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Complicating factors in bioinformatics
1 Trait heterogeneity in GWAs

Single traits association tests

2 Confounding

3.a Epidemiology

3.b GWAs (population structure)

3 Multiple testing

Locus heterogeneity

4 Multiple studies

Meta-analysis
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5 When variants become rare — sparse data
Customizing GWAs for rare variants association analyses (future class)
6 When effects become non-independent

Biological vs statistical epistasis (future class)
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1 Trait heterogeneity in GWAs

The linear regression model

y = ,.80 + |,31X1 + ...+ .,Skxk 4 €

@ y: response variable.

@ Xi,...,Xg. regressor variables, independent variables.

@ (o.[1,...,[k: regression coefficients.
@ . model error.

» Uncorrelated: cov(ej,e;) = 0,7 # J.
» Mean zero, Same variance: var(¢;) = 0. (homoscedasticity)
» Normally distributed.
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The linear regression model

1.Input data need to be of high quality

2.The model needs to be appropriate (hence model assumptions need to be
checked), before beta model parameters are estimated from the data at
hand

3.The model needs to be appropriate before test results are
derived/interpreted
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1 High quality data

BEFORE QC - true signals are lost in false positive signals
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(Ziegler and Van Steen 2010)
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Why is quality control important?

AFTER QC - skyline of Manhattan (= name of plot: Manhattan plot):

-log(P]

12 13 14 18 16 17 19 21

chromosome

Ger MI FS |, Affymetrix 500k array set, SNPs on chip: 493,840
SNPs passing standard quality control: 270,701

(Ziegler and Van Steen 2010)
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The Travemiinde criteria

Filter criterion

Standard value for filter

Sample level Call fraction > 97%
Cryptic relatedness Study specific
Ethnic origin Study specific; visual inspection of
principal components
Heterozygosity Mean £ 3 std.dev. over all samples
Heterozygosity by gender Mean £ 3 std.dev. within gender group
SNP level MAF >1%
MiF < 2% in any study group, e.g., in both

MiF by gender
HWE

cases and controls
< 2% in any gender
p < 10

(Ziegler 2009)
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The Travemiinde criteria

Filter criterion Standard value for filter
SNP level Difference between control groups p > 10" in trend test

Gender differences among controls p>10"in trend test
X-Chr SNPs Missingness by gender No standards available

Proportion of male heterozygote calls No standards available

Absolute difference in call fractions for No standards available
males and females

Gender-specific heterozygosity No standard value available

(Ziegler 2009)
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2 Appropriateness of the model

e There are 4 principal assumptions which justify the use of linear regression
models for purposes of prediction:
- linearity of the relationship between dependent and independent
variables

- independence of the errors (no serial correlation)

- homoscedasticity (constant variance) of the errors
= versus time (when time matters)
= versus the predictions (or versus any independent variable)

- normality of the error distribution. (http://www.duke.edu/~rnau/testing.htm)

e To check model assumptions: go to quick-R and regression diagnostics
(http://www.statmethods.net/stats/rdiagnostics.html) : role of qq plots!
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Estimating model parameters
e A full model (continuous response, say “BMI”) may look like:
Y= o+ B1X1+ BrX, + ¢

e Fit the model by the method of least squares (this leads to estimations b
for the beta parameters in the model)

e It will also lead to the error sums of squares (SSE): the sum of the squared
deviations of each observation Y around its estimated expected value

e The error sums of squares of the 10H e epata
full model SSE(F): | '

z[Y — by — b1 Xy — bzXz]2 6:

=Z(Y—?)2 R

Van Steen K



GBIO0002

Estimating model parameters

Y= fo+ B1X1+ BX; + €

e Use vector/matrix notations: e.g.,
b=(b1: bz)T

e |Least square estimation of the regression coefficients beta:

b=(XTX)"1XTy
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3 Association tests based on linear regression models
e For the full model
Y= fo+ p1X1+ B2Xz + ¢
we may consider the null hypothesis Hg of interest:
HO: 181 - O
Hl: '81 * O

e The model when HO holds is called the reduced or restricted model. When
1 = 0, then the regression model before reduces to
Y= P[00+ X2 + ¢
e Again we can fit this model with f.i. the least squares method and obtain an
error sums of squares, now for the reduced model: SSE(R)
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Association tests based on linear regression models

e By contrasting SSE(F) and SSE(R) a test statistic can be derived to test our
null hypothesis

e _ SSE(R) — SSE(F) SSE(F)
- dfg — dfe  dfy

which follows an F distribution when Hg holds

e The decision rule (for a given alpha level of significance) is:
If F* < F(1 —a; dfg — dfg,dfr), you cannot reject Ho
If F* > F(1 —a; dfg — dfr, dfr), conclude H;
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Association tests based on linear regression models

Implications for GWAs:

(courtesy of Doug Brutlag 2010)
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Implication for GWAs:
Y= fy+ [SNP + ¢

-Hy: 51 =0
-Hi:p; #0
— dfg = n — 2 (this links to df in variance estimation)
— dfg = n — 1 (this links to df in variance estimation)

It can be shown that for testing f; = O versus f; # 0

(t)?

SSE(R)=SSE(F) , SSE(F) _
dfr—AdfF afr

- F* =

Note: the t-test is more flexible since it can be used for one-sided alternatives

whereas the F-test cannot.
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Why to mention the relationship between the F and t (Z) statistics?

e Analysis of variance (ANOVA) is used to test for differences among more
than two populations (“groups of samples”).

