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introduction
This Teaching Resource is intended for 
instructors who have some knowledge 
of statistics. Familiarity with the follow-
ing programs is useful: R (http://www.r-
project.org/) and the GSEA software http://
www.broadinstitute.org/gsea/). GSEA is an 
analysis method that is increasingly gaining 
acceptance for analyzing genome-wide mo-
lecular profiling data.

lecture notes
Gene-Set Enrichment Analysis
Transcriptional profiling, by methods such 
as microarrays or RNA-seq experiments, 
measures the changes in expression of a 
large number of genes. These are used to in-
vestigate the changes in mRNA abundance 
that occurs in response to a stimulus or the 
differences in mRNA status between two 
different samples. For example, tissue sam-
ples from two groups of people—one with 
a particular disease and the other healthy—
may be compared to identify the tissue-spe-
cific differences in gene expression.

Traditionally, transcriptional microar-
ray data have been analyzed by a “single-
gene approach” to determine the individual 
genes exhibiting the greatest differences in 
expression between the two sets of samples. 
However, this single-gene approach is lim-
ited. Gene-set enrichment analysis (GSEA) 
is a means of identifying, not just individual 
genes, but groups of genes that are known 
to be functionally related (Slide 2). Sets of 
functionally related genes can be obtained 

from various preestablished libraries, such 
as libraries of genes encoding proteins in-
volved in metabolic pathways, cell signal-
ing pathways, or kinases; genes that are 
targeted by particular microRNAs; or genes 
that produce a common phenotype when 
knocked down in a model organism, such 
as mice or yeast. The basic idea of GSEA 
is that differences in the expression of a set 
of genes will “stand out” in the data more 
clearly than differences in the expression of 
an individual gene.

The lecture follows a step-by-step approach 
to explain the method of GSEA and the math-
ematical basis for this type of data analysis (1, 
2). The lecture begins with an explanation of 
“random walks” and then describes a statisti-
cal test (the Kolmogorov-Smirnov test) that is 
based on the idea of a random walk (Slide 3). 
The two concepts serve as the foundation for 
understanding GSEA.

One-Dimensional Random Walks
The simplest kind of random walk takes 
place on a one-dimensional lattice, such as 
a simple number line with equally spaced 
points (Slide 4). The walk occurs by mov-
ing randomly forward and backward along 
the line.

Because it would be difficult to see indi-
vidual steps that may overlap, the steps of 
the random walk are plotted on a two-di-
mensional graph, such that the horizontal (x 
axis) represents time (or step number) and 
a vertical (y axis) represents the position 
along the lattice (Fig. 1; Slide 4). At each 
step there are two choices, to go left or to 
go right, which leads to a binomial distri-
bution of the number of ways to reach each 
possible position at each step (Fig. 2). The 
mean distance from the starting point, after 
n steps is proportional to n. Long random 
walks with many steps exhibit fluctuations 

and these fluctuations can be observed at 
different resolution scales (Slide 4). If the 
number of steps goes to infinity and the size 
of each step goes to zero (the steps become 
infinitely close together), this becomes a 
continuous walk in time t, which is called 
a Weiner process W(t). In stochastic differ-
ential equations, the Weiner process is used 
as an approximation of Brownian motion 
(Slide 4).

In GSEA, which is a modified form of 
the random walk, the start and end points of 
the walk are fixed at zero, but the interven-
ing steps are random (Slide 5). In this case, 
when the number of steps goes to infinity 
and the step size goes to zero, the random 
walk becomes another type of continuous 
process called the Brownian bridge B(t) 
(Slide 5). In the Weiner process, variation 
increases throughout the walk, whereas in a 
Brownian bridge, the variation occurs in the 
middle of the walk. Although for a random 
walk without fixed end points, the mean 
distance from the starting point increases in 
proportion to n ; for a random walk with 
fixed end points, it is more meaningful to 
determine the maximum distance any step 
is from the starting position. In mathemati-
cal terminology, this maximum distance 
traveled is called the “supremum” of the 
random walk. Kolmogorov (3) reported a 
recurrence relation that expresses the proba-
bility distribution of the supremum of a dis-
crete random walk, and for the continuous 
walk the probability distribution is given by

(1)
where CDF(x) is the probability that the su-
premum of the Brownian bridge is less than 
or equal to x. This is called the Kolmogorov 
distribution (Slide 5).

