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Popula'on	Structure	
•  Popula'on	gene'cs	is	a	subfield	of	gene'cs	that	deals	
with	gene'c	differences	within	and	between	
popula'ons,	and	is	a	part	of	evolu'onary	biology.	
Studies	in	this	branch	of	biology	examine	such	
phenomena	as	adapta'on,	specia'on,	and	popula'on	
structure.	

•  Popula'on	stra'fica'on	is	the	presence	of	a	systema'c	
difference	in	allele	frequencies	between	
subpopula'ons	in	a	popula'on	possibly	due	to	
different	ancestry,	especially	in	the	context	of	
associa'on	studies.	Popula'on	stra'fica'on	is	also	
referred	to	as	popula'on	structure,	in	this	context.	

10/04/2017	 KC	-	ULg	 2	



10/04/2017	 KC	-	ULg	 3	



Human	Diversity	
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How	to	group	people?	

Countries	 Languages	

Physical	appearances:	Hair	colors,	Eye	colors,	Skin	colors	
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Diversity	in	Popula'on	
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Languages?	
Example:	Belgium	
•  Dutch	59%	
•  French	41%	
•  German	?%	
From	WIKI	
	



Popula'on	clustering	
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What	is	the	benefit	of	knowing	
Popula'on	Substructures?	
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•  Popula'on	evolu'on	
•  Popula'on	ancestry	
•  Popula'on	migra'on	
•  Popula'on	based	analysis	
•  Subgroup	of	pa'ents	
	
	

Mapping	Human	Gene'c	Diversity	and	tracing	the	gene'c	
origins	of	Asian	popula'ons	
The	HUGO	Pan-Asian	SNP	Consor'um	
Science,	October	2009	

Indigenous	popula'ons	
•  54,794	SNPs	
•  1,928	individuals	
•  73	Asian	and	2	non-

Asian	popula'ons	

8	
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HAPMAP	Project	
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hdps://www.genome.gov/10001688/interna'onal-hapmap-project/	
	

The International HapMap Project
The International HapMap Consortium*

*Lists of participants and affiliations appear at the end of the paper

...........................................................................................................................................................................................................................

The goal of the International HapMap Project is to determine the common patterns of DNA sequence variation in the human genome
and to make this information freely available in the public domain. An international consortium is developing a map of these
patterns across the genome by determining the genotypes of one million or more sequence variants, their frequencies and the
degree of association between them, in DNA samples from populations with ancestry from parts of Africa, Asia and Europe. The
HapMap will allow the discovery of sequence variants that affect common disease, will facilitate development of diagnostic tools,
and will enhance our ability to choose targets for therapeutic intervention.

C
ommon diseases such as cardiovascular disease, cancer,
obesity, diabetes, psychiatric illnesses and inflammatory
diseases are caused by combinations of multiple genetic
and environmental factors1. Discovering these genetic
factors will provide fundamental new insights into the

pathogenesis, diagnosis and treatment of human disease. Searches
for causative variants in chromosome regions identified by linkage
analysis have been highly successful for many rare single-gene
disorders. By contrast, linkage studies have been much less success-
ful in locating genetic variants that affect common complex dis-
eases, as each variant individually contributes only modestly to
disease risk2,3. A complementary approach to identifying these
specific genetic risk factors is to search for an association between
a specific variant and a disease, by comparing a group of affected
individuals with a group of unaffected controls4. In the absence of
strong natural selection, there is likely to be a broad spectrum of
frequency of such variants, many of which are likely to be common
in the population. A number of association studies, focused on
candidate genes, regions of linkage to a disease or more large-scale
surveys, have already led to the discovery of genetic risk factors for
common diseases. Examples include type 1 diabetes (human
leukocyte antigen (HLA5), insulin6 andCTLA4 (ref. 7)), Alzheimer’s
disease (APOE)8, deep vein thrombosis (factor V)9, inflammatory
bowel disease (NOD2 (refs 10, 11) and also 5q31 (ref. 12)),
hypertriglyceridaemia (APOAV)13, type 2 diabetes (PPARG)14,15,
schizophrenia (neuregulin 1)16, asthma (ADAM33)17, stroke
(PDE4D)18 and myocardial infarction (LTA)19.

