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of main effects is more robust to the effects of LD pruning 
than additive coding. We were able to reproduce previously 
reported epistasis involvement of HLA-B and ERAP1 in AS 
pathology. In addition, our results suggest involvement of 
MAGI3 and PARK2, responsible for cell adhesion and cel-
lular trafficking. Gene ontology biological function enrich-
ment analysis across the 8 considered GWAI protocols 
also suggested that AS could be associated to the central 
nervous system malfunctions, specifically, in nerve impulse 
propagation and in neurotransmitters metabolic processes.

Introduction

High-throughput technologies give access to unprecedent-
edly vast amounts of data such as single-nucleotide poly-
morphisms (SNPs). In genome-wide association studies 
(GWAS), thousands of these are scanned for their potential 
association with traits of interest, such as a disease status. 
Hard to disentangle are complex traits which assume an 
intricate interplay between genetic, environmental and/or 
many other unknown factors. For these traits, added ben-
efits can be obtained using methods that account for bio-
logical and statistical interactions, rather than by adopting 
strategies that analyze each SNP at a time. This is the sub-
ject of genome-wide association interaction (GWAI) stud-
ies, which usually focus on pairwise SNP × SNP interac-
tions. It is believed that GWAI studies can lead to novel or 
improved clinical and biologically relevant hypotheses.

Many strategies exist to carry out a GWAI study, such 
as those based on generalized linear regression models 
(GLM), BOOST (Wan et al. 2010), Dimensionality Reduc-
tion (MB-MDR) (Cattaert et  al. 2011; Van Lishout et  al. 
2013), MDR (Ritchie et al. 2001), BiForce (Gyenesei et al. 
2012), Bayesian Models (e.g., BEAM) (Zhang et al. 2011) 
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and several others (Pang et al. 2013; Van Steen 2012; Wei 
et  al. 2014; Zhang et  al. 2008). For extensive reviews, 
please refer to Gusareva and Van Steen (2014), Van Steen 
(2012) and Wei et al. (2014). All these methods have their 
pros and cons, but the problems or hurdles encountered 
during the analysis are largely overlapping. Common hur-
dles to overcome include dealing with high dimensionality, 
handling a huge multiple testing problem, limiting compu-
tation time (when assessing statistical significance), and 
controlling false positive rates (Van Steen 2012). Unfortu-
nately, often when novel GWAI analysis methods are intro-
duced the impact on epistasis findings of changes in the 
GWAI protocol is given limited attention. Some examples 
of key protocol parameter changes relate to marker filter-
ing/prioritization, LD thresholds in marker pruning, a priori 
assumptions about operating two-locus inheritance mod-
els, main effects correction. It is essential to differentiate 
between global two-locus testing (i.e., not differentiating 
between main effects and interaction effects) and specific 
interaction testing (i.e., testing for the interaction between 
two loci itself, above and beyond the main effects). Specific 
interaction testing requires making adjustments for lower 
order effects, and hence proposing a particular encod-
ing scheme for lower order effects. Several authors have 
commented upon the limitations of an additive encoding 
scheme for SNPs in SNP ×  SNP interaction studies and 
recommended co-dominant coding (Mahachie John et  al. 
2011b).

In this study, we investigated the impact on final epista-
sis results of changing one or more parameter settings in a 
GWAI protocol, leading to 8 interesting strategies (Fig. 1; 
Table S1). These strategies are motivated by prior theo-
retical work (Cattaert et al. 2011; Grange 2014; Mahachie 
John et  al. 2012). As a benchmark protocol, we took the 
one proposed by Gusareva and Van Steen (2014). As ana-
lytic tools we chose BOOST (Wan et al. 2010), motivated 
by its popularity and computational efficiency due to a 
Boolean data representation, and MB-MDR (e.g., Cattaert 
et al. 2011), because of its non-parametric nature regarding 
epistasis models and its ability to correct for confounders or 
lower order effects. In brief, BOOST handles binary traits 
and fits a full-generalized linear model with main SNP 
effects [2 degrees of freedom (df) for each main effect] 
and SNP × SNP interaction effects (4 df). Significant (spe-
cific) interactions are identified via a log-likelihood ratio 
test (LRT) based on 4 df. The Bonferroni correction is pro-
posed as a multiple testing corrective measure. In contrast, 
MB-MDR handles binary, continuous, and censored traits, 
and first carries out a dimensionality reduction procedure 
while pooling risk-alike multi-locus genotype combina-
tions together. Its final test statistic contrasts high-risk ver-
sus low-risk multi-locus genotypes. While correcting for 
multiple testing, significance is assessed via the resampling 
based strategy proposed by Westfall and Young (1993). For 
additional details about MB-MDR and BOOST, we refer 
to Cattaert et al. (2011), Mahachie John et al. (2012), Van 

Fig. 1   Summary of 8 GWAI protocols included in this study and 
applied to AS data, the ankylosing spondylitis dataset from Evans 
(2011). The number of SNPs retained at each step is shown in paren-
thesis. The bottom nodes refer to GWAI protocol abbreviations and 

chosen parameters, following protocol components as described in 
Gusareva and Van Steen (2014) GWAI protocol. The abbreviations 
additive and co-dominant refer to SNP main effects correction encod-
ings in MB-MDR [see (Mahachie John et al. 2012)]
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Lishout et  al. (2013) and Wan et  al. (2010). To achieve 
our goal, we used real-life ankylosing spondylitis (AS) 
data from the Wellcome Trust Case Control Consortium 
(WTCCC2). AS is a common form of inflammatory arthri-
tis occurring in approximately 1–14 out of 1000 adults 
globally (Dean et  al. 2014). Apart from confirming previ-
ously known AS-associated genes (Alvarez-Navarro and 
Lopez de Castro 2013; Evans et  al. 2011), we will show 
that combining different protocols may give new insights 
into disease pathology.

