide
polymorphism (SNP). Each typed SNP is indicated by a grey or black dot. SNPs are arranged by chromosomal
location (x-axis). Imputation was performed on chromosome 16 only using 1000 Genomes data, and imputed
SNPs are indicated by blue dots. None of the SNPs reached the Bonferroni level of significance (p < 5 × 10−8 −
solid horizontal line); however, two typed SNPs and 22 imputed SNPs (on chromosome 16) were suggestive of

association (p < 5 × 10−6 – dashed horizontal line).
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5.2. Visualization and Quality Control (step 10)

Several plots allow us both to visualize the GWA analysis findings and to perform quality control checks at
the same time. Specifically, as elaborated in each section below we are interested in identifying data incon-
sistencies, potential systemic biases, and consistency of our findings with previously reported results. We
describe three visualization tools in the succeeding texts. In addition to these visualization approaches,
association analysis using other genetic models can be a useful sensitivity analysis.

• Manhattan plots. Manhattan plots are used to visualize GWA significance level by chromosome loca-
tion as shown in Figure 3. Here, each dot corresponds to a single SNP. The x-axis represents gene
coordinates, and the numbers shown correspond to chromosome numbers. The y-axis is the nega-
tive of the log p-value, so that large values correspond to small p-values. The solid horizontal line
indicates the Bonferonni corrected significance threshold (− log(5 × 10−8)). The dotted horizontal
line is a less stringent suggestive association threshold (− log(5 × 10−6)) that we use as an indi-
cator of a suggestive association and requiring further validation, similar to the approach taken in
[26]. Visual inspection of this plot allows for identification of SNPs with relatively small p-values
that are in regions with relatively large and non-significant p-values, suggesting potentially spuri-
ous findings. Multiple signals in the CETP region suggest that this may be a true signal. This plot
is generated using the GWAS_Manhattan() that we developed and is available in Supplementary
Information B.

• Q–Q plots and the 𝜆-statistic. Q–Q plots are used to visualize the relationship between the expected
and observed distributions of SNP-level test statistics, as illustrated in Figure 4a and b. Figure 4a
uses observed test statistics based on a model that does not adjust for potential confounders, while
Figure 4b is based on a model that includes the first 10 PCs we generated in step 5 discussed earlier
as well as sex and age. We see here that the tail of the distribution is brought closer to the y = x line
after accounting for potential confounding by population substructure in the modeling framework. If

Figure 4. Quantile–quantile plots for quality control check and visualizing crude association. Quantile–quantile
plots illustrate the relationship between observed (y-axis) and expected (x-axis) test statistics and are used as a
tool for visualizing appropriate control of population substructure and the presence of association. The left panel
(a) is based on an unadjusted model, where the deviation is below expected, while the right panel (b) is based on
a model adjusted for potential confounders, which brings the tail closer to the y = x line. The extreme observed
statistics are suggestive of association. Data generally falling on the y = x lines suggests no clear systemic bias.

Unstandardized 𝜆’s are reported. PCs, principal components.

© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2015, 34 3769–3792
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the data in this figure were shifted up or down from the y = x line, then we would consider possible
systemic bias. Finally, a slight deviation in the upper right tail from the y = x line suggests crudely
that some form of association is present in the data.

The degree of deviation from this line is measured formally by the 𝜆-statistic [35, 36], where a
value close to 1 suggests appropriate adjustment for potential substructure. While 𝜆 is improved after
adjusting for PCs (from 𝜆 = 1.014 to 𝜆 = 1.0032), a dramatic difference in values is not observed as

Figure 5. Heatmap and regional association plots. Heatmap (top) illustrating linkage disequilibrium (LD)
between typed (black) and imputed (red) single nucleotide polymorphisms (SNPs) in the cholesteryl ester trans-
fer protein (CETP) region. A total of two typed SNPs and 16 imputed SNPs are significant at the less stringent
5 × 10−6 threshold; however, the heat map only illustrates imputed SNPs with a posterior probability of 1 for the
associated genotype. We observe the presence of two distinct LD blocks within the CETP gene region, with high
levels of LD between SNPs within each block and lower LD between SNPs across the the two blocks. A related
regional association plot (bottom) illustrates association levels and LD for a larger window surrounding CETP.
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this PennCATH sample is from a relatively homogenous population. In general, the goal is to achieve
a value of 𝜆 close to one; 𝜆 > 1.2 suggests stratification, and typically, additional PCs are included in
this setting, and in some cases, the study is eliminated from inclusion in subsequent meta-analysis.
Calculation of a standardized 𝜆 that accounts for sample size is particularly useful in the context
of contrasting values across studies for inclusion in meta-analysis. We apply the following code
to generate standardized 𝜆’s for the unadjusted and adjusted models, resulting in 𝜆 = 1.0108 and
1.000632 for the unadjusted and adjusted models, respectively. For binary traits, the standardization
approach described in [37] can be applied.