The Kolmogorov-Smirnov test
GSEA is based on the Kolmogorov-Smirnov 
test, which is a statistical test of “goodness 
of fit.” It is an alternative to the commonly 
applied χ2 test, but it is better than the χ2 test 
when the sample size is small (Slide 7). In or-
der to understand the Kolmogorov-Smirnov 
test, it is first important to understand the 
probability density function and the cumula-
tive distribution function (Slide 6).

For a random variable x, the probability 
density function, p(x), provides the prob-
ability of measuring x in a given range. For 
example, the probability of measuring x 
between the values of a and b is calculated 
from the integral of p(x), as shown in Eq. 2:
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p x dx∫ ( )
       

(2)

For example, for the Gaussian probabil-
ity distribution function with a mean of 1 
and variance of 0.5, the area under the curve 
between any two points on the x axis pro-
vides the probability (P value) of observing 
measurements in that range (Slide 6).

The cumulative distribution function, 
CDF(x), which gives the probability of mea-
suring the variable at a value of x or smaller, 
is related to the probability density function 
as defined in Eq. 3:

    

(3)

 
The Kolmogorov-Smirnov test is a math-

ematical way of answering the question 
“Given my set of data, how sure can I be 
that the cumulative distribution function is 
given by CDF(x)?”

To illustrate the basic idea of this test, 
we use two simple data sets, one for which 
the data fit the cumulative distribution func-
tion (Slide 8) and one for which the data fail 
to fit the cumulative distribution function 
(Slide 9). For the purposes of illustration, 
we assume that the data should be compared 
with Gaussian curves with a mean of 1 and 
a variance of 0.5 because random walks 
follow this Gaussian distribution. Thus, by 
comparing the data with this Gaussian dis-
tribution, deviations from a random walk 
can be analyzed. These examples show that 
at any point x, the curve corresponds to the 
total fraction of our data that has a value 
less than or equal to x, and the top graphs 

in Slides 8 and 9 show the cumulative dis-
tribution for the sample data, along with cu-
mulative distribution functions based on a 
Gaussian distribution with a mean of 1 and 
a variance of 0.5, like that shown in Slide 6.

Even for the data that appear to match 
the cumulative distribution function well, 
there are differences, because the data set 
only has six points and would be expected 
to have some random scatter (Slide 8).

The Kolmogorov-Smirnov test is used 
to determine whether the data’s cumula-
tive distribution function is consistent with 
the hypothesized distribution by showing 
that, when the two curves are the same, the 
difference between these two curves is a 
random walk (Slide 8, bottom graph). Al-
though the difference plot does appear to 
be a random walk, this can be quantified us-
ing the supremum, which states that if the 
number of data points were to increase in-
finitely, then the supremum of this random 
walk would tend toward zero when the two 
distributions were identical. However, gene 
expression data are not infinite. Therefore, 

in the case of a finite number of data points 
(in the example, the number is 6, but typi-
cally, the number can be as much as 20,000 
to 30,000 for gene expression data), as the 
number of steps (data points) increases, the 
supremum of this random walk, multiplied 
by n to account for the finite step size 
of the walk, becomes closer and closer to 
the supremum of the continuous Brownian 
bridge for which the probability distribution 
is given by Eq. 4:

      
        

(4)
 

For GSEA, it is not necessary to calcu-
late the distribution from Eq. 4; instead sim-

ply calculating the value of nSn and then 
comparing this value, called the enrichment 
score, with the critical values would compute 
whether the data are random and follow a 
random walk. This critical value is typically 
computed for random data sets and is pro-
vided by the software that computes the test. 
When the value of nSn is within the con-
fidence interval and is less than the critical 
value, then the hypothesis that the data match 
the Gaussian distribution with the defined pa-
rameters is considered true.

For the data plotted in Slide 8, the supre-
mum of the random walk is about 0.15, and 
the data consist of six data points (Eq. 5):

     nSn = ( ) =6 0 15 0 37. .

      
(5)

 
According to a table of precalculated 

values computed for random data, the criti-
cal value at the 1% confidence level is 0.41, 
so the hypothesis that the data come from 
the Gaussian distribution with mean 1.0 and 
variance 0.5, with a 1% error level, is ac-
cepted.