Materials and methods

Data quality control

Approved access to Wellcome Trust Case Control Con-
sortium (WTCCC2) data, in particular via EBI acces-
sion no. EGAS00000000104, EGAD00010000150, 
EGAD00000000024 and EGAD00000000022, resulted in 
a dataset composed of 2005 Ankylosing Spondylitis (AS) 
cohort samples, and 3000 British 1958 Birth Cohort (BC) 
and 3000 National Blood Donors (NBS) Cohort samples. 
The 1788 cases were of British Caucasian origin recruited 
by Nuffield Orthopedic Centre, Oxford and Royal National 
Hospital for Rheumatic Diseases, Bath. The first batch of 
case samples were genotyped on an Illumina 670 k platform, 
the last two batches of control samples were genotyped on 
an Illumina 1.2  M platform. No imputation was done for 
these genotypes. We used PLINK (Purcell et  al. 2007) to 
select 6587 subjects (1788 cases plus 4799 controls), 3409 
of which were male and 2864 female, and 487,780 SNPs, 
according to criteria described in Evans et  al. (2011). 
Briefly, SNPs showing MAF <0.01, Hardy–Weinberg p val-
ues <5 × 10−20 and SNPTEST information measure <0.975 
were excluded. The dataset inflation factor (λ) was estimated 
as 1.02917. The QC-ed genotype data were stored in GEN 
format and were converted to PED and MAP files using 
GTOOL from Oxford University, UK (Colin Freeman 2012).

Additional data handling

Depending on the GWAI protocol of choice, additional data 
manipulations were required, such as marker prioritiza-
tion or LD pruning (Fig.  1). We prioritized markers with 
the Biofilter 2.0 software developed by Ritchie et al. (Bush 
et al. 2009). The Biofilter 2.0 uses a list of public biologi-
cal databases (sources) such as KEGG, BioGRID, MINT, 
via the Library of Knowledge Integration (LOKI), to gen-
erate pairwise gene–gene interaction models (Wan et  al. 
2010). No disease-specific information was used, but avail-
able knowledge about gene–gene interactions from differ-
ent biological resources called by Biofilter 2.0 (Bush et al. 

2009). The advantage of such an approach is an 11-fold 
reduction of the original marker set, without selection bias 
introduction towards a particular disease. The disadvantage 
of any pre-filtering method is that useful information may 
be disregarded and biologically relevant SNPs removed 
from further analysis protocols. In practice, taking the 
487,780 SNPs from Evans et al. (2011) as a starting point, 
we applied Biofilter 2.0 with a minimum implication index 
threshold of 3, meaning that at least 3 data sources con-
firmed the associated gene–gene interaction. This resulted 
in the generation of 8288 gene–gene models and a set of 
44,018 unique SNPs (Fig. 1).

To reduce the number of tests and the number of false 
positives based on genomic proximity (for instance, redun-
dant epistatic SNP pairs), some GWAI protocols involve 
LD filtering or pruning (Fig. 1). As motivated and recom-
mended by Gusareva and Van Steen (2014), we adopted a 
rather mild pruning threshold of r2 > 0.75, still allowing for 
moderate LD but removing strong LD. Pruning at r2 > 0.75 
threshold implies that every SNP pair in the pruned data-
set has an r2 of at most 0.75. The proposed threshold offers 
a balance between power gain and false positives due to 
high LD. In practice, LD pruning was performed consider-
ing the sliding windows of size 50 (i.e., 50 markers) with 
window increments of 1 marker. For any pair of markers 
under testing whose r2 > 0.75, the first marker of the pair 
was discarded, as implemented in SVS Version 7.5 (Golden 
Helix, Inc.). After LD pruning, the original marker dataset 
reduced from 487,780 to 321,565 markers. After LD prun-
ing, the biofiltered data (Biofilter 2.0) reduced from 44,018 
to 30,426 markers (Fig. 1).