It can be viewed as an extension of the t-test we used for testing two
population means.

e In correlation, the two variables are treated as equals. In linear regression,

one variable is considered independent (=predictor) variable (X) and the
other the dependent (=outcome) variable Y

a Relationship between weight and height b Linear regression of weight on height

75
a=3 o=3

/ \ 70 Y

55 65 75
Weight (kg) 601 . 4%

Weight (kg)
[¢)]
(6]

! . \ 55 ¥ v v v
150 165 180 150 160 170 180
Height (cm) Height (cm)
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Why to mention the relationship between the F and t statistics?

o+p; —

QHfr —>f=m————————————

o+pry —

Mean value o + fix,
Standard deviation ¢
Normal curve

v=o+x
the population
regression line
(line of mean values)
Mean value o + fix;
Standard deviation &
Normal curve

Mean value o + px;
Standard deviation &
Normal curve

Three different x values

Density

Density

00 02 04

o0 02 04

density.default(x = rnorm(10000))

N=10000 Bandwidth=0.1423

density.default(x = rt(10000, 9999))

N=10000 Bandwidth=0.1426
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Distributional relationships: F, t, chi-squared

Zi,lay o 2y id N(01) = X2 =2+ 72+ ...+ 72 ~ 2.
Specifically, if & = 1, Z% ~ \%. The density function of chixsquare distribution
will not be pursued here. We only note that: Chi-square is a\class of distribu-
tion indexed by its degree of freedom. like the t-distribution. I fact, chi-square

has a relation with . We will show this later.
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Distributional relationships: F, t, chi-squared

If Xq,...,X, iid N(u,0?), then Z; = (X; — ,u..)/a ~ N(0,1).,75=1,....n. We

know. from a previous context, t.ha,t. S 72 ~ v2. or equivalently.
y y 1 7 AN 2

~ /\n.?

2{ "“}

if 1 is known, or otherwise (if ;o is unknown) g needs to be estimated (by X.
say,) such that

i /

Y1 — X)z 92
2 ~ X-n—l'
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Distributional relationships: F, t, chi-squared

If Xi.....X, iid N(u,0?), then

— /L o
~ N(0.1).
RN

When o is unknown,

tn_1, Where o0 =

AN
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Note that

=
SHISHE

Combining (3) and (4) gives

tﬂ-—l —

or, in general,
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Distributional relationships: F, t, chi-squared

Can you see why our F* = (t*)?

_\o/a

F,, =
T \2/b

(Sir R. A. Fisher).
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Distributional relationships: F, t, chi-squared

2
X, /a

F,» = —5— (Sir R. A. Fisher).

Can you see how the formula above relates to “taking a ratios of variances”?

o _ SSEQR) — SSE(F)  SSE(F)
- dfg—dfr dfp

SSE(R)—SSE(F)
dfr—dfFr

= §5T/(dfr — dfr),

with SST referring to the treatment sums of squares (“between” source of
variation in contrast to errors “within” source of variation)
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Distributional relationships: F, t, chi-squared

«__bi 5
Can you see why our F T

a Relationship between weight and height b Linear regression of weight on height

75 Ry
o=3 o=8 “.
= 70 il
Pk ::'. f.
S 65 i
- d : (] o S0
55 65 75 = D A
Weight (kg) e
' . y 55 - - .
150 165 180 150 160 170 180
Height (cm)

Height (cm)
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Logistic regression
Variables:

m [et Y be a binary response variable
Y; = 1 1f the trait 1s present in observation (person, unit, etc...) 7
Y; = 0 1f the trait 1s NOT present in observation 7

m X'= (X}, X, ..., Xj) be a set of explanatory variables which can be discrete, continuous, or a combination. x; 1s the
observed value of the explanatory variables for observation 7. In this section of the notes, we focus on a single
variable X.

Model:

exp(Bo + Piz:)
1+ exp(Bo + Brz;)

m;, = ID’I"(}/2 = lle = LB;') =
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Since

E[Y[X] = Prob(Y = 1|X) = —=2)

(1+exp(m))
we have
Prob(Y = 1|X)
T Prob(y = 1jx) _ =P
and thus
Prob(Y = 1|X)

(g is called the logit link function)
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Appropriateness of the model
Assumptions:

m The data Y7, 15, ..., 1}, are independently distributed, 1.e., cases are independent.

m Distribution of Y; 1s Bin(n;, m;), 1.., binary logistic regression model assumes binomial distribution of the response.
The dependent variable does NOT need to be normally distributed, but it typically assumes a distribution from an
exponential family (e.g. binomial, Poisson, multinomial, normal....)

m Does NOT assume a linear relationship between the dependent variable and the independent variables, but it does
assume linear relationship between the logit of the response and the explanatory variables; logit(n) = B + PX.

® Independent (explanatory) variables can be even the power terms or some other nonlinear transformations of the
original independent variables.

® The homogeneity of variance does NOT need to be satisfied. In fact, it is not even possible in many cases given the
model structure.

m Errors need to be independent but NOT normally distributed.

m [t uses maximum likelihood estimation (MLE) rather than ordinary least squares (OLS) to estimate the parameters,
and thus relies on large-sample approximations.

m Goodness-of-fit measures rely on sufficiently large samples, where a heuristic rule 1s that not more than 20% of the
expected cells counts are less than 5.

(https://onlinecourses.science.psu.edu/stat504)
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Model fitting in logistic regression

¢ In standard linear models we estimate the parameters by minimizing the
sum of the squared residuals
e This is equivalent to finding parameters that maximize the likelihood

e In a logistic regression we can also fit parameters by maximizing the
likelihood

The maximum likelihood estimator (MLE) for (Pg, B1) 1s obtained by finding (Bn, B 1) that maximizes:

gy — 1y 0560 + Brzi)}
H B = *Ul S ; 31:[1 1+ exp(Bo + P1z:)

In general, there are no closed-form solutions, so the ML estimates are obtained by using iterative algorithms such a:
Newton-Raphson (NR), or Iteratively re-weighted least squares (IRWLS). In Agresti (2013), see section 4.6.1 for
GLMs, and for logistic regression
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Association tests based on logistic regression model

e Example:
Logit(P(Y = 1)|SNP) = By + B,SNP
- HO: ﬁl = O
- Hl: ,81 ¥ O

Large-sample “Wald test”:
2

TS.: X2 =

obs

RR.: X = 72,

obs —

P—val:P(y*>XZ,)
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Didn’t we say that T.S. below was distributed like t-squared?