For the second sample data set (Slide 9), 
performing the same analysis and assuming 
that the data fit a Gaussian distribution with 
a mean of 1 and a variance of 0.5 shows 
that the supremum looks large for a ran-
dom walk. Most random walks would have 
a supremum less than 0.41. Comparing the 
supremum to that expected for a Brownian 
bridge yields Eq. 6:

        . .nSn = ( ) =6 0 4 0 98
      

(6)
 

According to the table of precalculated 
values we created for random data, 0.98 is 
larger than the critical value, which indi-
cates that these data do not fit a Gaussian 
distribution with mean of 1 and variance of 
0.5. Hence, the hypothesis that the data are 
coming from a random walk is rejected, and 
it is likely that there is a biologically mean-
ingful pattern in the data.

The GSEA Test
Typically gene expression profiles are mea-
sured for a few samples from two different 
conditions, such as diseased and healthy 
cells or treated and control cells. The ex-
pression profiles are then examined for 
differences that correspond to the specific 
condition, with the goal that understanding 
these gene expression differences may help 
explain the molecular basis between the two 
conditions (Slide 10).

One method for analyzing these kinds of 
data are to rank the genes according to their 

Fig. 1. Plot of a random walk.
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differential expression across the different 
conditions and, then, to focus attention on 
those genes that are found at the top and bot-
tom of the list. The genes at the top are those 
that are differentially expressed less in the 1st 
condition than the 2nd (up-regulated in con-
dition 2), and genes at the bottom are those 
that are expressed more in the 1st condition 
than the 2nd (down-regulated in condition 2). 
Those genes exhibiting a fold change in ex-
pression greater than a set amount (for exam-
ple, greater than twofold change) are consid-
ered to contribute to the differences in the two 
conditions. However, there are some prob-
lems with this approach. First, no individual 
genes may exhibit a change in expression that 
is above the noise in a statistically significant 
way. Second, there may be a large number of 
statistically significant genes, but no apparent 
unifying biological theme connecting them, 
which makes it difficult to understand the 
meaning of the differentially expressed genes. 
Third, functionally important genes may be 
missed in this approach. For example, a small 
change in the expression of genes encoding 
multiple members of a biological pathway 
can sometimes have a larger biological ef-
fect than a large change in a gene encoding a 
single member of the pathway. Therefore, it is 
important to look not only for genes that ex-
hibit large changes in expression but also for 

those that may only exhibit a relatively small 
change; otherwise, important aspects of the 
biology may be missed. A final issue is that 
there can be large variations in the expression 
of individual genes across relevant related ex-
periments.

GSEA was developed to overcome these 
problems by looking for statistically sig-
nificant changes in the expression of sets 
of genes as opposed to individual genes. 
These gene sets are defined on the basis of 
existing knowledge of related genes. GSEA 
quantifies the degree to which these gene 
sets occur toward the top of a ranked list 
of genes (up-regulated) or toward the bot-
tom (down-regulated) and then estimates 
the significance of the finding. It is arguable 
that GSEA is statistically more sensitive 
than analysis of the fold change in expres-
sion of individual genes, because the signal-
to-noise ratio is larger for a set of genes than 
it is for a single gene. Thus, GSEA should 
be sensitive to small but consistent changes 
within a gene set, and these changes may be 
biologically important.

The first time GSEA was applied to 
analyze gene expression changes, it was 
used to identify a set of genes relevant to 
oxidative phosphorylation, which are a fac-
tor in type II diabetes (1). We describe the 
method of GSEA by applying it to a simple 

example (Slides 11 to 14). The exam-
ple includes samples from two groups, 
called Groups A and B. Group A sam-
ples represent the relative expression 
of five genes (Genes A to E) in muscle 
biopsies from two normal patients 
(Sample 1 and Sample 2) and Group 
B samples (Sample 3 and Sample 4) 
represent the relative expression of the 
same five genes in samples from two 
patients with diabetes (Slide 11). The 
first step is to rank the genes on the 
basis of their level of differential ex-
pression. Here, we simply averaged the 
expression of the two samples and then 
ranked them on the basis of the differ-
ence in expression across samples. The 
next step is to identify, from the genes 
analyzed, the ones that belong to a par-
ticular biological category. Then the 
significance in the difference between 
the two groups is tested. In the exam-
ple, Genes B and C belong to a gene 
set of interest. To determine whether 
these genes appear significantly toward 
the top or bottom of the ranked list (that 
is if the expression of this set of genes 
is up-regulated or down-regulated be-

tween the two conditions), we calculate a 
running sum in the relative expression of 
the genes by moving down the list. The sum 
is increased (up-step) when a gene that is 
part of the set (Gene B or C) is encountered, 
and the sum is decreased (down-step) when 
a gene that is not part of the set (Gene A, D, 
or E) is encountered. The size of the up-step 
is given by