Interaction testing

To test for interactions, we used two software tools: 
BOOST (Wan et  al. 2010) and MB-MDR (Cattaert et  al. 
2011). We extended the original BOOST algorithm as 
it did not deal with missing genotypes and so as to prop-
erly adjust the number of degrees of freedom (df) in case 
less than 3 genotypes was observed for a marker. Our 
implementation of BOOST was coded in C++  and can 
be obtained upon request, via the corresponding author. 
Notably, a similar adaption of BOOST was implemented 
in the PLINK software (PLINK version 1.9, called via 
“–fast-epistasis boost”). In practice, for the MB-MDR meth-
odology, we used the algorithms implemented in MB-MDR 
version 3.0.2 (Van Lishout et  al. 2013) that provides sev-
eral advantages over classic MDR (Ritchie et  al. 2001) or 
BOOST, such as the ability to analyze different trait types 
within the same framework, as well as non-parametric 
model free testing for two- or three-order interactions while 
adjusting for lower order effects or relevant confounders. 
Since MB-MDR versions 2.0–4.1.0 requires significant 
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computational resources to run on a genome-wide scale, 
we were not able to use these MB-MDR versions on unfil-
tered data, at the time of analysis. The version that allows 
for exhaustive genome-wide epistasis screening is under-
way. Hence, in this study, all MB-MDR-based protocols 
(Fig. 1) were implemented on a reduced dataset via Biofilter 
2.0. The default main effects correction in MB-MDR is a 
co-dominant one. As was mentioned in Mahachie John et al. 
(2011b), it is important to correct for main effects in a co-
dominant way to avoid false epistasis signals.

Results obtained from either one of the 8 GWAI pro-
tocols included in this study were compared to results 
obtained in the reference study (Evans et  al. 2011). In 
particular, as statistical interactions may be indicative for 
important main effects (Greene et al. 2009), we compared 
SNPs derived from significant SNP pairs to the list of 49 
SNPs in Supplementary Table S2 of Evans et al. (2011) that 
passed quality control in their replication analysis. Also, 
significant SNP pairs obtained in this work were compared 
to the reference panel of 102 SNP × SNP pairs tabulated 
in Supplementary Table 5 of Evans et al. (2011). The lat-
ter table lists all considered SNP pairs for interaction test-
ing, using an additive × additive term in a logistic regres-
sion model (i.e., additive encoding of SNP main effects and 
interaction).

Assessing consistencies between protocols

The overlap between GWAI protocols (Fig. 1) in identify-
ing the same significant SNP pairs was graphically pre-
sented via the Euler diagram (Fig.  2) with the software 

VennMaster 0.38 (Kestler et al. 2005). For each of the SNP 
pairs tested, ranks were computed, for each protocol sepa-
rately, with rank 1 assigned to the SNP pair with the small-
est multiple testing corrected p value. Then, SNP pairs that 
were common to each protocol were retained, to be able 
to compare exhaustive with non-exhaustive protocols. A 
total of 1230 SNP pairs were retained. These are listed in 
Table S4 together with their associated protocol-specific p 
values and were subsequently used to calculate “distances” 
between protocols. In particular, we calculated the squared 
Euclidean distance between 8 GWAI protocols using 8 
input vectors containing 1230 ranks each. These 1230 
ranks for each protocol corresponded to relative positions 
of the common 1230 SNP pairs among all ordered SNP 
pairs (from highest to lowest significance). For example, 
the ranks for the rs12026423 × rs7528311 pair in protocols 
1 to 8 were 232, 2300, 97, 61, 259, 151, 59,892 and 43,598, 
respectively. We used complete linkage cluster agglomera-
tion with hclust() to build a dendrogram (hierarchical tree) 
(RCoreTeam 2013) (Fig.  3). The use of SNP pair ranks 
coupled with hierarchical clustering allows an unbiased 
qualitative comparison of the top findings derived via dif-
ferent GWAI protocols.

In addition, to assess the effects of MAFs on top find-
ings in each protocol, we selected the top 1000 SNP pairs 
for each GWAI protocol. We subsequently defined the fol-
lowing MAF classes or bins, using interval notations: (1) 
(0–0.05) (MAF  <  0.05; less common minor allele); (2) 
[0.05–0.10) (0.05  ≤  MAF  <  0.10; moderate occurrence 
of the minor allele); (3) [0.10–0.50) (0.10 ≤ MAF < 0.50; 
rather common minor allele). Two-dimensional bins were 

Fig. 2   Euler diagram capturing 
significant SNP pairs identified 
in each of the 8 GWAI proto-
cols. Each circle represents a 
set of the significant SNP pairs 
in the corresponding GWAI 
protocol. Protocol numbers 
match the protocol referencing 
used in Fig. 1
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defined by combining the aforementioned three one-dimen-
sional bins as follows: (1) (0–0.05)/(0–0.05); (2) [0.05-
0.10)/(0–0.05); (3) [0.10–0.50)/(0–0.05); (4) [0.05–0.10)/
[0.05–0.10); (5) [0.05–0.10)/[0.05–0.10); (6) [0.10–0.50)/
[0.10–0.50). Note that for any SNP pair falling into one of 
these six two-dimensional bins, the MAF of the first SNP in 
the pair will be larger or equal than the MAF of the second 
SNP in the pair, unless perhaps when both SNPs belong to 
the same one-dimensional bin.

