
GBIO0002 

 

  Van Steen K 

 

Genetics and Bioinformatics 

Kristel Van Steen, PhD2 

 

Montefiore Institute - Systems and Modeling 

GIGA - Bioinformatics  

ULg 
 

 

kristel.vansteen@ulg.ac.be  



GBIO0002 

 

  Van Steen K 

Complicating factors in bioinformatics  

1 Trait heterogeneity in GWAs 

Single traits association tests  

2 Confounding 

3.a Epidemiology 

3.b GWAs (population structure)  

3 Multiple testing 

Locus heterogeneity 

4 Multiple studies 

Meta-analysis  
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5 When variants become rare – sparse data 

Customizing GWAs for rare variants association analyses (future class) 

6 When effects become non-independent 

Biological vs statistical epistasis (future class) 
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1 Trait heterogeneity in GWAs 

The linear regression model 
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The linear regression model 

1. Input data need to be of high quality 

2. The model needs to be appropriate (hence model assumptions need to be 

checked), before beta model parameters are estimated from the data at 

hand 

3. The model needs to be appropriate before test results are 

derived/interpreted  
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1 High quality data 

BEFORE QC → true signals are lost in false positive signals  

 

(Ziegler and Van Steen 2010)  
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Why is quality control important? 

AFTER QC → skyline of Manhattan (→ name of plot: Manhattan plot): 

 

(Ziegler and Van Steen 2010) 
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The Travemünde criteria 

 
(Ziegler 2009) 
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The Travemünde criteria 

 
(Ziegler 2009) 
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2 Appropriateness of the model 

• There are 4 principal assumptions which justify the use of linear regression 

models for purposes of prediction:  

- linearity of the relationship between dependent and independent 

variables  

- independence of the errors (no serial correlation)  

- homoscedasticity (constant variance) of the errors  

▪     versus time (when time matters) 

▪     versus the predictions (or versus any independent variable)  

- normality of the error distribution.  (http://www.duke.edu/~rnau/testing.htm) 

 

• To check model assumptions: go to quick-R and regression diagnostics 

(http://www.statmethods.net/stats/rdiagnostics.html) : role of qq plots! 

  

http://www.statmethods.net/stats/rdiagnostics.html
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Estimating model parameters 

• A full model (continuous response, say “BMI”) may look like: 

𝑌 =  𝛽0 +  𝛽1𝑋1 +  𝛽2𝑋2 + 𝜀 

• Fit the model by the method of least squares (this leads to estimations b 

for the beta parameters in the model) 

• It will also lead to the error sums of squares (SSE): the sum of the squared 

deviations of each observation Y around its estimated expected value 

• The error sums of squares of the 

full model SSE(F): 

∑[𝑌 − 𝑏0 −  𝑏1𝑋1 −  𝑏2𝑋2]2  

=  ∑(𝑌 − 𝑌̂)2 
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Estimating model parameters 

𝑌 =  𝛽0 +  𝛽1𝑋1 +  𝛽2𝑋2 + 𝜀 

 

• Use vector/matrix notations: e.g., 

b=(𝑏1, 𝑏2)𝑇 

• Least square estimation of the regression coefficients beta: 

 

b=(𝑋𝑇𝑋)−1𝑋𝑇𝑦 
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3 Association tests based on linear regression models 

• For the full model 

𝑌 =  𝛽0 +  𝛽1𝑋1 +  𝛽2𝑋2 + 𝜀 

we may consider the null hypothesis H0 of interest: 

𝐻0: 𝛽1 = 0 

𝐻1: 𝛽1  ≠ 0  

• The model when H0 holds is called the reduced or restricted model. When 

𝛽1 = 0, then the regression model before reduces to  

𝑌 =  𝛽0 +  𝛽2  𝑋2  +  𝜀 

• Again we can fit this model with f.i. the least squares method and obtain an 

error sums of squares, now for the reduced model: SSE(R) 
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Association tests based on linear regression models 