One approach to doing association studies involves testing each
putative causal variant for correlation with the disease (the ‘direct’
approach)2. To search the entire genome for disease associations
would entail the substantial expense of whole-genome sequencing
of numerous patient samples to identify the candidate variants3. At
present, this approach is limited to sequencing the functional parts
of candidate genes (selected on the basis of a previous functional or
genetic hypothesis) for potential disease-associated candidate vari-
ants. An alternative approach (the ‘indirect’ approach) has been
proposed20, whereby a set of sequence variants in the genome could
serve as genetic markers to detect association between a particular
genomic region and the disease, whether or not the markers
themselves had functional effects. The search for the causative
variants could then be limited to the regions showing association
with the disease.

Two insights from human population genetics suggest that the
indirect approach is able to capture most human sequence vari-
ation, with greater efficiency than the direct approach. First,,90%
of sequence variation among individuals is due to common vari-
ants21. Second, most of these originally arose from single historical
mutation events, and are therefore associated with nearby variants
that were present on the ancestral chromosome on which the
mutation occurred. These associations make the indirect approach

feasible to study variants in candidate genes, chromosome regions
or across the whole genome. Prior knowledge of putative functional
variants is not required. Instead, the approach uses information
from a relatively small set of variants that capture most of
the common patterns of variation in the genome, so that any
region or gene can be tested for associationwith a particular disease,
with a high likelihood that such an association will be detectable if it
exists.
The aim of the International HapMap Project is to determine the

common patterns of DNA sequence variation in the human
genome, by characterizing sequence variants, their frequencies,
and correlations between them, in DNA samples from populations
with ancestry from parts of Africa, Asia and Europe. The project will
thus provide tools that will allow the indirect association approach
to be applied readily to any functional candidate gene in the
genome, to any region suggested by family-based linkage
analysis, or ultimately to the whole genome for scans for disease
risk factors.
Common variants responsible for disease risk will be most readily

approached by this strategy, but not all predisposing variants are
common. However, it should be noted that even a relatively
uncommon disease-associated variant can potentially be discovered
using this approach. Reflecting its historical origins, the uncommon
variant will be travelling on a chromosome that carries a charac-
teristic pattern of nearby sequence variants. In a group of people
affected by a disease, the rare variant will be enriched in frequency
compared with its frequency in a group of unaffected controls. This
observation, for example, was of considerable assistance in the
identification of the genes responsible for cystic fibrosis22 and
diastrophic dysplasia23, after linkage had pointed to the general
chromosomal region.
Below we provide a brief description of human sequence vari-

ation, and then describe the strategy and key components of the
project. These include the choice of samples and populations for
study, the process of community engagement or public consul-
tation, selection of single-nucleotide polymorphisms (SNPs), geno-
typing, data release and analysis.

Human DNA sequence variation
Any two copies of the human genome differ from one another by
approximately 0.1% of nucleotide sites (that is, one variant per
1,000 bases on average)24–27. The most common type of variant, a
SNP, is a difference between chromosomes in the base present at a
particular site in the DNA sequence (Fig. 1a). For example, some
chromosomes in a population may have a C at that site (the ‘C
allele’), whereas others have a T (the ‘Tallele’). It has been estimated
that, in the world’s human population, about 10 million sites (that
is, one variant per 300 bases on average) vary such that both alleles
are observed at a frequency of $1%, and that these 10 million
common SNPs constitute 90% of the variation in the popu-

feature

NATURE |VOL 426 | 18/25 DECEMBER 2003 | www.nature.com/nature 789© 2003        Nature  Publishing Group



HAPMAP	samples	
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1000	Genomes	project	
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Clustering	using	gene'c	profile	
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•  Single	Nucleo'de	Polymorphisms	(SNPs)	
are	commonly	used	to	capture	varia'ons	
between	popula'ons.		