Biological relevance

The SNP to gene symbol annotation (when possible) was 
done using SCAN—a SNP and CNV Annotation Database 
(Gamazon et al. 2010) The SCAN database accepts a list of 
SNPs, maps them to genomic coordinates and outputs cor-
responding gene symbols, provided that the SNP is located 
within a gene coding region, which is helpful in assess-
ing putative biological function and context. We then per-
formed GO enrichment analyses (da Huang et al. 2009) on 
the top 1000 most significant SNP pairs, by GWAI proto-
col. In practice, we used the topGO library in R that takes 
into account the GO graph structure and removed nodes 
(GO terms) that had a low number of annotated genes, i.e., 
less than 10 (Ackermann and Strimmer 2009; Alexa et al. 
2006). The weight01 algorithm was chosen based on the 
author’s recommendations and due to shared benefits of 
the elim and weight algorithms (Ackermann and Strimmer 
2009). Significance of each GO term, per protocol, was 
based on Fisher’s exact test. Overall significance across all 
protocols was assessed via Fisher’s combined probability 
test at a significance level of 0.05.

Results

Consistency between interaction results derived 
from different GWAI protocols

A graphical representation showing the overlap of signifi-
cant findings between considered GWAI protocols is pre-
sented in Fig. 2. The significant SNP pairs (multiple test-
ing corrected) retrieved via GWAI protocol #1–#8 (Fig. 1) 
are tabulated in Table S3. The largest number of significant 
SNP pairs was obtained for protocols that use additive 
encoded corrections for main effects (protocols #7, #8). 
Over 2000 significant pairs were detected with an exhaus-
tive implementation of BOOST on LD-pruned data (proto-
col #2). The number of significant SNP pairs reduces sig-
nificantly when BOOST is used exhaustively on unpruned 
data (protocol #1; 226 pairs). All other protocols identified 
less than 130 significant epistasis signals; the most liberal 
is protocol #3 (BOOST on filtered data), the most con-
servative is protocol #6 (MB-MDR on biofiltered and LD-
pruned data), also using a co-dominant encoding scheme to 
correct the interaction testing for lower order SNP effects. 
Furthermore, only few of the findings obtained via exhaus-
tive protocols (BOOST, #1–#2) were retrieved via proto-
cols that first biofiltered the data (protocols #3–#8). With 
the same protocol for LD pruning on biofiltered data, both 
BOOST and MB-MDR in co-dominant main effects cor-
rection mode gave partially overlapping results (Fig. 2). In 
effect, over 97  % of significant SNP ×  SNP interactions 

Fig. 3   Consistency between GWAI protocols based on 1230 com-
mon SNPs. Each SNP pair has a protocol-specific rank, which is 
stored in a protocol-specific vector. The dendrogram shows the dis-
tance between protocols, obtained via hierarchical clustering of 8 
vectors (referring to the 8 GWAI protocols included in this study) of 
length 1230 and the Euclidean distance measure. The Euclidean dis-
tances themselves are listed in Table S2
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identified via MB-MDR protocols #5 and #6 were identi-
fied in BOOST protocols #3 and #4, respectively (Fig.  2; 
Table S3).

Via hierarchical clustering (see Methods for details), the 
largest distance between protocols (i.e., the smallest over-
lap between top findings, not necessarily significant) was 
obtained for exhaustive screening protocols: protocol #1—
BOOST without pruning and protocol #2—BOOST applied 
on LD-pruned data (Fig. 3). The effect of LD in BOOST 
applications is less pronounced when data were first bio-
filtered. Actually, the smallest distance between protocols 
was observed between protocols #3 (BOOST without LD 
pruning) and #4 (BOOST applied to LD-pruned data). In 
general, the effect of LD on SNP pair rankings seems to 
be smaller in non-exhaustive protocols as compared to the 
exhaustive protocols considered. The second smallest dis-
tances observed between protocols was between #5 and 
#6 (MB-MDR with co-dominant correction of lower order 
effects) and between #7 and #8 (MB-MDR with additive 
encoding of main SNP effects). Within non-exhaustive 
screening protocols (#3–#8), analyses that used an addi-
tive encoding to adjust for SNP main effects while testing 
for interactions stood out; all protocols involving epistasis 
detection analytics with co-dominant encoding schemes of 
some sort clustered together (Fig. 3). A closer look at the 
overlapping significant SNP pairs across all 8 GWAI proto-
cols reveals that only 3 out of 1230 SNP pairs (rs12026423/
rs7528311, rs11964796/rs13194019 and rs13194019/

rs1784607) met statistical significance at α = 0.05, accord-
ing to at least one GWAI protocol (Tables 1, S4).

We furthermore investigated whether any of the 49 main 
effects SNPs reported in Evans et  al. (2011) were sup-
ported by our SNP ×  SNP interaction results across the 
8 tested GWAI protocols (see Methods for more details). 
With GWAI protocols #5, #6, #7 and #8 based on the MB-
MDR framework, we were able to confirm rs9788973 (p 
value 0.49), which maps to HLA-B and rs30187 (p value 
1.1 ×  10−9), which maps to ERAP1 (Evans et  al. 2011). 
These SNPs occurred in the pairs rs2523608 x rs9788973 
and rs30187 x rs284498 (see Table  2). Only GWAI pro-
tocols #7 and #8 coined the aforementioned two pairs as 
being statistically significant. None of the 102 SNP pairs 
listed in Evans et al. (2011) were found to be statistically 
significant in our re-analysis, regardless of the protocol 
used. Relaxing the conditions, we determined the number 
of SNP pairs with a SNP that occurred in at least one of 
the 102 SNP pairs reported by Evans et al. (2011). A total 
of 38 such SNP pairs could be detected. These are listed 
in Table S5. From these, only 8 significant SNP pairs were 
highlighted by at least one of our GWAI protocols (in par-
ticular, protocol #7 and #8—Table 3).