2

TS.: X2 = 4

obs
O .
B

RRIXE, > 77,
P—val:P(y*>XZ,)
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The beauty of working with large sample statistics

density.default(x = rt{10000, 9999)72) density.default(x = rf(10000, 1, 9999))
= | | T —T = | | — T T
0 5 10 15 0 5 10 15 20
N =10000 Bandwidth = 0.1283 N =10000 Bandwidth =0.1304
density.default{x = rchisq(10000, 1)) density.default(x = rnorm(10000))
S - T T T — S - T T T T T
0 5 10 14 -4 -2 0 2 4
N =10000 Bandwidth =0.1301 N =10000 Bandwidth = 0.1427
> par(mfrow=c(2,2)) > plot(density(rchisq(10000,1)))
> plot(density(rt(10000,9999)12)) > plot(density(rnorm(10000)))

> plot(density(rf(10000,1,9999)))
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The Wald test statistic

e |n the univariate case, the Wald test statistic is

(6 — 6p)?

Lo

var(f)

which is compared against a chi-squared distribution.

e The Wald test statistic is almost but not exactly equal to the square of the
t-test statistic, but they are asymptotically equivalent when n—>oo,

bi

— *\ 2
s2(by) (")
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The Wald test statistic

Note aside:

Alternatively, the difference can be compared to a normal distribution. In this
case the test statistic is

0 —
se(f)

where se(9is the standard error of the maximum likelihood estimate (MLE). A

reasonable estimate of the standard error for the MLE can be given by
1

VI(MLE) \yhere Iis the Fisher information of the parameter.
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Link between Wald and test of independence

e The chi-square test of independence is appropriate when the following
conditions are met:

- The sampling method is simple random sampling.

- The variables under study are each categorical.

- If sample data are displayed in a contingency table, the expected
frequency count for each cell of the table is at least 5.

e There are four steps involved: (1) state the hypotheses, (2) formulate an
analysis plan, (3) analyze sample data, and (4) interpret results.
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State the Hypotheses

e Suppose that Variable A has r levels, and Variable B has ¢ levels. The null
hypothesis states that knowing the level of Variable A does not help you
predict the level of Variable B. That is, the variables are independent.

Ho: Variable A and Variable B are independent.
Ha: Variable A and Variable B are not independent.

e The alternative hypothesis is that knowing the level of Variable A can help
you predict the level of Variable B.

Note: Support for the alternative hypothesis suggests that the variables are
related; but the relationship is not necessarily causal, in the sense that one
variable "causes" the other.
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Formulate an Analysis Plan

e The analysis plan describes how to use sample data to reject or not the null
hypothesis. The plan specifies the following elements:

— Significance level. Often, researchers choose significance levels equal to
0.01, 0.05, or 0.10; but any value between 0 and 1 can be used.

— Test method. Use the chi-square test for independence to determine
whether there is a significant relationship between two categorical
variables.

e Using sample data, find the degrees of freedom, expected frequencies, test
statistic, and the P-value associated with the test statistic.
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. Degrees of freedom. The degrees of freedom (DF) is equal to:

DF=(r-1) * (c-1)

where r is the number of levels for one categorical variable, and c is the

number of levels for the other categorical variable.

AA

Aa

dd

Cases

Controls

For example: r=2 (for a dichotomous Y) ; c=3 (for a SNP)

Sum of entries =
cases+controls
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. Expected frequencies. The expected frequency counts are computed
separately for each level of one categorical variable at each level of the
other categorical variable. Compute r * c expected frequencies, according

to the following formula.

Erc=(nr*ng)/n

where E; . is the expected frequency count for level r of Variable A and

level ¢ of Variable B, n; is the total number of observations at level r of

Variable A, n is the total number of observations at level ¢ of Variable B,

and n is the total sample size.

AA Aa aa
Cases Ei1 Eiz Ei3
Controls E>q E> Eas
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. Test statistic. The test statistic is a chi-square random variable (X?)
defined by the following equation.

X2 =2 [ (Or,c - Er,c)z/ Er,c ]

where O, is the observed frequency count at level r of Variable A and
level ¢ of Variable B, and E, . is the expected frequency count at level r of
Variable A and level ¢ of Variable B.

. P-value. The P-value is the probability of observing a sample statistic as
extreme as the test statistic, which can be proven to follow a chi-square
distribution with degrees of freedom as derived before. The null
hypothesis is rejected when the P-value is less than the pre-stated
significance level (e.g., 0.05 or 0.05/(nr of SNPs to test)).

(see http://stattrek.com/chi-square-test for a general example)

Van Steen K



GBIO0002

density.default(x = rchisq(10000, 1))

o
(=]
=
Z _
=
a8 =
o
o _| —
e T T T T
0 ] 10 15
M = 10000 Bandwidth = 01292
density.default(x = rchisq(10000, 100))
. _
g
= o
‘W -
=
1 L]
] 5 —]
=
=
s
o= I T I T T I

G0 80 100 120 140 160

N =10000 Bandwidth =2.022

> par(mfrow=c(2,2))

> plot(density(rchisq(10000,1)))

> plot(density(rchisgq(10000,10)))

> plot(density(rchisq(10000,100)))
> plot(density(rchisq(10000,1000)))

Density

Density

0.04 0.08

0.00

0.008

0.004

density.default(x = rchisq(10000, 10))

T T T | T
0 10 20 30 40
M =10000 Bandwidth = 06214
density.default(x = rchisq(10000, 1000))
T T T T
800 a00 1000 1100 1200

N =10000 Bandwidth =6.391
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Trait heterogeneity

e Trait heterogeneity exists when a trait has been defined with insufficient
specificity such that it is actually two or more distinct traits
e Other forms of heterogeneity, complicating GWAs, exist as well:

- In the case of locus heterogeneity, multiple predictor variables (i.e.,
multiple loci) are present, some of which may be unmeasured or
unobserved and, therefore, unavailable for inclusion in the disease
model.