•  Small	scale:	small	subsets	of	SNPs	or		
ancestry-informa've	markers	(AIM)	

•  Genome-wide	scale:	600K	–	4M	SNPs	



Quality	Control	

•  Missing	data	
•  Linkage	Disequilibrium	(LD)	pruning	
•  Hardy-Weinberg	Equilibrium	(HWE)	
•  Minor	allele	frequency	(MAF)	filtering	

Sugges'on:	use	PLINK	
hdp://pngu.mgh.harvard.edu/~purcell/plink/	
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Principal	Component	Analysis	(PCA)	

Principal	component	analysis	(PCA)	is	a	
sta's'cal	procedure	that	uses	an	orthogonal	
transforma'on	to	convert	a	set	of	observa'ons	
of	possibly	correlated	variables	into	a	set	of	
values	of	linearly	uncorrelated	variables	called	
principal	components	(PCs).		
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PCA	in	R	

•  prcomp(x,	retx	=	TRUE,	center	=	TRUE,	scale.	=	FALSE,	
tol	=	NULL,	...)	

•  princomp(formula,	data	=	NULL,	subset,	na.ac'on,	...)	
•  eigen(x,	symmetric,	only.values	=	FALSE,	EISPACK	=	
FALSE)	

•  svd(x,	nu	=	min(n,	p),	nv	=	min(n,	p),	LINPACK	=	FALSE)	

library(rARPACK)	
•  svds(A,	k,	nu	=	k,	nv	=	k,	opts	=	list(),	...)	
•  eigs(A,	k,	which	=	"LM",	sigma	=	NULL,	opts	=	list(),	...)	
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snpStats	–	Bioconductor	Package	
•  hdp://www.bioconductor.org/packages/release/bioc/html/

snpStats.html	
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PCA vignette

Principal components analysis with snpStats

David Clayton

May 3, 2016

Principal components analysis has been widely used in population genetics in order to
study population structure in genetically heterogeneous populations. More recently, it has
been proposed as a method for dealing with the problem of confounding by population
structure in genome-wide association studies.

The maths

Usually, principal components analysis is carried out by calculating the eigenvalues and
eigenvectors of the correlation matrix. With N cases and P variables, if we write X for
the N ⇥ P matrix which has been standardised so that columns have zero mean and unit
standard deviation, we find the eigenvalues and eigenvectors of the P ⇥ P matrix XT.X
(which is N or (N � 1) times the correlation matrix depending on which denominator was
used when calculating standard deviations). The first eigenvector gives the loadings of each
variable in the first principal component, the second eigenvector gives the loadings in the
second component, and so on. Writing the first C component loadings as columns of the
P ⇥C matrix B, the N⇥C matrix of subjects’ principal component scores, S, is obtained by
applying the factor loadings to the original data matrix, i.e. S = X.B. The sum of squares
and products matrix, ST.S = D, is diagonal with elements equal to the first C eigenvalues of
the XT.X matrix, so that the variances of the principal components can obtained by dividing
the eigenvalues by N or (N � 1).

This standard method is rarely feasible for genome-wide data since P is very large in-
deed and calculating the eigenvectors of XT.X becomes impossibly onerous. However, the
calculations can also be carried out by calculating the eigenvalues and eigenvectors of the
N ⇥ N matrix X.XT. The (non-zero) eigenvalues of this matrix are the same as those
of XT.X, and its eigenvectors are proportional to the principal component scores defined
above; writing the first C eigenvectors of X.XT as the columns of the N ⇥ C matrix, U ,
then U = S.D�1/2. Since for many purposes we are not too concerned about the scaling
of the principal components, it will often be acceptable to use the eigenvectors, U , in place
of the more conventionally scaled principal components. However some attention should be
paid to the corresponding eigenvalues since, as noted above, these are proportional to the

1



PCA	for	GWAS	

Principal components analysis corrects for stratification
in genome-wide association studies
Alkes L Price1,2, Nick J Patterson2, Robert M Plenge2,3, Michael E Weinblatt3, Nancy A Shadick3 &
David Reich1,2

Population stratification—allele frequency differences between cases and controls due to systematic ancestry differences—can
cause spurious associations in disease studies. We describe a method that enables explicit detection and correction of population
stratification on a genome-wide scale. Our method uses principal components analysis to explicitly model ancestry differences
between cases and controls. The resulting correction is specific to a candidate marker’s variation in frequency across ancestral
populations, minimizing spurious associations while maximizing power to detect true associations. Our simple, efficient approach
can easily be applied to disease studies with hundreds of thousands of markers.