• By contrasting SSE(F) and SSE(R) a test statistic can be derived to test our 

null hypothesis 

𝐹∗ =  
𝑆𝑆𝐸(𝑅) − 𝑆𝑆𝐸(𝐹)

𝑑𝑓𝑅 −  𝑑𝑓𝐹
∶  

𝑆𝑆𝐸(𝐹)

𝑑𝑓𝐹
 

which follows an F distribution when H0 holds 

• The decision rule (for a given alpha level of significance) is: 

If 𝐹∗  ≤ 𝐹(1 − 𝛼; 𝑑𝑓𝑅 −  𝑑𝑓𝐹 , 𝑑𝑓𝐹), you cannot reject H0 

If 𝐹∗  > 𝐹(1 − 𝛼; 𝑑𝑓𝑅 −  𝑑𝑓𝐹 , 𝑑𝑓𝐹), conclude H1 
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Association tests based on linear regression models 

Implications for GWAs: 

 

 (courtesy of Doug Brutlag 2010) 
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Implication for GWAs:  

𝑌 =  𝛽0 +  𝛽1𝑆𝑁𝑃 +  𝜀 

 

- 𝐻0: 𝛽1 = 0 

- 𝐻1: 𝛽1  ≠ 0 

- dfF = n − 2 (this links to df in variance estimation) 

- dfR = n − 1 (this links to df in variance estimation) 

It can be shown that for testing 𝛽1 = 0 versus 𝛽1  ≠ 0 

- 𝐹∗ =
𝑆𝑆𝐸(𝑅)−𝑆𝑆𝐸(𝐹)

𝑑𝑓𝑅− 𝑑𝑓𝐹
∶  

𝑆𝑆𝐸(𝐹)

𝑑𝑓𝐹
=   (𝑡∗)2 

Note: the t-test is more flexible since it can be used for one-sided alternatives 

whereas the F-test cannot. 
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Why to mention the relationship between the F and t (Z) statistics? 

• Analysis of variance (ANOVA) is used to test for differences among more 

than two populations (“groups of samples”).  

It can be viewed as an extension of the t-test we used for testing two 

population means.  

• In correlation, the two variables are treated as equals. In linear regression, 

one variable is considered independent (=predictor) variable (X) and the 

other the dependent (=outcome) variable Y 
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Why to mention the relationship between the F and t statistics? 
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Distributional relationships: F, t, chi-squared 
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Distributional relationships: F, t, chi-squared 
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Distributional relationships: F, t, chi-squared 
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Distributional relationships: F, t, chi-squared 

Can you see why our F* = (𝑡∗)2 
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Distributional relationships: F, t, chi-squared 

 

Can you see how the formula above relates to “taking a ratios of variances”? 

 

𝐹∗ =
𝑆𝑆𝐸(𝑅) − 𝑆𝑆𝐸(𝐹)

𝑑𝑓𝑅 −  𝑑𝑓𝐹
∶  

𝑆𝑆𝐸(𝐹)

𝑑𝑓𝐹
 

 

𝑆𝑆𝐸(𝑅)−𝑆𝑆𝐸(𝐹)

𝑑𝑓𝑅− 𝑑𝑓𝐹
= 𝑆𝑆𝑇/(𝑑𝑓𝑅 −  𝑑𝑓𝐹), 

with SST referring to the treatment sums of squares (“between” source of 

variation in contrast to errors “within” source of variation) 
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Distributional relationships: F, t, chi-squared 

 

Can you see why our F* = 
𝑏1

2

𝑠2(𝑏1)
 ? 
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Logistic regression 
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Since 

E[Y|X] = 𝑃𝑟𝑜𝑏(𝑌 = 1|𝑋) =
exp(𝜼)

(1+exp(𝜼))
 

we have 

 

𝑃𝑟𝑜𝑏(𝑌 = 1|𝑋)