- Epistasis: Gene-gene interactions create a rugged model landscape for
statistical analysis. There is clear and convincing evidence that gene-gene
interactions, whether synergistic or antagonistic, are not only possible
but probably omnipresent

e All of these forms may co-exist and severely hamper classical one-at-a-time

SNP testing in GWAs.
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Locus Heterogeneity

Trait Heterogeneity

Gene-Gene Interaction

Definition when two or more DMA variations in when a frait, or disease, has been defined when two or more DNA variafions interact
distinct genetic loci are independenily with insufficient specificity such that it is either directly (DNA-DNA or DMA-mRMNA
associated with the same frait actually two or more distinct underlying traits | interactions), to change transcription or

translation levels, or indirectly by way of
their protein products, to alter disease risk
separate from their independent effects

Diagram Allelic Varianti  Allelic Variant i Trait | . Alele Variant] Alleic varanti

Of Locus A Of Locus B ; -
I T— -
1 — -
i —

\ / \ / : T
: v A
" Disease X
Disease X Mo Disease Disease X

Example Retinitis Pigmentosa (RP, OMINMg Autosomal Dominant Cerebellar Ataxia Hirschsprung Disease (OMIMg 142623) -

One 268000) - genetic variations in at least | (ADCA, OMIM# 164500 - originally variants in the RET (OMIN# 164761) and
fiteen genes have been associated described as a single disease, three different | EDNRE (OMIMg 131244) genes have
with RP under an autosomal recessive | clinical subtypes have been defined based been shown to interact synergistically such
model. Still more have been on variable associated symptoms,®” and that they increase disease risk far beyond
associated with RP under autosomal different genetic loci have been associated the combined risk of the independent
dominant and X-linked disease with the different subtypes® variants’®
models?

{hitp 2 www.sph.uth.timc.edu/RetNet)
Example Tuberous Sclerosis (TS, OMIMg Autism (CMIMg 209850) - parents and other | Creutzfeldt-Jakob Disease (CJD, OMIMg
Two 191100} - out of families informative for | relatives of autistic individuals often exhibit 123400) and Fatal Familial Insomnia

linkage analysis, half have mutations in
the TSC1 gene (located at 9934) and
the other half have mutations in the
TSC2 gene (located at 16p13)%4°

one or two, but not all three, of the requisite
autistic symptomatologies, suggesting
autism may be the co-occurrence of three
distinct traits.¥ Using subset analysis, some
success has been achieved identifying
genes associated with one of the three
symptomatologies but not as strongly with
the broader autistic phenotype®11

{OMIM# 176640.0010) - the Met129Val
polymornphism and Asp17 8Asn mutation in
the PRNP gene (OMIM& 176640) interact,
such that when the val129 polymorphism
is on the same chromosome as the
asn178, the phenotype is fatal familial
insomnia 1318

(Thornton-Wells et al. 2006)
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Trait heterogeneity

e Why is it a concern in GWAs?
It has been implicated as a confounding factor in traditional statistical
genetics of complex human disease.

e How can you get a handle of trait heterogeneity?
In the absence of detailed phenotypic data collected consistently in
combination with genetic data, unsupervised computational methodologies
offer the potential for discovering underlying trait heterogeneity:
“clustering” (see also Thornton-Wells et al. 2006)
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2 Confounding

2.a Epidemiology (www.dorak.info/epi)

What is bias?

e Any trend in the collection, analysis, interpretation, publication or
review of data that can lead to conclusions that are systematically
different from the truth (Last, 2001)

e A process at any state of inference tending to produce results that
depart systematically from the true values (Fletcher et al, 1988)

e Systematic error in design or conduct of a study (Szklo et al, 2000)
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What is bias?
Bias is systematic error

e Errors can be differential (systematic) or non-differential (random).
The term “bias” should only be reserved for systematic errors

e Random errors: are statistical fluctuations (in either direction) in the
measured data due to the precision limitations of the measurement
device. Random errors usually result from the experimenter's
inability to take the same measurement in exactly the same way to
get exact the same number

e Differential errors: are reproducible inaccuracies that are
consistently in the same direction. Systematic errors are often due to
a problem which persists throughout the entire experiment.
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What is random error and what is systematic error?

Systematic Error Random Error
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Confounding - by example

Apart from random error and systematic error (bias), another trouble
maker in epidemiology is confounding

Cases per 100 000

live births
180 -

160
140 -
120 -

100 -

80 -

60 -

40 -

20 -

0 -
1 2 3 4 5

Birth order

EPIET (www)
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Cases per 1830 7
100000 live

births

800 4
700 -
600 -
500 -
400 -
300 -
200
100 -

0-

<20

20-24 25-29 30-34 35-39

Age groups

Birth Order = Down Syndrome

N/

Maternal Age

40+
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Confounding - definition

A third factor which is related to both exposure and outcome, and

which accounts for some/all of the observed relationship between
the two

e Confounder not a result of the exposure

— e.g., association between child’s birth rank (exposure) and Down
syndrome (outcome); mother’s age a confounder?

— e.g., association between mother’s age (exposure) and Down
syndrome (outcome); birth rank a confounder?
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Confounding — definition

To be a confounding factor, two conditions must be met:

Exposure =—» Qutcome

N/

Third variable

Be associated with exposure
- without being the consequence of exposure

Be associated with outcome
- independently of exposure (not an intermediary)

Van Steen K



GBIO0002

Confounding — definition

Birth Order =% Down Syndrome

N/

Maternal Age

Maternal age is correlated with birth
order and a risk factor even if birth order
is low

Cases per 100000

Birth order
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Confounding — practical consequences

e Imagine you have repeated a positive finding of birth order
association in Down syndrome. Would you be able to replicate it? If
not why?

- Spurious association? refers to false positive association result due to
not having acknowledged the confounding factors in the analysis
- What if a new sample only involved mothers below the age of 307
e Two ways of handling/identifying confounders during the analysis
phase (i.e., not the study design phase - randomization) are
- performing a stratified analysis (e.g., subgroups of maternal age
— power issues due to reduced sample size)
- adjustment by multivariable modelling
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Confounding — practical consequences

e So, if analysis is repeated after stratification by age (during analysis),
there will be no association with birth order.

e Sometimes confounding can be handled during the design of the
study:

Cases per 100000

e If each case is matched with a same-age control, there will be no
association.
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Confounding — practical consequences

e Matching is indeed another way of achieving what we want — not
being hampered by confounding. It ensures equal representation of
subjects with known confounders in study groups. It has to be
coupled with matched analysis.

e |n contrast, randomisation is an attempt to evenly distribute

potential (unknown) confounders in study groups. It does not
guarantee total control of confounding.
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Confounding — population structure

e Humans originally spread across the world many thousands years
ago

e Migration (amongst others) led to genetic diversity between
isolated groups
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Confounding — population structure (GWAs)

Population 1 Cases Population 2

— -

I ]
- —

Controls

Genotype -aa -Aa -AA
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Confounding — population structure (GWAs)

SNP Outcome

\ /

Third variable:

Exposure

Population Structure

Be associated with exposure (not a consequence of it)

Be associated with outcome (not an intermediary)
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Population structure — stratification in Europe
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(Novembre et al 2008 — base don 200,000 SNPs)
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Population structure - stratification in Finland

e There can be population structure in all populations, even those that

appear to be relatively “homogeneous”

b Subjects with both parents
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Population structure — admixture

» Several recent and ongoing genetic studies have focused on
admixed populations: populations characterized by ancestry
derived from two or more ancestral populations that were
reproductively isolated.