To investigate the influence of MAFs on epistasis findings 
using different protocols, we defined six two-dimensional 
bins (see “Materials and methods” for more information). 
The allocation of top 1000 epistasis findings (significant 
or not) to either of these bins is presented in Fig. 4. Hence, 

Table 1   Most significant SNP pairs (among 1230 pairs) across 8 adopted GWAI analysis protocols

*All p values are multiple testing corrected, either Bonferroni-based (BOOST protocols) or resampling based (MB-MDR protocols)
+  rs12026423/rs7528311 are separated by 13,833 bp with r2 = 0.0178; ++ rs11964796/rs13194019 are separated by 9824 bp with r2 = 0.0309; 
+++ rs13194019/rs1784607 are separated by 3127 bp with r2 = 0.0610

SNP A SNP B GWAI protocols Gene A Gene B

BOOST MB-MDR

#1* #2* #3* #4* #5* #6* #7* #8*

rs12026423 rs7528311+ 0.009 0.004 7.72E−05 3.69E−05 0.401 1 0.001 0.004 MAGI3 MAGI3

rs11964796 rs13194019++ 1 1 0.024 0.012 0.401 1 1 0.995 PARK2 PARK2

rs13194019 rs1784607+++ 1 1 0.144 0.069 0.401 1 1 0.995 PARK2 PARK2

Table 2   Significant pairs containing one of the 49 SNPs associated to main effects (Evans 2011), obtained via the 8 GWAI protocols

a  SNPs that occurring as main effects SNPs in Supplementary Table 2 of Evans (2011) are highlighted in bold

SNP A SNP B GWAI protocols Gene A Gene B

#1 #2 #3 #4 #5 #6 #7 #8

multiple testing adjusted p values

rs2523608 rs9788973a 1 1 1 1 1 1 0.001 0.001 HLA-B MAP2K4

rs30187a rs2844498 1 1 1 1 1 1 0.001 0.002 ERAP1 NA
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adding up the number of allocated SNP pairs to each bin 
(red numbers in Fig.  4), within the same protocol, gives 
1000. Within the exhaustive protocols (#1 and #2, respec-
tively, BOOST applied to unpruned and LD-pruned data), 
there is a tendency for SNP pairs each having MAF ≥0.05 
to occur in the top 1000. The same is observed for non-
exhaustive protocols that rely on additive encodings when 
adjusting for main effects (protocols #7 and #8, MB-MDR 
applied to unpruned and LD-pruned data, respectively). The 
highest number of SNP pairs (out of 1000) with MAFs 0.05 
were obtained with exhaustive BOOST screening on unfil-
tered and unpruned data (protocol #1). In general, all pro-
tocols give rather similar results, apart from protocols with 
additive main effects correction (#7 and #8, MB-MDR) for 
which virtually all the top 1000 SNP pairs involved at least 
one SNP with MAF ≥0.10 (respectively, 100 and 100 %). 
For protocols #1–#6, the percentage of SNP pairs appear-
ing in the top 1000 list with at least one MAF <0.05 ranged 
from 0.2 % (protocol #2) to 5.9 % (protocol #1).

Biological relevance

To provide a biological context, we performed a GO func-
tional enrichment analysis on the top 1000 SNP pairs 
identified within each individual GWAI protocol. Each 
SNP was mapped to a gene, when possible (see “Materi-
als and methods” for additional details). A GO term was 
considered when at least 10 of these genes could be anno-
tated to them. This led to a total of 480 common GO terms 
across all 8 GWAI protocols with combined p values <0.05 
(Table S6). Top 10 GO terms are shown in Table 4. Using 
a significance level of 0.05, significant combined p values 
were obtained for GO terms related to the central nerv-
ous system (CNS). In particular, links between AS pathol-
ogy and nervous system signal transmission via synapses 
biological processes was observed via, e.g., GO:0007411 
(combined p value: 7.86  ×  10−77), GO:0007268 (com-
bined p value: 2.00  ×  10−36), and GO:0043524 (com-
bined p value: 2.91  ×  10−17). To a lesser degree, we 
also observed a link between AS and immune system 

processes that involve antigen processing and presentation 
via MHC complex: combined p value for GO:0002479 
of 1.77 × 10−8 (not corrected for multiple testing). Other 
overall significant GO terms were linked to biological 
processes such as membrane transport (GO:0055085, 
combined p value: 3.04 ×  10−50) and sudden response to 
stimuli (GO:0001964, combined p value: 1.48  ×  10−10) 
without a clear association to AS. In addition, we detected 
an involvement of the Notch pathway responsible for the 
proliferation of neurons (GO:0007219, combined p value 
of 1.02 × 10−5), again linking AS to CNS processes.