Population stratification—allele frequency differences between cases
and controls due to systematic ancestry differences—can cause spur-
ious associations in disease studies1–8. Because the effects of stratifica-
tion vary in proportion to the number of samples9, stratification will
be an increasing problem in the large-scale association studies of the
future, which will analyze thousands of samples in an effort to detect
common genetic variants of weak effect.

The two prevailing methods for dealing with stratification are
genomic control and structured association9–14. Although genomic
control and structured association have proven useful in a variety of
contexts, they have limitations. Genomic control corrects for stratifi-
cation by adjusting association statistics at each marker by a uniform
overall inflation factor. However, some markers differ in their allele
frequencies across ancestral populations more than others. Thus, the
uniform adjustment applied by genomic control may be insufficient at
markers having unusually strong differentiation across ancestral
populations and may be superfluous at markers devoid of such
differentiation, leading to a loss in power. Structured association
uses a program such as STRUCTURE15 to assign the samples to
discrete subpopulation clusters and then aggregates evidence of
association within each cluster. If fractional membership in more
than one cluster is allowed, the method cannot currently be applied to
genome-wide association studies because of its intensive computa-
tional cost on large data sets. Furthermore, assignments of individuals
to clusters are highly sensitive to the number of clusters, which is not
well defined14,16.

We propose a method to detect and correct for population
stratification that addresses these limitations. Our method, EIGEN-
STRAT, consists of three steps (Fig. 1). First, we apply principal
components analysis17 to genotype data to infer continuous axes of

genetic variation. Intuitively, the axes of variation reduce the data to a
small number of dimensions, describing as much variability as
possible; they are defined as the top eigenvectors of a covariance
matrix between samples (see Methods). In data sets with ancestry
differences between samples, axes of variation often have a geographic
interpretation: for example, an axis describing a northwest-southeast
cline in Europe would have values that gradually range from positive
for samples from northwest Europe, to near zero in central Europe, to
negative in southeast Europe. Second, we continuously adjust
genotypes and phenotypes by amounts attributable to ancestry
along each axis, via computing residuals of linear regressions;
intuitively, this creates a virtual set of matched cases and controls.
Third, we compute association statistics using ancestry-adjusted
genotypes and phenotypes.

The EIGENSTRAT method has arisen out of our systematic
exploration of the use of principal components analysis in a more
general population genetic context. Principal components analysis was
originally applied to genetic data to infer worldwide axes of human
genetic variation from the allele frequencies of various popula-
tions18,19. We have further developed this approach in a parallel
paper (N.J.P., A.L.P. and D.R., unpublished data), focusing instead
on individual genotype data and placing the method on a firm
statistical footing by rigorously assigning statistical significance to
each axis of variation20–22. EIGENSTRAT applies this toolkit to analyze
population structure in the context of disease studies.

Correcting for stratification using continuous axes of variation has
several advantages. Continuous axes provide the most useful descrip-
tion of within-continent genetic variation, according to recent stu-
dies23. Because our continuous axes are constructed to be orthogonal,
results are insensitive to the number of axes inferred, as we verify

Received 23 March; accepted 21 June; published online 23 July 2006; doi:10.1038/ng1847

1Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA. 2Program in Medical and Population Genetics, Broad Institute of MIT and
Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA. 3Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston,
Massachusetts 02115, USA. Correspondence should be addressed to A.L.P. (aprice@broad.mit.edu).
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PCA	plot	for	HAPMAP	
Popula'ons	
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The	importance	of	substructures	
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CEU	

YRI	

CHB,	JPT,	VIE	
Genome-wide	associa'on	study	for	
Dengue	shock	syndrome	
	
Chiea	Chuen	Khor	et	al.	
Nature	Gene'cs	2012	
	
•  657,366	SNPs		
•  4,028	individuals	from	Vietnam	



Popula'on	correc'on	using	linear	model	

Full data

Calculate PC
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1
2

PCs	were	calculated	from	all	
available	data	(2	popula'ons),	
referred	to	as	“Pooled	PCs”	
	

10/04/2017	

Popula'on	Correc'on:	PCs	
regressed	out	from	original	
SNPs.	
PCs	were	calculated	from	
adjusted	SNPs.	

21	KC	-	ULg	



Linear	Regression	in	R	

Linear	models	
lm(formula,	data,	subset,	...)	