» Admixed populations have arisen in the past several hundred
years as a consequence of historical events such as the
transatlantic slave trade, the colonization of the Americas and
other long-distance migrations.

» Examples of admixed populations include

» African Americans and Hispanic Americans in the U.S
» Latinos from throughout Latin America

» Uyghur population of Central Asia

» (Cape Verdeans

» South African " Coloured” population
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Population structure — admixture
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» The chromosomes of an admixed individual represent a

mosaic of chromosomal blocks from the ancestral populations.
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Implications for GWAs due to shared genetic ancestry

e Inflated test statistics
e Too high false positive rates
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Inference about population structure

» Inference on genetic ancestry differences among individuals
from different populations, or population structure, has been
motivated by a variety of applications:

» population genetics

» genetic association studies
» personalized medicine

» forensics

» Advancements in array-based genotyping technologies have
largely facilitated the investigation of genetic diversity at
remarkably high levels of detail

» A variety of methods have been proposed for the identification
of genetic ancestry differences among individuals in a sample
using high-density genome-screen data.
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Inference about admixture using ADMIXTURE

Linkage Within A Family

Recombination Point

[ | Initial
| | Generation
|

Generation 1

Generation 2

Generation 3

Linkage between two points/
markers

Decay of Linkage over successive generations

Linkage Disequilibrium Within A Population

LT W W [T

O T TT T

Population moves from Linkage Disequilibrium to Linkage
Equilibrium over time

(Bush et al 2012)

Initial
Generation

100
Generations

1000
Generations
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Inference about admixture using ADMIXTURE
HapMap ASW and MXL Ancestry

A Supervised ADMIXTURE Estimated Ancestry for HapMap MXL + ASW
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= Native American
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o
ASW MXL
Individual

Estimated Ancestry Proportions (SD)
Population European African Native American
MXL 49.9% (14.8%) 6%(1.8%) 44.1% (14.8%)
ASW 20.5% (7.9%) 77.5% (8.4%) 1.9% (3.5%)
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Inference about admixture using ADMIXTURE

» Genome-screen data on 150,872 autosomal SNPs was used to
estimate ancestry

» Estimated genome-wide ancestry proportions of every
individual using the ADMIXTURE (Alexander et al., 2009)
software

» A supervised analysis was conducted using genotype data
from the following reference population samples for three
"ancestral” populations

» HapMap YRI for West African ancestry
» HapMap CEU samples for northern and western European
ancestry

» HGDP Native American samples for Native American ancestry.
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Inference about population structure with PCA

» Principal Components Analysis (PCA) is the most widely used
approach for identifying and adjusting for ancestry difference
among sample individuals

» PCA applied to genotype data can be used to calculate
principal components (PCs) that explain differences among
the sample individuals in the genetic data

» The top PCs are viewed as continuous axes of variation that
reflect genetic variation due to ancestry in the sample.

» Individuals with similar values for a particular top principal
component will have similar ancestry for that axes.
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PCA in a nutshell

Notation

» X is a vector of p random variables

> « is a vector of p constants

l v — p .
> akx _ Zj'zl O’.ijj

Procedural description

» Find linear function of x, ajx with maximum variance.

» Next find another linear function of x, a4Xx, uncorrelated with
QjX maximum variance.

» [terate.

Goal

It is hoped, in general, that most of the variation in x will be
accounted for by m PC's where m << p.
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Assumption and More Notation

» 2 is the known covariance matrix for the random variable x

» Foreshadowing : X will be replaced with S, the sample
covariance matrix, when Z is unknown.

Shortcut to solution

» For k=1,2,...,p the k™ PC is given by z, = o/ x where o
is an eigenvector of X corresponding to its k™ largest

eigenvalue .

> If oy is chosen to have unit length (i.e. a, oy = 1) then
Var(zx) = Mg
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First Step

» Find o/ x that maximizes Var(a/ x) = o Xy
» Without constraint we could pick a very big ay.

» Choose normalization constraint, namely o) o, =1 (unit
length vector).

Constrained maximization - method of Lagrange multipliers

» To maximize o) X oy, subject to o) o, = 1 we use the
technique of Lagrange multipliers. We maximize the function

o oy — Majay, — 1)

w.r.t. to «y by differentiating w.r.t. to a.
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Constrained maximization - method of Lagrange multipliers

» This results in

d
Ja. (dZak = M(ajay —1)) = 0
Xak_/\kak = 0
)__'lek = /\kak

» This should be recognizable as an eigenvector equation where
o is an eigenvector of 2 ,f and A, is the associated
eigenvalue.

» Which eigenvector should we choose?
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Constrained maximization - method of Lagrange multipliers

» If we recognize that the quantity to be maximized
a'}(Zak = a;()\kak = Aka;(ak = A\

then we should choose A\, to be as big as possible. So, calling

A1 the largest eigenvector of 2 and «; the corresponding
eigenvector then the solution to

Zal - /\1051

is the 1°7 principal component of Xx.

> In general ay will be the k*" PC of x and Var(a/x) = \,
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Unsupervised learning with PCA - identifying genetic ancestry

| 4

| 4

Suppose a genetic association study consists of a sample of N
individuals

Assume that genotype data is available at S SNPs in a
genome-screen, where S can be very large (e.g. hundreds of

thousands).