Discussion

In our study, we demonstrated that choices about data filter-
ing, pruning and lower order effects adjustment may cause 
substantial variation in epistasis findings. We demonstrated 
this by making changes to the reference GWAI protocol we 
published earlier (Gusareva and Van Steen 2014), giving rise 
to 8 GWAI protocols under investigation in this work (Fig. 1). 
The reference GWAI protocol consists of a set of guidelines 
designed to address problems of epistasis reproducibility in 
the context of genome-wide epistasis screening with thou-
sands of SNP markers. It contains recommendations on rigor-
ous data quality control steps, exhaustive or non-exhaustive 
marker screening, LD-pruning thresholds and the selection of 
a suitable analytic epistasis detection tool.

Based on our results (for instance Fig.  2), the major 
cause of heterogeneity in findings is the choice about which 
markers to retain in the analysis. We referred to it as “pre-
selection of markers”. We used filtering based on biologi-
cal knowledge to make educated pre-selections, using a 
compendium of biological databases via Biofilter 2.0 (Bush 
et al. 2009). The effects of pre-selections on the number of 
SNPs can be huge, as was exemplified on AS: before selec-
tion, 487,780 SNPs; after selection, 44,018 SNPs. This has 
huge consequences for subsequent analyses. In a negative 
sense, there is a risk of removing pairs of SNPs that may 
lead to interesting new hypotheses, for which no reported 

Table 3   Statistically significant 
SNP × SNP interactions that 
contain a SNP occurring in 
at least one of 102 SNP pairs 
listed in Supplementary Table 5 
in Evans (2011)

a  SNPs that were analyzed in Supplementary Table 5 by Evans (2011) are highlighted in bold

GWAI protocol SNP A SNP B Chr A Chr B p value Gene A Gene B

#8 rs30187a rs2844498 5 6 0.002 ERAP1 MICB

rs30187a rs2523608 5 6 0.038 ERAP1 HLA-B

#7 rs10050860a rs2844498 5 6 0.001 ERAP1 MICB

rs10050860a rs2523608 5 6 0.001 ERAP1 HLA-B

rs30187a rs2844498 5 6 0.001 ERAP1 MICB

rs30187a rs2523608 5 6 0.001 ERAP1 HLA-B

rs2523608 rs10781500a 6 9 0.001 HLA-B SNAPC4

rs2844498 rs10781500a 6 9 0.001 MICB SNAPC4
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Fig. 4   Effect of SNP MAFs on ranked epistasis results. For each 
protocol, the top 1000 epistasis results are presented. Each SNP pair 
was ordered such that the SNP with the largest MAF was assigned 

to locus A, and the SNP with the lowest MAF to locus B. The num-
bers in red refer to the # of SNP pairs that were assigned to each two-
dimensional MAF bin
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evidence exists in existing biological data repositories. In a 
positive sense, less multiple tests are need to be performed, 
hereby reducing computation time and potentially also 
the number of false positives. Seeking a balance between 
potentially improving the power of the GWAIs by relying 
on prior knowledge versus decreasing the chance of miss-
ing important findings remains a challenging task. When 
inspecting the overlap between significant results for each 
protocol, it is therefore not surprising that little overlap 
may exist between significant results obtained via exhaus-
tive protocols and significant results obtained via non-
exhaustive protocols. In fact, for the AS data we re-ana-
lyzed, no overlap was found at the SNP level (see Figs. 2, 3 
protocols #1–#2 versus #3–#8). Furthermore, the protocol 
adopted by Evans et al. (2011) makes a heavy pre-selection 
of markers. Only those SNPs showing a significant asso-
ciation with AS via main effects GWAs were considered. 
This involved 15 SNPs, half of which were also included 
in the 487,780 SNPs that served as input to our own GWAI 
protocols (#1–#8): rs30187, rs10781500, rs10865331, 

rs11209026, rs2297909, rs378108, rs11209032. The likeli-
hood ratio interaction tests adopted in their work were sim-
ilar to the ones implemented in BOOST. However, whereas 
in BOOST tests are based on 4 df, interaction tests in Evans 
et  al. (2011) were based on 1  df (testing departure from 
additivity on the log-odds scale). Hence, it is not surpris-
ing that none of the significant SNP pairs reported in Evans 
et  al. (2011) could be reproduced in our study. Notably, 
neither BOOST nor MB-MDR in our protocols adjusted for 
population stratification. In contrast, Evans et al. (2011) did 
correct for potential population stratification using a two-
stage approach involving Bayesian clustering and Hidden 
Markov models. In theory, this may explain additional dif-
ferences between our analyses and the ones performed in 
the reference study (Evans et al. 2011). However, given that 
the inflation factor based on median Χ2 for the AS data is 
1.02917, we believe that no adjustments were necessary 
and hence no spurious results were generated as a result of 
not correcting for population stratification in our adopted 
protocols.