1 − 𝑃𝑟𝑜𝑏(𝑌 = 1|𝑋)
= exp (𝜼) 

 

and thus 

 

𝒈(𝐸[𝑌|𝑋]) =  𝛽0 +  𝛽1𝑋 = log (
𝑃𝑟𝑜𝑏(𝑌 = 1|𝑋)

1 − 𝑃𝑟𝑜𝑏(𝑌 = 1|𝑋)
) = 𝜼 

 

(g is called the logit link function) 
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Appropriateness of the model 

 

(https://onlinecourses.science.psu.edu/stat504) 
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Model fitting in logistic regression 

 

• In standard linear models we estimate the parameters by minimizing the 

sum of the squared residuals 

• This is equivalent to finding parameters that maximize the likelihood 

• In a logistic regression we can also fit parameters by maximizing the 

likelihood 
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Association tests based on logistic regression model 

• Example:  

Logit(𝑃(𝑌 = 1)|𝑆𝑁𝑃) =  𝛽0 +  𝛽1𝑆𝑁𝑃 

- 𝐻0: 𝛽1 = 0 

- 𝐻1: 𝛽1  ≠ 0 

 

Large-sample “Wald test”:  
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Didn’t we say that T.S. below was distributed like t-squared? 
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The beauty of working with large sample statistics 

 

> par(mfrow=c(2,2)) 
> plot(density(rt(10000,9999)^2)) 
> plot(density(rf(10000,1,9999))) 

> plot(density(rchisq(10000,1))) 
> plot(density(rnorm(10000))) 
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The Wald test statistic 

• In the univariate case, the Wald test statistic is 

 

which is compared against a chi-squared distribution. 

• The Wald test statistic is almost but not exactly equal to the square of the 
t-test statistic, but they are asymptotically equivalent when n→∞. 

 

𝑏1
2

𝑠2(𝑏1)
 = (𝑡∗)2 

  

https://en.wikipedia.org/wiki/Statistic
https://en.wikipedia.org/wiki/Chi-squared_distribution
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The Wald test statistic 

Note aside: 

Alternatively, the difference can be compared to a normal distribution. In this 
case the test statistic is 

 

where is the standard error of the maximum likelihood estimate (MLE). A 
reasonable estimate of the standard error for the MLE can be given by 

, where is the Fisher information of the parameter. 

  

https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Standard_error_%28statistics%29
https://en.wikipedia.org/wiki/Fisher_information
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Link between Wald and test of independence 

• The chi-square test of independence is appropriate when the following 
conditions are met: 

- The sampling method is simple random sampling. 
- The variables under study are each categorical. 
- If sample data are displayed in a contingency table, the expected 

frequency count for each cell of the table is at least 5. 

• There are four steps involved: (1) state the hypotheses, (2) formulate an 
analysis plan, (3) analyze sample data, and (4) interpret results.  

  

http://stattrek.com/Help/Glossary.aspx?Target=Simple%20random%20sampling
http://stattrek.com/Help/Glossary.aspx?Target=Categorical%20variable
http://stattrek.com/Help/Glossary.aspx?Target=Contingency%20table
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State the Hypotheses 

• Suppose that Variable A has r levels, and Variable B has c levels. The null 
hypothesis states that knowing the level of Variable A does not help you 
predict the level of Variable B. That is, the variables are independent. 

H0: Variable A and Variable B are independent.  
Ha: Variable A and Variable B are not independent.  

• The alternative hypothesis is that knowing the level of Variable A can help 
you predict the level of Variable B. 