• Heatmaps and regional association plots. Heatmaps and regional association plots are typically used
in the context of GWA analysis to visualize LD patterns between GWA significant SNPs and SNPs
in nearby regions, which have been previously reported. LD is typically measured by r2 or D′, which
are both transformations of the scalar D, defined as the difference between the joint probability of the
two major alleles and the product of the two marginal probabilities, where the adjustment is based on
allele frequencies. A more detailed description of these quantities can be found in [3]. An example of
a heatmap from our data analysis is provided in Figure 5a where we include the most significant SNP
from our analysis (rs1532625) and SNPs in a nearby gene, CETP. The degree of shading indicates
the amount of LD so that darker squares indicates higher LD. This figure is generated using the
following code snippet.

A regional association plot, provided in Figure 5b, provides similar information for a broader
region of the genome. In this case, the blue line at the top represents the SNP-level p-values, the
green segments indicate gene regions, and the red lines indicate LD, where we have specified to only
include lines betweens SNPs with r2 > 0.8. The following code is used to generate this figure.

© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2015, 34 3769–3792
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5.3. Additional data interrogation using external resources

Reporting SNP-level findings from association analysis is much more meaningful when a context for the
findings is also presented. For example, investigators may want to know whether a statistically significant
SNP is within a protein-coding gene, intergenic, or close to a regulatory element (e.g., a methylation
mark) in specific tissues or cell types that are relevant to the disease under investigation. Possible external
types of data that may be relevant are provided in Supplementary Information C, Table I. These fall into
eight general categories, following roughly an order representing the process from DNA information
to regulation to expression: (i) SNP; (ii) gene elements; (iii) chromatin state; (iv) epigenetic marks; (v)
transcription factor binding; (vi) RNA expression; (vii) SNP–mRNA association; and (viii) other -omics
data. We emphasize that this table is not intended to be comprehensive; rather, it provides a glimpse at
the vast amount of external data resources available. Data associated with each of the listed categories are
available from a wide range of sources (for example, column 2, Supplementary Information C, Table I)
and are generally based on a variety of technologies. The UCSC Genome Browser provides a well-devised
suite of integrated bioinformatic tools and databases, including many derived from the resources listed
in Supplementary Information C, Table I, which allow for further interrogation of GWA findings.

In this section, we provide a very brief introduction to the genome browser, with particular focus
on how to view and interpret standard tracks, visualize data corresponding to these tracks, and cre-
ate custom tracks using new data. To begin, we go to the genome browser gateway at http://genome.
ucsc.edu/cgi-bin/hgGateway. We then specify assembly Feb. 2009 (GRCh37/hg19), type the
name of our most significant SNP, rs1532625, in the field search term, and then select sub-
mit. On the next page, we select rs1532625 at chr16:57005051-57005551 under the first
heading. This choice is elaborated in the succeeding texts. The content of the next page will vary
depending on the tracks remaining open at the end of the current user’s last session. However, all
users will see in the bottom half of this page several classes of tracks, with multiple choices within
them. We make the following selections and then press refresh either after each change or after all
fields have been selected: Genes and Gene Predictions: UCSC Genes select pack; mRNA
and EST: Human mRNAs select dense; Regulation: ENCODE Regulation select show; and
Variation: common SNPs(142) select pack. All other fields should be marked hide. On the next
screen, we zoom out 100x by pressing the corresponding grey button at the top of the image to acquire
a better picture of the entire region.

The resulting image is illustrated in Figure 6. Note that your tracks could be illustrated in a different
order. Next is a summary of the elements of this figure. We note first that this is an image of the genetic
region surrounding the rs1532625 SNP (highlighted in a black box in Figure 6) we entered and that
the tracks illustrated (also based on our selections) are differentiated by the grey vertical rectangles on
the left-hand side of the figure.
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Figure 6. UCSC Genome Browser with specified tracks open.

• Variation: common SNPs(142). The bottom-most track with the heading ‘Simple Nucleotide
Polymorphisms dbSNP141) Found in >= 1% of Samples’ lists all of the common
SNPs by rsNumber that are in this region, in order of their location on the genome. We see that the
input SNP, rs1532625, is highlighted with a black box. By clicking on this box, the investigator
can retrieve additional information about this SNP, including the major and minor alleles and their
frequencies, average heterozygosity, and the chromosome and coordinate location based on the cur-
rent build. Additional information on a track can be found by pressing the grey rectangular vertical
bar on the main browser window corresponding to the track. For example, for this track, we find a
description of the source of the data (dbSNP build 142.)