For SNP s define Gs = (G3,...GS)T is n x 1 vector of the
genotypes, where G° = 0. % or 1, according to whether
individual / has, respectively, 0, 1 or 2 copies of the reference
allele at SNP s.
We define Z to be an N x S standardized matrix with (/, s)-th
entry
_ G —p

\/155(1 o ﬁs)

and pe will typically be an allele frequency estimate for SNP s

is
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Unsupervised learning with PCA - identifying genetic ancestry

» Can obtain a genetic relationship matrix (GRM) W where

~ 1 T
\U_§ZZ

The (/,j)-th entry of W is a measure of the average genetic
similarity for individuals i and j in the sample.

(G — PS)(G — Ps)
U S Z ps(1 — ps)

» Principal Components Analysis (PCA) is a dimension
reduction that can be applied to GSM to identify ancestry
differences among sample individuals

» PCA is performed by obtaining the eigendecomposition of the
GRM W
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Unsupervised learning with PCA - identifying genetic ancestry

» Orthogonal axes of variation, i.e. linear combinations of
SNPs, that best explain the genotypic variability amongst the
n sample individuals are identified.

» For the eigendecomposition we have W = VDV, where
V=[ViVy . .. V] is an n x n matrix with orthogonal
column vectors, and D corresponding to a diagonal matrix of
the length n eigenvalue vector A = (A1, Ag, .. ., /\n)T

» The eigenvalues are in decreasing order, \{ > Ay > ... > A,.
The d*™ principal component (eigenvector) corresponds to
eigenvalue Ay, where Ay is proportional to the percentage of
variability in the genome-screen data that is explained by V4.
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Population structure may be reflected in long-range LD
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Which SNPs to consider in the computation of the PCs? (“LD pruning”)
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LD: a nuisance or a merit?

e Since LD causes correlations between markers, in a given population
we expect a lot of redundancy in the genotypes
e Neighboring markers will tend to be inherited together, causing

linkage disequilibrium (LD) between the two markers = LD can help
finding the causal loci!

Indirect Hlzilaiz: ]

association

Causal association

Causative gene .

A
Linkage disequilibrium )

Unobserved causal SNP

T

Genotyped SNP
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Confounding — practical consequences for GWAs

¢ Include a number (?) of PCs in the association models. When
populations become highly complex, too many PCs may be needed.
Top PCs are seen as continuous axes of variation that reflect genetic
variation due to ancestry in the sample.

e Genomic control: Scale down the test statistic so that its median
becomes the expected median. It is heavily used but may not entirely
solve the problem (Devlin & Roeder 1999)

e Mixed models: these models model the genotype effect as a random
term (with variation) in a so-called mixed model. This is done by
explicitly describing the covariance structure between individuals (Yu
et al. 2006; Kang et al 2018)
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Genomic control

¢ In Genomic Control (GC), a 1-df association test statistic is computed
at each of the null SNPs, and a parameter A is calculated as the
empirical median divided by its expectation under the chi-squared 1-
df distribution.

e Then the association test is applied at the candidate SNPs, and if A > 1
the test statistics are divided by A.

o Under Hj of no association p-values uniformly distributed
o In case of population stratification: inflation of test statistics
i median(x7, X3, ..., x7) median(x3, x3,. .., X3)
O — . o, —
median(£ (7)) 0.456
2 2 /3
© Xae = X / A
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> median(rchisq(10,1))

[1] 0.9641272

> median(rchisq(100,1))

[1] 0.5001173

> median(rchisq(1000,1))
[1] 0.4206546

> median(rchisq(10000,1))
[1] 0.4686072

> median(rchisgq(100000,1))
[1] 0.455271

> median(rchisq(1000000,1))
[1] 0.4548966
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From linear regression to linear mixed models

A linear model generally refers to linear regression models in statistics.

P
yj:ZBjxij‘|‘€é Y =X'B+e
J=1

* Y typically consists of the phenotype values, or
case-control status for N individuals.

* Xis the NxP genotype matrix, consisting of P
genetic variants (e.g. SNPs).

* 0 is a vector of P effects for the genetic variants.

* ¢ isstill just known as the noise or error term.
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From linear regression to linear mixed models

Y=XB+u+e UNN(O,DK, e~ N(0,0.1)

Initially proposed in Association mapping by Yu et al. (2006)
Y typically consists of the phenotype values, or case-control status

for N individuals.

X is the NxP genotype matrix, consisting of P genetic variants (e.g.
SNPs).

uis the random effect of the mixed model with var(u) =6 g K
Kis the N x N kinship matrix inferred from genotypes
0 is a vector of P effects for the genetic variants.

c is a N x N matrix of residual effects with var(e) =c e |
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From linear regression to linear mixed models

* The kinship measures the degree of relatedness, and is in
general different from the covariance matrix.

* |t is estimated using either pedigree (family relationships) data
or (lately) using genotype data.

When estimating it from pedigree data, one normally assumes
that the ancestral founders are “unrelated”.

They are sensitive to confounding by cryptic relatedness.
* Alternatively the kinship can be estimated from genotype
data.

Genotype data may be incomplete.
Weights or scaling of genotypes can impact the kinship.
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From linear regression to linear mixed models - speed

* Original implementation: EMMA (Kang et al., 2008)
Problem: O(PN3®) — 1 GWAS in 1 day (500k individuals)
* Approximate methods O(PN?):

GRAMMAR (Aulchenko et al., 2007) http://www.genabel.
org/packages/GenABEL

P3D (Zhang et al., 2010) http://www.maizegenetics.net/#!tassel/c1799

EMMAX (Kang et al., 2010) http://genetics.cs.ucla.edu/emmax/

* Exact methods:

FaST LMM (Lippert et al., 2011) http://mscompbio.codeplex.com/
GEMMA (Zhou et al., 2012) http://www.xzlab.org/software.html

* This is too slow for large samples (>20000 individuals), i.e. exactly
the sample sizes where one might expect to see most gains.