Example	in	help	page:	
ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14) 

trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69) 

group <- gl(2, 10, 20, labels = c("Ctl","Trt")) 

weight <- c(ctl, trt) 

lm.D9 <- lm(weight ~ group) 

plot(lm.D9) 

	
hdps://stat.ethz.ch/R-manual/R-devel/library/stats/html/lm.html	
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Generalized	Linear	Models	-	GLM	

glm(formula,	family	=	gaussian,	data,	weights,	...)	

Example	from	help	page:	
counts <- c(18,17,15,20,10,20,25,13,12)
outcome <- gl(3,1,9)
treatment <- gl(3,3)
print(d.AD <- data.frame(treatment, outcome, counts))
glm.D93 <- glm(counts ~ outcome + treatment, family = 
poisson())
	

hdp://stat.ethz.ch/R-manual/R-patched/library/stats/html/glm.html	
	

10/04/2017	 KC	-	ULg	 23	



Models	for	GLM	
glm(formula,	family=familytype(link=linkfunc'on),	data=)	
	
Family 	 	 	 	 	Default	Link	Func1on	
binomial 	 	 	 	(link	=	"logit")	
gaussian 	 	 	 	(link	=	"iden'ty")	
Gamma	 	 	 	 	(link	=	"inverse")	
inverse.gaussian 	 	(link	=	"1/mu^2")	
poisson	 	 	 	 	(link	=	"log")	
quasi 	 	 	 	 	(link	=	"iden'ty",	variance	=	"constant")	
quasibinomial 	 	 	(link	=	"logit")	
quasipoisson 	 	 	(link	=	"log")	
	
hdp://www.statmethods.net/advstats/glm.html	
	
10/04/2017	 KC	-	ULg	 24	



GWAS	with	regression	

•  Linear	model:	
plink	--bfile	mydata	--linear	

•  Logis'c	model:	
plink	--bfile	mydaya	–logis'c	

	
•  Check:	
hdp://zzz.bwh.harvard.edu/plink/
anal.shtml#glm	
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Fixa'on	index	(FST)	

•  FST	can	be	used	to	describe	a	distance	among	
popula'on.	

•  FST	can	be	biased	due	to	the	allele	frequencies	
and	the	number	of	independent	SNPs.	

10/04/2017	 KC	-	ULg	 26	

Pop1	=	2,000	individuals	 Pop2	=	500	individuals	



FST	among	European	popula'ons	

10/04/2017	 KC	-	ULg	 27	

Simon	et	al.	2008	
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To	understand	FST,	here	are	simulated	data	using	Balding	method	and	the	examples	of	EU	
popula'ons	as	reported	in	(Simon	et	al.	2008)	 28	
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Package ‘StAMPP’

July 6, 2015
Type Package

Title Statistical Analysis of Mixed Ploidy Populations

Depends R (>= 2.14.0), pegas

Imports parallel, doParallel, foreach, adegenet, methods, utils

Version 1.4

Date 2015-06-30

Author LW Pembleton

Maintainer LW Pembleton <luke.pembleton@ecodev.vic.gov.au>

Description Allows users to calculate pairwise Nei's Genetic Distances (Nei 1972), pairwise Fixation
Indexes (Fst) (Weir & Cockerham 1984) and also Genomic Relationship matrixes follow-
ing Yang et al. (2010) in mixed and single
ploidy populations. Bootstrapping across loci is implemented during Fst calculation to gener-
ate confidence intervals and p-values
around pairwise Fst values. StAMPP utilises SNP geno-
type data of any ploidy level (with the ability to handle missing data) and is coded to
utilise multithreading where available to allow efficient analy-
sis of large datasets. StAMPP is able to handle genotype data from genlight objects
allowing integration with other packages such adegenet.
Please refer to LW Pembleton, NOI Cogan & JW Forster, 2013, Molecular Ecology Re-
sources, 13(5), 946-952. doi:10.1111/1755-0998.12129 for the appropriate cita-
tion and user manual. Thank you in advance.