• Genes and gene predictions: UCSC genes. The first track at the top of Figure 6 titled ‘UCSC
Genes’ illustrates all protein-coding and non-protein coding genes that are in close proximity to the
SNP we entered. We note based on this figure that our SNP rs1532625 falls in the protein-coding
gene CETP. Additional information about the display conventions and the configuration can be found
by pressing the grey rectangular vertical bar on the left-hand side of this track. Additional informa-
tion about each gene, including the full gene name, coordinates, size, number of exons, and prior
GWA evidence, can be retrieved by clicking on the abbreviated gene names in the browser window.

• mRNA and EST: human mRNAs. The next track entitled ‘Human mRNAs from GenBank’
provides historical information on whether there have been any reports (indicated by a vertical bar)
of the presence of mRNA corresponding to sites on the genome across all tissues and cell types.
By clicking on the title, an expanded view of this track is provided (not shown), allowing the user
to find additional information. Consider CETP, for example, for which we expect to see mRNA
expression in cells relevant to HDL production and/or regulation, such as liver tissue. By selecting
mRNA M30185 near the start of CETP, we learn that indeed, the mRNA was found in liver tissue.

• Regulation: ENCODE regulation. The next three tracks entitled ‘H3K27Ac Mark’, ‘DNaseI
Hypersensitivity Clusters in 125 cell types from ENCODE (V3)’, and
‘Transcription Factor ChIP-seq (161 factors) from ENCODE with
Factorbook Motifs’ all provide information about the presence of cell and tissue-specific
regulatory elements. For example, H3K27Ac is a histone mark indicating the degree of acetylation
of lysine 27 of the H3 histone protein, which in turn influences how accessible chromatin is for
transcription. The color coding of the density plots in this track corresponds to different cell lines.
DNA hypersensitivity is a more general measure of whether chromatin is open for transcription,
while transcription factor ChIP-seq data provides very specific information about whether given
proteins can bind to the specified DNA regions.

It is possible to obtain the data corresponding to each track. As an example, consider the ‘com-
mon SNPs’ track, click on the corresponding grey vertical rectangle to the left of this track,
and then select view table schema on the next page. If we scroll down, under the heading
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Sample Rows, we see all of the data fields associated with this track. Note also that the meta-
data about this table, including Database: hg19 and Primary Table: snp142Common, are
available at the very top of the screen (not shown). These data can be downloaded by selecting
Tools -> Table Browser on the top menu and then indicating the appropriate fields, includ-
ing assembly: Feb. 2009 (GRCh37/hg19); group: Variation; track: Common
SNPs(142); and table: snp142Common. The ‘get output’ tab at the bottom of these fields
displays the data as an ascii formatted file.

We also note that it is possible to create a custom track that is displayed and linked to the information in
this browser. To do this, first, we need to create what is a called a BED track file (different than the .bed file
discussed in Section 2 in the preceding texts) containing all of the data contributing to this track. A BED
track file must include the following five columns: chromosome number, start location, end location (one
greater than the start location for individual SNPs), identifier, score, and chromosomal strand, for which
the SNP is recognized on the browser. These are included as columns 2−6 in the table schema discussed
earlier. Once we have a properly formatted BED file, we can input it directly into the genome browser as
a custom track. In order to add this track to the genome browser, click ‘Add Custom Tracks’, from
the main browser window, and upload the new file. This will bring up a page with the details of our new
custom track. Click ‘go to genome browser’ in order to see the new custom track in the browser.

6. Broader contemporary context and discussion

This tutorial presents fundamental analysis concepts and tools for performing a single GWA analysis
and beginning the process of post-analytic interrogation. Increasingly, GWA analysis results are being
combined across a large number of studies to improve power for novel discoveries. For example, the
Global Lipids Genetics Consortium recently reported the results of a meta-analysis of 188,577 individ-
uals across 60 studies, resulting in discovery of 62 novel loci for blood lipids [38, 39]. Likewise, the
CARDIoGRAM consortium and the CARDIoGRAMplusC4D consortium metadata (which include the
PennCATH data used throughout this tutorial) include GWA study results based on 194,427 individuals
and contributed to the discovery of 46 loci associated with coronary artery disease [21,27]. An overview
of methods for GWA meta-analysis can be found, for example, in [40], with study-specific details typi-
cally provided in the Supplementary Information of associated manuscripts (e.g., [21, 38]). Importantly,
depending on consortium data harmonization procedures, we see variation in the extent and timing of
SNP and sample-level filtering, as well as the criteria for including PCs and other covariates in the final
model fitting procedure. Thus, flexibility in the step-by-step procedure described herein may be required.