Note: Support for the alternative hypothesis suggests that the variables are 
related; but the relationship is not necessarily causal, in the sense that one 
variable "causes" the other. 

http://stattrek.com/Help/Glossary.aspx?Target=Null%20hypothesis
http://stattrek.com/Help/Glossary.aspx?Target=Null%20hypothesis
http://stattrek.com/Help/Glossary.aspx?Target=Alternative%20hypothesis
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Formulate an Analysis Plan 

• The analysis plan describes how to use sample data to reject or not the null 
hypothesis. The plan specifies the following elements: 

- Significance level. Often, researchers choose significance levels equal to 
0.01, 0.05, or 0.10; but any value between 0 and 1 can be used. 

- Test method. Use the chi-square test for independence to determine 
whether there is a significant relationship between two categorical 
variables. 

• Using sample data, find the degrees of freedom, expected frequencies, test 
statistic, and the P-value associated with the test statistic.  

  

http://stattrek.com/Help/Glossary.aspx?Target=Significance%20level
http://stattrek.com/Help/Glossary.aspx?Target=Chi-square%20test%20for%20independence
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• Degrees of freedom. The degrees of freedom (DF) is equal to:  

DF = (r - 1) * (c - 1)  

where r is the number of levels for one categorical variable, and c is the 

number of levels for the other categorical variable. 

 AA Aa aa 
Cases    
Controls    

 

 

For example: r=2 (for a dichotomous Y) ; c=3 (for a SNP)  

Sum of entries = 

cases+controls 

http://stattrek.com/Help/Glossary.aspx?Target=Degrees%20of%20freedom
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• Expected frequencies. The expected frequency counts are computed 
separately for each level of one categorical variable at each level of the 
other categorical variable. Compute r * c expected frequencies, according 
to the following formula.  

Er,c = (nr * nc) / n 

where Er,c is the expected frequency count for level r of Variable A and 

level c of Variable B, nr is the total number of observations at level r of 

Variable A, nc is the total number of observations at level c of Variable B, 

and n is the total sample size. 

 AA Aa aa 
Cases E11 E12 E13 
Controls E21 E22 E23 
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• Test statistic. The test statistic is a chi-square random variable (Χ2) 
defined by the following equation.  

Χ2 = Σ [ (Or,c - Er,c)2 / Er,c ]  

where Or,c is the observed frequency count at level r of Variable A and 

level c of Variable B, and Er,c is the expected frequency count at level r of 

Variable A and level c of Variable B. 

• P-value. The P-value is the probability of observing a sample statistic as 
extreme as the test statistic, which can be proven to follow a chi-square 
distribution with degrees of freedom as derived before. The null 
hypothesis is rejected when the P-value is less than the pre-stated 
significance level (e.g., 0.05 or 0.05/(nr of SNPs to test)). 

(see http://stattrek.com/chi-square-test for a general example) 
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> par(mfrow=c(2,2)) 
> plot(density(rchisq(10000,1))) 
> plot(density(rchisq(10000,10))) 
> plot(density(rchisq(10000,100))) 
> plot(density(rchisq(10000,1000)))  
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Trait heterogeneity 

• Trait heterogeneity exists when a trait has been defined with insufficient 

specificity such that it is actually two or more distinct traits 

• Other forms of heterogeneity, complicating GWAs, exist as well: 

- In the case of locus heterogeneity, multiple predictor variables (i.e., 

multiple loci) are present, some of which may be unmeasured or 

unobserved and, therefore, unavailable for inclusion in the disease 

model. 

- Epistasis: Gene-gene interactions create a rugged model landscape for 

statistical analysis. There is clear and convincing evidence that gene-gene 

interactions, whether synergistic or antagonistic, are not only possible 

but probably omnipresent 

• All of these forms may co-exist and severely hamper classical one-at-a-time 

SNP testing in GWAs. 
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(Thornton-Wells et al. 2006) 
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Trait heterogeneity 

• Why is it a concern in GWAs? 

It has been implicated as a confounding factor in traditional statistical 

genetics of complex human disease.  

• How can you get a handle of trait heterogeneity? 