                   

N G
G
−

where N is the number of genes whose ex-
pression is measured (in the example, five) 
and G is the number of genes in the set (in 
the example, two) (Slide 12). N is always 
greater than G. The size of the down-step 
is given by 

−
−
G
N G

There are other formulations for per-
forming a similar analysis in a more com-
plicated way where the weight of each gene 
in the set is accounted for by its correlation 
with the group label, but we use the simpler 
approach as a demonstration with the exam-
ple having five genes of which two are in the 
set (Slides 11 to 13). The more complicated 
versions of GSEA are described in (2).

For the sample data, the running sum is 
plotted as a random walk with the x axis as 
the genes (1 representing the first gene in 
the data set, 2 the second, and so on) and 
the y axis as the running sum (Slide 13). 
If the genes in the set (Genes B and C) are 
negatively differentially expressed, then 
those two genes will tend to be close to the 
bottom of the ranked list (Slide 11), and the 
running sum should become significantly 
negative before the values for the members 
of the gene set (B and C) are included, and 
the running sum should begin to increase as 
those are included (Slide 13). Conversely, if 
the test genes (B and C) are positively dif-
ferentially expressed, then the running sum 
should become positive before returning to 
zero, because there should be more positive 
steps earlier in the running sum.

The supremum of this curve is called the 
“enrichment score,” and it is a measure of 
the position of the genes that are part of the 
set in the random walk. For the sample gene 
set (B and C), the enrichment score is ~–2.5 
(Slide 13), which suggests that the genes in 
the test set are down-regulated.

From this example and description, the 
relation to the Kolmogorov-Smirnov test 
becomes evident. If the genes in the set that 

Fig. 2. Random walks  results  in a binomial dis-
tribution. (a) Example of the binomial distribution 
produced by five steps. (B) Possible routes for an 
unbiased  random walk starting at  the origin  (0). 
Numbers represent the number of possible walks 
to reach a specific distance from the origin.
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are tested for significance are distributed 
uniformly through the ranked list (there is 
no general trend for the members of the set 
to be high or low in the ranked list), then 
the running sum will look like a random 
walk and will have a supremum of a random 
walk. However, if the genes in the test set 
tend to be high or low in the ranked list, then 
the supremum will be larger in magnitude 
that what is expected for a random walk.

If a set of genes has a large enrichment 
score and large supremum, then the sig-
nificance of the result can be determined 
by randomly ordering the genes and then 
repeating the ranking and plotting of the 
random walks again and again (Slide 14). 
Note that the samples are shuffled among 
the groups; the genes are not shuffled with 
each other because the correlations between 
the genes need to be preserved. This process 
is repeated many times to produce many 
running sums and enrichment scores for all 
these random permutations of the samples. 
In the example, Samples 1 and 3 are ran-
domly assigned to Group A and Samples 4 
and 2 to Group B (Slide 14).

Statistical significance is determined 
from how many times the enrichment score 
for genes in the set from the first nonran-
domized analysis is greater than 
the enrichment scores deter-
mined for the randomly shuffled 
data. For larger data sets con-
taining more genes, there are 
more possible permutations, 
and the walks would have more 
steps.

For the sample set of genes B 
and C, the enrichment score of 
–2.5 is larger in magnitude than 
all the scores for randomly per-
muted data; thus, the test gene 
set (B and C) is expressed sig-
nificantly lower in condition B 
than in condition A. On the basis 
of this information, biological 
implications can be inferred.

If the enrichment scores for the random-
ly shuffled data rarely exceed (less than 1% 
of the time) the score for the original, un-
shuffled data, then the set of genes can be 
confidently considered to play a role in the 
difference between the two conditions.

In order to be confident that the differ-
ences are statistically significant and thus 
likely to be biologically meaningful, the sig-
nificance of the result has to be corrected for 
multiple hypotheses testing to account for 
the frequency that false-positive differences 

occur in the data. There are various ways to 
control for the rate of false-positives, and 
one of the simplest is the Bonferroni proce-
dure, which is not described in detail as part 
of the lecture [see (2) for details].