BOLT-LMM (Loh et al., 2015), O(PN) https://data.broadinstitute.

org/alkesgroup/BOLT-LMM/.
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From linear regression to linear mixed models — adequate control for
population structure

Linear IR
Regression % =
1 2 3 4 5
chromosome Causative
SNP
EMMAX

~log10(pval)
2 4 6 8 10
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From linear regression to linear mixed models — adequate control for
population structure

Linear Regression EMMAX
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Expected -log,s(p) Expected —log,,(p)
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From linear regression to linear mixed models — INadequate control

for population structure

logyip—value)

0 10 20 0 10 0 10 20 0 10 0 10 20
Sometimes it W ilcoxon rank sum test
doesnt

e tollcde ! 8 -}1 A

o EMMA, (Kang et ., 2008)

The Wilcoxon rank sum test (Mann-Whitney U) can be used to determine whether two
independent samples were selected from populations having the same distribution. Unlike the
t-test it does not require the assumption of normal distributions. It is nearly as efficient as the

t-test on normal distributions.
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From linear regression to linear mixed models — advanced models

The mixed-model performs pretty well, but GWAS power remain
limited and need to be improved:

Multi Locus Mixed Model (MLMM, Segura et al., 2012):

Single SNP tests are wrong model for polygenic traits
Increase in power compared to single locus models
Detection of new associations in published datasets
|dentification of particular cases of (synthetic associations)
and/or allelic heterogeneity

Multi Trait Mixed Model (MTMM, Korte et al., 2012):

Traits are often correlated due to pleiotropy (shared genetics)
or linkage between causative polymorphisms.

Combining correlated traits in a single model should thus
increase detection power
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Mixed models to account for population structure in GWAs —in
conclusion

e The underlying sources of confounding in GWASs are environmental
and genetic.

e Population structure per se is not the problem, nor is relatedness:
estimates of either can help us to reduce confounding, but to do this
well, it is helpful to understand its true source.

e Mixed models that attempt to describe phenotypic covariance are a
natural way to model this confounding. They have a solid mechanistic
basis, and the variance components estimated are easily interpreted,
allowing us to distinguish genetic from environmental components
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3 Multiple testing

Locus heterogeneity

Published Genome-Wide Associations through 12/2013
Published GWA at p<5X10°¢ for 17 trait categories

oo [l 3 Smmanmes

NHGRI GWA Catalog Ll S
" eeesmee Www.genome.gov/GWAStudies
S s www.ebi.ac.uk/fgpt/gwas/ EMBL-EB1 {| ]
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Multiple testing

e In GWAs a large number of marker tests are conducted, which leads
to a multiple testing problem

e Using a 5% significance threshold, we would expect 5% of the
markers that have true marker effects of O to be significant.

e Solutions include:

- Bonferroni correction: By assuming our m available markers to
be independent (is this true?) we can obtain a conservative
bound on the probability of rejecting the null hypothesis for one
or more markers: 1-P(T1<t, T.<t,..., Tn<t|HO) < «a, with a, a
given significance threshold

- Permutation / rank based corrections
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Multiple testing

6 7 8 9 10 11 12 131415
Chromosome

16 18 20 22

Position on chromosome 9

e “The results implicate a locus on chromosome 9, marked by SNPs 1 and 2,

which are adjacent to each other (graph at right), and other neighboring
(Manolio 2010)

SNPs.”
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Multiple testing

e Bonferroni correction for 500,000 markers:

0.05 _
< =10""
500000

e Bonferroni correction for 1000,000 markers:

p < 001 _ 10-8
~ 1000000

e Where does 10™* for HWE testing (Travemiinde criteria) come
from?
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4 Multiple studies

Meta-analysis

e Fisher's method combines extreme value probabilities from each test
(p-values), into one test statistic, using the formula:

k
Z —2log(pi)
i=1

e When all the null hypotheses are true, and the pi (p-value for the i-th
hypothesis test) are independent, the test statistic follows a chi-
squared distribution with 2k degrees of freedom, where k is the
number of tests being combined.
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Meta-analysis

Ability to process files from GWAS
analysis tools; software used

Fixed effects implemented?
Random effects implemented?
Heterogeneity metrics generated

Graphical illustration of meta-
analysis results

GWAS, genome-wide association study.

METAL
No

Yes
No
Q,
No

GWAMA

Yes; SNPTEST,

PLINK
Yes
Yes
Q,F

Manhattan

and QO plots

MetABEL
Yes; ABEL

Yes
No
Q, 2

Forest plots

PLINK
Yes; PLINK

Yes
No
Q,
No

R packages
No

Yes
Yes
Q.
Yes

(Evangelou et al. 2013)
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Meta-analysis results presentation

e Forest plots (~ epidemiology)

Study

Macarena GWAS (Spain}

IMSGC (US/UK)

GenMSA (US)

GenMSA (CH)

GenMSA (HL)

Sardinia (Raly)

HCSC (Spain)

IPBLN {Spain)

Overall (I-squared = 0.0%, p = 0.566)

Odds

Ratio (95% C1)

092(0.76,1.13)

082(0.73,091)

0.79 (0,65, 0.96)

0.72(0.55,095)

093(0.71,1.22)

0.79 (069, 0.90)

0.92(0.79,1.07)

057 (0.78,098)

0.84 (0,80, 0.89)

Weight
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2428

B.16

4.10
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1269

2234

100.00
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230
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controls

N

767

2033
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207

234

872

746

1322
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MAF

035

035

032

036

036

036

controls
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038
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037
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Meta-analysis results presentation

e Meta-analysis Manhattan plot (~ genetic epidemiology)
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(Savage et al. 2018)
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5 When variants become rare — sparse data

Next generation sequencing (NGS)

e Genotype all basepairs (bps) in a gene, the whole exomes, or the
whole genome (recall: ~ 3 billion bps)

e Allow to identify all SNPs or other types of variants. No need to rely
on LD to tag untyped causal SNPs

-.-\ 0\ W h v\’ B C ,
Y >
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GWAS in the early days