In the absence of detailed phenotypic data collected consistently in 

combination with genetic data, unsupervised computational methodologies 

offer the potential for discovering underlying trait heterogeneity: 

“clustering” (see also Thornton-Wells et al. 2006) 
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2 Confounding 

2.a Epidemiology (www.dorak.info/epi) 

What is bias? 

• Any trend in the collection, analysis, interpretation, publication or 

review of data that can lead to conclusions that are systematically 

different from the truth (Last, 2001) 

• A process at any state of inference tending to produce results that 

depart systematically from the true values (Fletcher et al, 1988) 

• Systematic error in design or conduct of a study (Szklo et al, 2000) 

 

  

http://www.dorak.info/epi
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What is bias? 

Bias is systematic error 

• Errors can be differential (systematic) or non-differential (random). 

The term “bias” should only be reserved for systematic errors 

• Random errors: are statistical fluctuations (in either direction) in the 

measured data due to the precision limitations of the measurement 

device. Random errors usually result from the experimenter's 

inability to take the same measurement in exactly the same way to 

get exact the same number 

• Differential errors: are reproducible inaccuracies that are 

consistently in the same direction. Systematic errors are often due to 

a problem which persists throughout the entire experiment.   
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What is random error and what is systematic error? 
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Confounding - by example 

Apart from random error and systematic error (bias), another trouble 

maker in epidemiology is confounding 
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Confounding - definition 

• A third factor which is related to both exposure and outcome, and 

which accounts for some/all of the observed relationship between 

the two 

• Confounder not a result of the exposure 

– e.g., association between child’s birth rank (exposure) and Down 

syndrome (outcome); mother’s age a confounder? 

– e.g., association between mother’s age (exposure) and Down 

syndrome (outcome); birth rank a confounder? 
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Confounding – definition 
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Confounding – definition 
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Confounding – practical consequences 

• Imagine you have repeated a positive finding of birth order 

association in Down syndrome. Would you be able to replicate it? If 

not why?  

- Spurious association? refers to false positive association result due to 

not having acknowledged the confounding factors in the analysis 

- What if a new sample only involved mothers below the age of 30? 

• Two ways of handling/identifying confounders during the analysis 

phase (i.e., not the study design phase - randomization) are  

- performing a stratified analysis (e.g., subgroups of maternal age 

→ power issues due to reduced sample size) 

- adjustment by multivariable modelling 
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Confounding – practical consequences 

• So, if analysis is repeated after stratification by age (during analysis), 

there will be no association with birth order. 

• Sometimes confounding can be handled during the design of the 

study: 

 

• If each case is matched with a same-age control, there will be no 

association. 
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Confounding – practical consequences 

• Matching is indeed another way of achieving what we want – not 

being hampered by confounding. It ensures equal representation of 

subjects with known confounders in study groups. It has to be 

coupled with matched analysis. 

• In contrast, randomisation is an attempt to evenly distribute 

potential (unknown) confounders in study groups. It does not 

guarantee total control of confounding.  
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Confounding – population structure 

• Humans originally spread across the world many thousands years 

ago 

• Migration (amongst others) led to genetic diversity between 

isolated groups 
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Confounding – population structure (GWAs) 
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Confounding – population structure (GWAs) 

 

 

 

 

 

 

 

Be associated with exposure (not a consequence of it) 

Be associated with outcome (not an intermediary) 

SNP 

Exposure 

Outcome 

Third variable:  

Population Structure 
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Population structure – stratification in Europe 

     

(Novembre et al 2008 – base don 200,000 SNPs) 
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Population structure – stratification in Finland 

• There can be population structure in all populations, even those that 

appear to be relatively “homogeneous” 

 

(Sabatti et al. 2009) 



GBIO0002          

 

  Van Steen K 

Population structure – admixture 
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Population structure – admixture 
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Implications for GWAs due to shared genetic ancestry 

• Inflated test statistics 

• Too high false positive rates 
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Inference about population structure 
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Inference about admixture using ADMIXTURE 