Table 4   Top 10 significant GO terms related to top 1000 SNP pairs per GWAI protocol, based on Fisher’s combined p value at a significance 
level of 0.05

Protocol-specific p values are also reported

* Combined p values summarize information across the 8 considered protocols. The most relevant GO terms for AS are indicated in bold, as 
well as, GWAI-specific p values when <0.05. The exhaustive list of significant GO terms is shown in Table S6

GO ID GO term 
description

GWAI protocols Combined*

#1 #2 #3 #4 #5 #6 #7 #8

GO:0007411 Axon guidance 5.18E−02 1 4.00E−16 4.40E−18 1.90E−12 2.20E−15 1.20E−13 5.70E−16 7.86E−77

GO:0030168 Platelet activa-
tion

5.83E−01 1 2.90E−15 2.30E−15 3.20E−11 1.20E−10 4.10E−09 1.20E−11 3.95E−58

GO:0055085 Transmem‑
brane trans‑
port

4.74E−02 1.55E−01 1.80E−09 1.00E−09 3.20E−11 5.40E−11 6.00E−09 1.00E−12 3.04E−50

GO:0007268 Synaptic trans‑
mission

2.17E−02 1 8.00E−10 3.10E−08 1.50E−06 2.40E−09 6.30E−07 5.00E−08 2.00E−36

GO:0007173 Epidermal 
growth factor 
receptor sign-
aling pathway

2.10E−02 1 7.80E−10 1.40E−11 2.40E−07 6.80E−07 2.40E−05 7.20E−06 1.55E−34

GO:0008543 Fibroblast 
growth factor 
receptor sign-
aling pathway

9.85E−02 1 5.40E−08 6.90E−11 5.10E−07 1.80E−08 2.20E−04 3.60E−04 2.99E−30

GO:0007202 Activation of 
phospholipase 
C activity

1.03E−02 1 2.60E−08 9.40E−09 1.80E−06 6.80E−06 5.10E−06 3.90E−06 6.44E−30

GO:0006112 Energy reserve 
metabolic 
process

1.76E−01 1 9.90E−07 3.40E−09 1.20E−04 1.80E−07 5.90E−06 3.60E−05 1.46E−26

GO:0042493 Response to 
drug

1.31E−01 5.62E−01 2.70E−05 1.40E−09 5.06E−03 9.80E−05 1.90E−07 6.60E−08 7.90E−26

GO:0006198 cAMP catabolic 
process

5.17E−03 1 5.10E−04 2.50E−05 2.90E−06 5.60E−08 1.00E−05 1.50E−06 6.04E−25
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Our results, visualized in Fig.  3, suggest that the sec-
ond largest cause for heterogeneity in significant findings, 
derived from different protocols, is the adopted encod-
ing scheme for genetic variants. This is clear for the non-
exhaustive protocols included in our study (#5–#8). It is 
less clear for exhaustive protocols, since the ones included 
in our study only considered co-dominant encoding 
schemes (#1–#2). However, our experience with other real-
life applications seems to support our suggestion also for 
exhaustive protocols (data not shown). Previous theoretical 
work also showed that additive encodings for lower order 
effects may increase false positives rates in interaction 
studies (Mahachie John et al. 2012). This is in line with the 
large number of significant interactions identified via proto-
cols #7 and #8 (Fig. 2). It is very unlikely that over 50,000 
significant interactions highlighted by these protocols are 
genuine, and are caused by the (strong) main effects blur-
ring the epistasis signal (Mahachie John et al. 2012).

The third largest cause for heterogeneity is attributed to 
differences in employed LD-pruning approaches. Here, the 
effect of LD pruning (i.e., pruning at r2 < 0.75 or not) was 
more pronounced under additive encoding schemes (pro-
tocols #7 versus #8) as opposed to co-dominant encoding 
strategies (protocols #3 versus #4, and protocols #5 versus 
#6). Therefore, it is important to discuss the primary inter-
action study performed in Evans et  al. (2011), targeting 
additive × additive interactions, with caution, and in the 
light of the adopted pruning protocol. Figure 3 shows that 
the effects of LD pruning are more severe for exhaustive 
protocols compared to non-exhaustive protocols. This is 
not surprising, given that the LD pruning in the first implies 
a reduction of about 150,000 SNPs, compared to less 
than 15,000 SNPs in the second. Hence, although poten-
tially more significant SNP pairs can be revealed in pro-
tocol #1 (exhaustive, BOOST, unpruned), less significant 
pairs are highlighted as compared to protocol #2 (exhaus-
tive, BOOST, LD pruned; Fig.  1). This can be explained 
by the reduced number of tests to account for Bonfer-
roni corrections. The reverse is observed for protocols #3 
(BOOST, pre-selected) and #4 (BOOST, pre-selected and 
LD pruned). Here, protocol #4 gives rise to less significant 
SNP pairs compared to protocol #3 (Fig. 2). There is still 
a reduction of the multiple testing burden in protocol #4 is 
true, but this cannot explain the phenomenon. More likely, 
an increased number of redundant epistasis signals (due to 
high LD between some marker pairs) are an explanatory 
factor. The same can be observed for MB-MDR-based pro-
tocols #5 and #6. In particular, again LD pruning as part 
of protocol #6 gives rise to a smaller number of significant 
SNP × SNP interactions (47—see Fig. 2) compared to pro-
tocol #5 (no LD pruning; 77—Fig. 2). Note that MB-MDR 
and BOOST use quite different multiple testing correction 
strategies. In case of BOOST, a conservative Bonferroni 

correction is advocated. In MB-MDR, a permutation-based 
maxT strategy is implemented, which relies on subset piv-
otality to guarantee strong FWER control at α = 0.05.