Traditionally, a two-stage design was used, with replication of top suggestive findings (p < 5 × 10−6)
in a large independent study sample of like design and like ethnicity [41,42]. A threshold for significance
is set in the second stage based on the number of SNPs carried forward and typically required that the
SNP met the widely held genome-wide significance for all common SNPs (p < 5 × 10−8) in a combined
meta-analysis. However, often in contemporary studies, GWA data are available simultaneously in several
studies, and a meta-analysis is performed on all SNPs across all studies in the second stage, and the
significance threshold of p < 5×10−8 is applied. Typically, additional replications are sought in different
ethnicities and in study designs that are not identical, for example, different age groups and with different
traits that mark the same disease, in order to evaluate generalizability.

Several analytic strategies have been developed, which serve to complement the single-SNP level test-
ing approach described in this tutorial, including gene-level testing strategies that require raw genotype
data [16,43] and gene-level testing approaches that instead leverage summary output (in the form of test
statistics or p-values) of the GWA analysis presented herein [15, 44]. A broad assortment of sophisti-
cated analytic methods has also been described for gene set enrichment or biological pathway analysis
[18, 45–48]. Additional methods have been described to address the unique challenges inherent in rare
variant analysis [8–10] in which the low frequencies of mutations can result in insufficient power to
assess significance without regional context. Finally, linear mixed models have been described as an
alternative strategy for GWA analysis, which can account for family relatedness and population substruc-
ture [49–54]. An additional recommended resource for more in-depth post-processing of GWA findings,
including gene and network-based analysis, is provided in [55].

Defining the best practices for GWA data pre-processing, analysis, and post-analytic interrogation
within a framework that is logical and comprehensive for statisticians is essential for standardizing meth-
ods and ensuring reproducible and comparable findings across studies. This tutorial outlines the key
features that are integral to GWA studies, and provides the R code that can been applied to implement
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each of these features accurately. We emphasize the use of R as GWA studies are typically part of a larger
data analytic investigation (e.g., gene-based analysis as described earlier), and it is straightforward to
integrate the R code provided into larger statistical coding efforts. Alternative open-source, freely avail-
able, high-performance programing languages, for example, Julia, which was designed specifically for
parallelism and cloud computing [56], may ultimately serve to provide additional functionalities in this
big data analytic realm, particularly as post-analytic interrogation becomes more integrated with primary
GWA analysis.

Additional resources:

1000 Genomes (http://www.1000genomes.org/)
BEAGLE (http://faculty.washington.edu/browning/beagle/beagle.html)
BIMBAM (http://stephenslab.uchicago.edu/software.html#bimbam)
Bioconductor (http://www.bioconductor.org/)
dbSNP build 141(http://ftp.ncbi.nih.gov/snp)
Encyclopedia of DNA elements (ENCODE) Project (https://www.encodeproject.org/)
ENSEMBL Genome Browser (http://www.ensembl.org/)
GenABEL project (http://www.genabel.org/)
Genome Browser gateway (http://genome.ucsc.edu/cgi-bin/hgGateway)
GTex Portal (http://www.gtexportal.org/home/)
Human Metabolome Database (HMDB) (http://www.hmdb.ca/)
HapMap (http://hapmap.ncbi.nlm.nih.gov/)
IMPUTE2 (https://mathgen.stats.ox.ac.uk/impute/impute_v2.html)
Julia (http://julialang.org)
KING (http://people.virginia.edu/~wc9c/KING/)
MACH/MACH2qtl/dat (http://www.sph.umich.edu/csg/abecasis/MACH/index.html)
NCBI GenBank (http://www.ncbi.nlm.nih.gov/genbank/)
NCBI RefSeq (http://www.ncbi.nlm.nih.gov/refseq/)
NIH Roadmap Epigenomics Project (http://www.roadmapepigenomics.org/)
NCBI Sequence Read Archive (SRA) (http://www.ncbi.nlm.nih.gov/sra)
R (http://cran.r-project.org/)
PLINK (http://pngu.mgh.harvard.edu/~purcell/plink/)
ProbABEL (http://www.genabel.org/packages/ProbABEL)
snpStats (http://bioconductor.org/packages/release/bioc/html/snpStats.html)
SNPTEST (https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html)
UCSC Genome Browser (http://genome.ucsc.edu/))
Universal Protein Resource Knowledgebase (UniProtKB) (http://www.uniprot.org/)
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Supporting information

Additional supporting information may be found in the online version of this article at the publisher’s
web-site. Complete R scripts and data associated with this tutorial, as well as additional instructional
resources, are available for download as part of the Open Resources for Statistical Genomics (ORSG)
project http://www.stat-gen.org.3792
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