An Example of the Use of GSEA in the 
Literature
Mootha et al. took muscle samples from 43 
age-matched males: 17 had normal glucose 
tolerance (Group 1), 8 had impaired glucose 
tolerance but were not considered diabetic 
yet (Group 2), and 18 had type II diabetes 
(Group 3) (1). No single gene could be iden-
tified as statistically significant between any 
pair of these groups (Slide 15).

The authors performed a GSEA analy-
sis, looking for the significance of 149 gene 
sets. Of these sets, 113 were grouped ac-
cording to metabolic pathways, and 36 were 
coregulated as described in a mouse expres-
sion atlas of 46 tissues. The sets were se-
lected without regard to the data. The gene 
set that had the highest enrichment score 
represented a set of 106 genes involved in 
oxidative phosphorylation. Although each 
gene in the set was only down-regulated by 
a small amount (~20%), this reduction in 
expression was consistent across 80% of the 
genes in the set. When they randomly per-

muted the data and recalculated the enrich-
ment score 1000 times, they found that only 
29 of these 1000 scores were higher than the 
observed enrichment score before shuffling, 
giving a significance of P = 0.029, which is 
less than the commonly used cutoff of P < 
0.05, which is used as a threshold for statis-
tical significance.

Having identified this set of genes as 
significant, Mootha et al. used the analysis 
to look more closely at the set and found 
that there was a subset, consisting of about 
two-thirds of the original 106 genes in the 

set, which accounted for most of the signifi-
cance. The identification of this set of genes 
led to their investigation of the biological 
mechanisms that might be involved in the 
down-regulation of this biological func-
tion and, therefore, its molecular contribu-
tion to the phenotype of type II diabetes. 
The method has subsequently been applied 
many times to address many different prob-
lems (4).

From this lecture, students should be 
able to understand GSEA and its applica-
tion, realize the basis for the sensitivity of 
the method, and understand how this meth-
od can lead researchers toward biological 
mechanisms for differences in gene expres-
sion among different groups (Slide 16).

problem Set
The expression of eight genes, labeled G1 
to G8, is measured (Table 1). The measure-
ments are taken from four samples from a 
nondiseased, healthy group, and four sam-
ples from a diseased group. You would like 
to test the hypothesis that the gene set {G2, 
G5} plays a significant role in the disease.

The following problems are from the 
steps of performing GSEA on the data. The 
software R may be used to solve the prob-

lems, and the answer key is 
available in that form. How-
ever, any similar tool, such as 
MATLAB, or any computer 
programming language de-
velopment environment may 
also be used.

1. Calculate the mean dif-
ferential expression for each 
gene between the two groups.

2. Generate an ordered list 
by ranking the genes in order 
of decreasing differential ex-
pression and then determine 
whether the gene set {G2, 
G5} is at the top or bottom of 
the ranked list.

3. Calculate the appropriate sizes of the up- 
and down-steps for the GSEA running sum.

4. Using the ordered list generated in 
Problem 2, calculate the running sum, add-
ing the appropriate up- and down-steps as 
you move down the ranked list of genes. 
What is the supremum (enrichment score) 
of this running sum?

5. Permute the samples by randomly 
assigning them to the Healthy or Diseased 
group and repeat problems 1 through 4 to 
calculate enrichment scores for the random-
ly shuffled data.

table 1. Gene expression levels for the problem set.

Healthy Diseased 

a B c D e F g H 

G1

G2

G3

G4

G5

G6

G7

G8 

1.0

1.2

0.5

0.7

0.2

0.9

1.3

0.1 

1.0

1.1

0.6

0.4

0.4

0.7

1.1

0.3 

0.8

1.0

0.4

0.7

0.3

0.9

1.0

0.5 

0.7

1.1

0.7

0.9

0.2

0.5

1.3

0.1 

2.0

0.6

0.1

2.2

0.3

0.1

0.9

1.4 

1.9

0.7

0.2

2.0

0.2

0.5

1.5

1.9 

1.5

0.5

0.2

2.0

0.5

0.2

0.7

1.6 

1.6

0.7

0.3

1.3

0.4

0.2

1.0

1.7
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Note: If the students find this too diffi-
cult, the instructor can provide a set of En-
richment Scores from randomly permuted 
data.

6. Using the enrichment score for the 
original data and the enrichment scores 
for the randomly shuffled data, determine 
whether the set of genes {G2, G5} are sig-
nificantly differentially expressed between 
the two sets.

educational Details
Learning Resource Type: Lecture, as-
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