License GPL-3

NeedsCompilation no

Repository CRAN

Date/Publication 2015-07-06 06:31:23

R topics documented:

StAMPP-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
potato . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
potato.mini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
stampp2genlight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1

Package ‘PopGenome’
May 4, 2015

Type Package

Title An Efficient Swiss Army Knife for Population Genomic Analyses

Version 2.1.6

Date 2015-05-1

Author Bastian Pfeifer [aut, cre], Ulrich Wittelsbuerger [ctb], Heng Li [ctb], Bob Handsaker [ctb]

Maintainer Bastian Pfeifer <Bastian.Pfeifer@uni-duesseldorf.de>

Depends R (>= 2.14.2),ff

Imports methods

Suggests parallel, bigmemory, BASIX, WhopGenome

Description Provides efficient tools for population genomics data analysis,
able to process individual loci, large sets of loci, or whole genomes. PopGenome not only
implements a wide range of population genetics statistics, but also facilitates the easy
implementation of new algorithms by other researchers. PopGenome is optimized for speed via
the seamless integration of C code.

License GPL-3

URL http://popgenome.weebly.com

LazyLoad yes

Copyright inst/COPYRIGHTS

SystemRequirements zlib headers and library.

Repository CRAN

NeedsCompilation yes

Date/Publication 2015-05-04 23:40:49

R topics documented:
Achaz.stats-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
BayeScanR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
calc.R2-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
codontable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
concatenate.classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1

Package ‘hierfstat’
December 4, 2015

Version 0.04-22

Date 2015-11-24

Title Estimation and Tests of Hierarchical F-Statistics

Author Jerome Goudet [aut, cre],
Thibaut Jombart [aut]

Maintainer Jerome Goudet <jerome.goudet@unil.ch>

Imports gtools,ade4,adegenet

Suggests ape,pegas, knitr

Description Allows the estimation of hierarchical F-statistics from haploid or diploid genetic data
with any numbers of levels in the hierarchy, following the algorithm of Yang (Evolu-
tion, 1998, 52(4):950-956;
<DOI:10.2307/2411227>. Functions are also given to test via randomisations the signifi-
cance of each F and variance components,
using the likelihood-ratio statistics G.

Depends R (>= 2.10)

License GPL (>= 2)

URL http://www.r-project.org, http://github.com/jgx65/hierfstat

BugReports https://github.com/jgx65/hierfstat/issues

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2015-12-04 15:57:50

R topics documented:
AIc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
allele.count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
allelic.richness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
basic.stats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
betas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1
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Method

Estimating and interpreting FST: The impact
of rare variants
Gaurav Bhatia,1,2,6,7 Nick Patterson,2,6,7 Sriram Sankararaman,2,3 and Alkes L. Price2,4,5,7

1Harvard–Massachusetts Institute of Technology (MIT), Division of Health, Science, and Technology, Cambridge,

Massachusetts 02139, USA; 2Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA; 3Department of Genetics,

Harvard Medical School, Boston, Massachusetts 02115, USA; 4Department of Epidemiology, Harvard School of Public Health, Boston,

Massachusetts 02115, USA; 5Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts 02115, USA

In a pair of seminal papers, Sewall Wright and Gustave Malécot introduced FST as a measure of structure in natural
populations. In the decades that followed, a number of papers provided differing definitions, estimation methods, and
interpretations beyond Wright’s. While this diversity in methods has enabled many studies in genetics, it has also in-
troduced confusion regarding how to estimate FST from available data. Considering this confusion, wide variation in
published estimates of FST for pairs of HapMap populations is a cause for concern. These estimates changed—in some cases
more than twofold—when comparing estimates from genotyping arrays to those from sequence data. Indeed, changes in
FST from sequencing data might be expected due to population genetic factors affecting rare variants. While rare variants
do influence the result, we show that this is largely through differences in estimation methods. Correcting for this yields
estimates of FST that are much more concordant between sequence and genotype data. These differences relate to three
specific issues: (1) estimating FST for a single SNP, (2) combining estimates of FST across multiple SNPs, and (3) selecting the
set of SNPs used in the computation. Changes in each of these aspects of estimation may result in FST estimates that are
highly divergent from one another. Here, we clarify these issues and propose solutions.

[Supplemental material is available for this article.]