 
(Bush et al 2012)  
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Inference about admixture using ADMIXTURE 

HapMap ASW and MXL Ancestry 
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Inference about admixture using ADMIXTURE 
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Inference about population structure with PCA 
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PCA in a nutshell 
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GBIO0002          

 

  Van Steen K 

  



GBIO0002          

 

  Van Steen K 

Unsupervised learning with PCA – identifying genetic ancestry 
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Unsupervised learning with PCA – identifying genetic ancestry 
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Unsupervised learning with PCA – identifying genetic ancestry 
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Population structure may be reflected in long-range LD 

 

Which SNPs to consider in the computation of the PCs? (“LD pruning”) 
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LD: a nuisance or a merit? 

• Since LD causes correlations between markers, in a given population 

we expect a lot of redundancy in the genotypes 

• Neighboring markers will tend to be inherited together, causing 

linkage disequilibrium (LD) between the two markers → LD can help 

finding the causal loci! 
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Confounding – practical consequences for GWAs 

• Include a number (?) of PCs in the association models. When 

populations become highly complex, too many PCs may be needed. 

Top PCs are seen as continuous axes of variation that reflect genetic 

variation due to ancestry in the sample.  

• Genomic control: Scale down the test statistic so that its median 

becomes the expected median. It is heavily used but may not entirely 

solve the problem (Devlin & Roeder 1999) 

• Mixed models: these models model the genotype effect as a random 

term (with variation) in a so-called mixed model. This is done by 

explicitly describing the covariance structure between individuals (Yu 

et al. 2006; Kang et al 2018) 
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Genomic control  

• In Genomic Control (GC), a 1-df association test statistic is computed 
at each of the null SNPs, and a parameter λ is calculated as the 
empirical median divided by its expectation under the chi-squared 1-
df distribution. 

• Then the association test is applied at the candidate SNPs, and if λ > 1 
the test statistics are divided by λ.  
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> median(rchisq(10,1)) 

[1] 0.9641272 

> median(rchisq(100,1)) 

[1] 0.5001173 

> median(rchisq(1000,1)) 

[1] 0.4206546 

> median(rchisq(10000,1)) 

[1] 0.4686072 

> median(rchisq(100000,1)) 

[1] 0.455271 

> median(rchisq(1000000,1)) 

[1] 0.4548966  
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From linear regression to linear mixed models 
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From linear regression to linear mixed models 
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From linear regression to linear mixed models 
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From linear regression to linear mixed models - speed 
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From linear regression to linear mixed models – adequate control for 

population structure  
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From linear regression to linear mixed models – adequate control for 

population structure  
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From linear regression to linear mixed models – INadequate control 

for population structure  

 

The Wilcoxon rank sum test (Mann-Whitney U) can be used to determine whether two 

independent samples were selected from populations having the same distribution. Unlike the 

t-test it does not require the assumption of normal distributions. It is nearly as efficient as the 

t-test on normal distributions.  

https://en.wikipedia.org/wiki/T-test
https://en.wikipedia.org/wiki/Normal_distribution
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From linear regression to linear mixed models – advanced models 
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Mixed models to account for population structure in GWAs – in 

conclusion 

• The underlying sources of confounding in GWASs are environmental 

and genetic.  

• Population structure per se is not the problem, nor is relatedness: 

estimates of either can help us to reduce confounding, but to do this 

well, it is helpful to understand its true source.  

• Mixed models that attempt to describe phenotypic covariance are a 

natural way to model this confounding. They have a solid mechanistic 

basis, and the variance components estimated are easily interpreted, 

allowing us to distinguish genetic from environmental components 
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3 Multiple testing 

Locus heterogeneity 
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Multiple testing 

• In GWAs a large number of marker tests are conducted, which leads 

to a multiple testing problem 

• Using a 5% significance threshold, we would expect 5% of the 

markers that have true marker effects of 0 to be significant. 