ATCGGCTCAATTCCGATET

TCGGATCAATTCCGATECA

* AQCGATCGGCTCAATTCCAATICCE

TTCCATACATACCGATTTAACCCAA
TTTCATACATACCAATTTGACCCAA
ATTCCATACATACCGATTTAACCCAA

ATTCCATACATACCAATTTGACCCAA

ka:ﬂ.P TCGGATCAATTCCAATCTAATTTCATACATACCAATTTAACCCAA

QCARTCGGATCAATTCCAATICCAATTCCATACATACCAATTTAACCCAA

@%TCGGETCMTTCCEAT

TCGGCTCAATTCCAATICCE

ATCGGATCAATTCCGATECS

ATTCCATACATACCGATTTGACCCAA

 ATTCCATACATACCGATTTGACCCAA

6 AATTCCATATATACCGATTTGACCCAA
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GWAS nowadays (+ imputation)

ACCAATCGRCTCAATTCEGATETAATITEATACATACEARTTIGACCCARA
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Sequencing based association

QFCAATTCE

ATCGRHCTCAATTCLGATET

ACCGATC ”A’*CMTTC CGATECAATIFCAATACATACQUGATTITARCCCAA

ACLCAP TC@SA'IERATTCCAJILCTP ATTTAAT HCP‘TACICAPJT'I TAZJCCCAA

i AQCGATCHGCYCAATTOCAATICCAATTCAATIACE TACp&P T TGZ—‘JCCCAE‘-‘!L

QCANTCHGAT AATTCF:APLT CCRAATTCOATIACH TACTCEP Tl TAZLCCCAA

CEGATCGRATCAATTCLGATECAATHCEATRCATACLEGATTI'GACCCAA

CEARTCGGCHCAATTCRGRATECRATYCEATATRATACEGATTIGRCCCAA

mnc CGHTCHSCYCAATTH AT CAATITCYATIACATACC G TTIIGACCCAA
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Why studying rare variants?

e Common variants (SNPs)

- MAF > 0.01 ~0.05

- Often high correlation with adjacent SNPs (strong LD)
e Rare variants

- MAF £0.01 ~0.05

- Relatively new mutations

- Often weak correlation with other genetic variants
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Why studying rare variants?

e Most of human variants are rare!
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e But large samples are required (in terms of number of individuals) to
observe rare variants!
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Why studying rare variants?

e Functional variants tend to be rare!

NHLBI GO
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Customizing GWAs for rare variants association analyses (future class)
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6 When effects become non-independent

Confounding versus effect modification

e |In an association study, if the strength of the association varies over
different categories of a third variable, this is called effect
modification. The third variable is changing the effect of the
exposure.

e The effect modifier may be sex, age, an environmental exposure or a
genetic effect.

e Effect modification is similar to interaction in statistics.

e There is no adjustment for effect modification. Once it is detected,
stratified analysis can be used to obtain stratum-specific odds ratios.
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Locus Heterogeneity

Trait Heterogeneity

Gene-Gene Interaction

Definition when two or more DMA variations in when a frait, or disease, has been defined when two or more DNA variafions interact
distinct genetic loci are independenily with insufficient specificity such that it is either directly (DNA-DNA or DMA-mRMNA
associated with the same frait actually two or more distinct underlying traits | interactions), to change transcription or

translation levels, or indirectly by way of
their protein products, to alter disease risk
separate from their independent effects

Diagram Allelic Varianti  Allelic Variant i Trait | . Alele Variant] Alleic varanti

Of Locus A Of Locus B ; -
I T— -
1 — -
i —

\ / \ / : T
: v A
" Disease X
Disease X Mo Disease Disease X

Example Retinitis Pigmentosa (RP, OMINMg Autosomal Dominant Cerebellar Ataxia Hirschsprung Disease (OMIMg 142623) -

One 268000) - genetic variations in at least | (ADCA, OMIM# 164500 - originally variants in the RET (OMIN# 164761) and
fiteen genes have been associated described as a single disease, three different | EDNRE (OMIMg 131244) genes have
with RP under an autosomal recessive | clinical subtypes have been defined based been shown to interact synergistically such
model. Still more have been on variable associated symptoms,®” and that they increase disease risk far beyond
associated with RP under autosomal different genetic loci have been associated the combined risk of the independent
dominant and X-linked disease with the different subtypes® variants’®
models?

{hitp 2 www.sph.uth.timc.edu/RetNet)
Example Tuberous Sclerosis (TS, OMIMg Autism (CMIMg 209850) - parents and other | Creutzfeldt-Jakob Disease (CJD, OMIMg
Two 191100} - out of families informative for | relatives of autistic individuals often exhibit 123400) and Fatal Familial Insomnia

linkage analysis, half have mutations in
the TSC1 gene (located at 9934) and
the other half have mutations in the
TSC2 gene (located at 16p13)%4°

one or two, but not all three, of the requisite
autistic symptomatologies, suggesting
autism may be the co-occurrence of three
distinct traits.¥ Using subset analysis, some
success has been achieved identifying
genes associated with one of the three
symptomatologies but not as strongly with
the broader autistic phenotype®11

{OMIM# 176640.0010) - the Met129Val
polymornphism and Asp17 8Asn mutation in
the PRNP gene (OMIM& 176640) interact,
such that when the val129 polymorphism
is on the same chromosome as the
asn178, the phenotype is fatal familial
insomnia 1318

(Thornton-Wells et al. 2006)
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Biological vs statistical
epistasis (future class)

(Moore et al. 2005)

Figure 2. Theconceptual relationship betweenbiological and
statistical epistasis. Biological epistasis occurs at the level of the
individual andinvolves DNA sequencevarations (vertical bars),
biomolecules (circle, square and triangle) and their physical
interactions (dashed lines) giving rise to a phenotype (star) at a
particular point in time and space (not shown). Statistical
epistasis is a population phenomenon that is made possible by
interindividual variability in genotypes, biomolecules and their
physical interactions.

e,

+| OP
- <y & “Cy
5% 5 5%

>
t

4’ Q’23> I ’ / /§$

t
\

|

t

i
}
i~
t

|

+
|4 Y}’
e,
2/,
%y
K%
t~
I 3‘;
e

P
R
K%
»
A}
e

o, o
V%

> fe
\% I,

~,

Statistical
Epistasis

Population
87/

Individual

Phenotype

A,

*
-
Proteins . e

Biological
Epistasis

Van Steen K



GBIO0002

T USED T THINK,
(ORRELATION IHFUEU
CAUSATION.

7§

THEN I TOCK A
STATISTICS CLASS.
NOW I EE:M'T

B




GBIO0002

Questions?