Since its introduction by Sewall Wright (1949) and Gustave Malécot
(1948), FST estimation (Weir and Cockerham 1984; Holsinger and
Weir 2009) has become a key component of studies of population
structure in humans (International HapMap Consortium 2007; Li
et al. 2008; The 1000 Genomes Project Consortium 2010; Inter-
national HapMap 3 Consortium 2010) and other species (Malécot
1948; Wright 1949; Selander and Hudson 1976; Guries and Ledig
1982; Ellstrand and Elam 1993; Palumbi and Baker 1994). Though
the utility of FST and related measures has been subject to recent
debate ( Jost 2008; Ryman and Leimar 2009), FST continues to be
widely used by population geneticists (Xu et al. 2009; Edelaar et al.
2012; Hangartner et al. 2012).

Despite this widespread use in genetic studies, confusion re-
mains about what FST is and how to estimate it. Beyond Wright’s
original description of FST as a ratio of variances, FST has been con-
ceptually defined in many ways (Wright 1949; Cockerham 1969;
Cavalli-Sforza and Bodmer 1971; Nei 1973; Slatkin 1991; Hudson
et al. 1992). Additionally, multiple estimators for FST have been
described in the literature (Nei 1973, 1986; Weir and Cockerham
1984; Hudson et al. 1992; Holsinger 1999; Weir and Hill 2002),
often making the correct choice of estimator unclear.

With this diversity of definition and estimation in mind, we
consider estimates of FST published by The 1000 Genomes Project
Consortium (2010) of 0.052 for European and East Asian pop-
ulations and 0.071 for European and West African populations.
These are less than half of the published estimates, 0.111 and

0.156, from HapMap3 data (International HapMap 3 Consortium
2010) and may be the result of demography that differentially
impacts FST at rare variants. These estimates have subsequently
been used to simulate properties of recent rare variants (Mathieson
and McVean 2012), making it imperative to know whether this
reduction in FST is a meaningful result of the inclusion of rare
variants or merely an artifact of estimation.

To answer these questions, we examine the issues surround-
ing FST estimated on data containing rare variants. We focus our
attention on FST estimation in the context of comparing two
populations—potentially with differing amounts of drift since the
populations split—using a series of bi-allelic SNPs. We use the
definition of Weir and Hill (2002), which allows for population-
specific FST. Using this definition, we divide the issues surrounding
estimation into three categories and examine them using both
simulated and 1000 Genomes data:

1. Choice of FST estimator.
2. Combining estimates of FST across multiple SNPs.
3. Dependence of FST on the set of SNPs analyzed.

We conclude that the lower FST estimates reported by The 1000
Genomes Project Consortium (2010) are a consequence of the es-
timation method that was applied and are not informative for hu-
man demographic history. Correcting for differences in estimation
method yields FST estimates of 0.106 for Europeans and East Asians
and 0.139 for Europeans and West Africans—much closer to
HapMap3 estimates. Overall, our results contradict a recent state-
ment ‘‘among human populations, FST is typically estimated to be
<0.1’’ by Mathieson and McVean (2012), which was based on re-
sults from The 1000 Genomes Project Consortium (2010).

Altogether, in the setting of rare variants, a careful protocol
for producing FST estimates is warranted. We provide such a
protocol.

6These authors contributed equally to this work.
7Corresponding authors
E-mail gbhatia@mit.edu
E-mail nickp@broadinstitute.org
E-mail aprice@hsph.harvard.edu
Article published online before print. Article, supplemental material, and pub-
lication date are at http://www.genome.org/cgi/doi/10.1101/gr.154831.113.

1514 Genome Research
www.genome.org

23:1514–1521 ! 2013, Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/13; www.genome.org



Gene'c	Admixture	

Gene'c	admixture	occurs	when	two	or	more	
previously	isolated	popula'ons	begin	
interbreeding.	Admixture	results	in	the	
introduc'on	of	new	gene'c	lineages	into	a	
popula'on.	It	has	been	known	to	slow	local	
adapta'on	by	introducing	foreign,	unadapted	
genotypes	(known	as	gene	swamping).	It	also	
prevents	specia'on	by	homogenizing	
popula'ons.	
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Tools	for	Admixture	profiling	
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Thai	popula'on	
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Thai	popula'on	gene'c	structure	
Wangkumhang,	P	et	al.	PLoS	One,	2013	