• Solutions include: 

- Bonferroni correction: By assuming our m available markers to 

be independent (is this true?) we can obtain a conservative 

bound on the probability of rejecting the null hypothesis for one 

or more markers: 1-P(T1≤t, T2≤t,…, Tm≤t|H0) ≤  𝛼, with 𝛼, a 

given significance threshold 

- Permutation / rank based corrections 
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Multiple testing 

 

• “The results implicate a locus on chromosome 9, marked by SNPs 1 and 2, 

which are adjacent to each other (graph at right), and other neighboring 

SNPs.”                                                                                                                      (Manolio 2010) 
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Multiple testing 

 

• Bonferroni correction for 500,000 markers:  

𝑝 ≤
0.05

500000
= 10−7  

 

• Bonferroni correction for 1000,000 markers: 

𝑝 ≤
0.01

1000000
= 10−8  

 

• Where does 10−4  for HWE testing (Travemünde criteria) come 

from? 
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4 Multiple studies 

Meta-analysis  

• Fisher's method combines extreme value probabilities from each test 

(p-values), into one test statistic, using the formula: 

∑ −2log (pi)

𝑘

𝑖=1

 

 

• When all the null hypotheses are true, and the pi (p-value for the i-th 

hypothesis test) are independent, the test statistic follows a chi-

squared distribution with 2k degrees of freedom, where k is the 

number of tests being combined.   

https://en.wikipedia.org/wiki/Probabilities
https://en.wikipedia.org/wiki/P-value
https://en.wikipedia.org/wiki/Test_statistic
https://en.wikipedia.org/wiki/Chi-squared_distribution
https://en.wikipedia.org/wiki/Chi-squared_distribution
https://en.wikipedia.org/wiki/Degrees_of_freedom_(statistics)
https://en.wikipedia.org/wiki/Statistical_hypothesis_testing


GBIO0002          

 

  Van Steen K 

Meta-analysis  

 

(Evangelou et al. 2013)  
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Meta-analysis results presentation 

• Forest plots (~ epidemiology) 
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Meta-analysis results presentation 

• Meta-analysis Manhattan plot (~ genetic epidemiology) 

 

(Savage et al. 2018) 
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5 When variants become rare – sparse data 

Next generation sequencing (NGS) 

• Genotype all basepairs (bps) in a gene, the whole exomes, or the 

whole genome (recall: ~ 3 billion bps) 

• Allow to identify all SNPs or other types of variants. No need to rely 

on LD to tag untyped causal SNPs 
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GWAS in the early days 
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GWAS nowadays (+ imputation) 
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Sequencing based association 

  



GBIO0002          

 

  Van Steen K 

Why studying rare variants? 

• Common variants (SNPs) 

- MAF > 0.01 ~0.05 

- Often high correlation with adjacent SNPs (strong LD) 

• Rare variants 

- MAF ≤ 0.01 ~0.05 

- Relatively new mutations 

- Often weak correlation with other genetic variants 
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Why studying rare variants? 

• Most of human variants are rare! 

 

 
• But large samples are required (in terms of number of individuals) to 

observe rare variants! 



GBIO0002          

 

  Van Steen K 

Why studying rare variants? 

• Functional variants tend to be rare! 

 

Customizing GWAs for rare variants association analyses (future class) 
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6 When effects become non-independent 

Confounding versus effect modification 

• In an association study, if the strength of the association varies over 

different categories of a third variable, this is called effect 

modification. The third variable is changing the effect of the 

exposure.  

• The effect modifier may be sex, age, an environmental exposure or a 

genetic effect.  

• Effect modification is similar to interaction in statistics.  

• There is no adjustment for effect modification. Once it is detected, 

stratified analysis can be used to obtain stratum-specific odds ratios.  
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(Thornton-Wells et al. 2006) 
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Biological vs statistical 

epistasis (future class) 

 

(Moore et al. 2005) 
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Questions? 
 