Less common and rare variants tend to increase false 
positive rates, when inappropriate tests are used, as reported 
in Mahachie John et al. (2011a) and Tabangin et al. (2009). 
According to Tabangin et  al. (2009), rare SNPs with 
MAF  <0.05 showed a significantly higher likelihood of 
being classified as false positives in the logistic regression-
based GWAS (Tabangin et al. 2009). For BOOST-based pro-
tocols (#1–#4), the percentage of top 1000 SNP pairs with at 
least one MAF <0.05 that were statistically significant (mul-
tiple testing corrected) was, respectively, 5.9, 0.2, 4.9 and 
2.4 % (data not shown). For MB-MDR-based protocols (pro-
tocols #5–#6) the percentage of such SNP pairs was, respec-
tively, 0.1 and 0.2 %, smaller than BOOST-based protocols. 
However, for MB-MDR-based protocols #7 and #8 (using 
additive encoding schemes for main effects adjustment), the 
percentages were higher (4.8 and 5.3 %, respectively). This 
is in line with earlier findings about MB-MDR performance 
(Mahachie 2012; Mahachie John et al. 2011b, 2012). When 
MB-MDR is applied to rare variants, three factors are at play. 
First, FWER can be elevated due to violations of the subset 
pivotality assumption in the built-in maxT multiple testing 
correction procedure (Mahachie John et  al. 2013). Second, 
when marker frequencies are rare, less than 10 individuals 
may contribute to a multi-locus genotype combination, in 
which case there is no power to assess whether this combi-
nation is related to a significantly higher or lower disease 
risk. As a consequence, the power to detect an interaction 
with such a combination may be hampered. Third, additive 
coding will always give rise to increased false positives, irre-
spective of whether rare or common variants are considered.

The fact that protocols #7 and #8 were the only ones 
that were able to highlight significant interactions, with 
either one of the 49 main effects SNPs listed in Evans et al. 
(2011), namely rs2523608 x rs9788973 and rs310787 x 
rs2844498 (Table 2), is not surprising. MB-MDR with addi-
tive encodings has a tendency towards generating more lib-
eral test results than MB-MDR with co-dominant encodings 
(Mahachie 2012; Mahachie John et  al. 2012). The SNPs 
rs9788973 and rs2523608 map to the genes MAP2K4 and 
HLA-B. The HLA-B gene showed very strong association 
to AS (rs4349859 p value <10−200) in Evans et  al. (2011) 
and was also related to AS in other studies (Jenisch et  al. 
1998; Nischwitz et al. 2010). In addition, the rs2523608 x 
rs9788973 pair resides in the coding regions of the HLA-B 
x MAP2K4 genes (Table 2), suggesting that AS pathology 
is not only linked to irregularities in peptide presentation to 
immune cells via major histocompatibility complex (MHC), 
but also to dysfunctions in intracellular signaling pathways.

Focusing on the common SNP pairs between GWAI pro-
tocols in our study (1230 pairs), only 3 showed a significant 
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interaction in at least one protocol (Table  1), pointing 
towards the genes MAGI3 and PARK2. The gene MAGI3 
controls intracellular signaling cell–cell adhesion and com-
munication (Adamsky et  al. 2003). In the context of AS, 
MAGI3 potentially regulates cell–cell communication and 
adhesion of the cells in the inflamed joint areas between 
spinal discs and vertebra. PARK2 was suggested before as a 
candidate gene for AS in Claushuis et al. (2012). Mutations 
in the PARK2 gene can cause alteration in cellular traffick-
ing and protein degradation (Verdecia et al. 2003). In Bois-
gerault et al. (1998), alterations in correct antigenic peptide 
presentation by major histocompatibility complex (MHC) 
class I molecules to CD8+ T lymphocytes were linked 
with an early onset of chronic inflammation and AS. Fur-
ther alteration in protein degradation, partially controlled 
by PARK2, may also suggest an alteration in the proper 
disposal of antigens. The aberrations in this process may 
potentially contribute to chronic inflammation of the spine 
followed by AS onset.

Only 20 pairs were common between our 8 protocols 
and the list of the 102 SNP × SNP interactions investigated 
in Evans et al. (2011). Clearly, several interesting pairs are 
missed by only looking at SNP pairs that are tested by all 
considered protocols (i.e., common SNP pairs). Imputation, 
to make the SNP ×  SNP pool more alike between proto-
cols, may not only over-rule removal of SNPs after biofil-
tering (for which one may have had good reasons), it may 
also induce additional LD between SNPs, which may hugely 
increase false positives, depending on the analytic tool used. 
Interestingly, 8 significant SNP  ×  SNP interactions were 
detected for which at least one SNP was present in the 102 
SNP pairs of Evans et al. (2011). These 8 pairs involved the 
SNPs rs30187, rs10050860 and rs10781500 and allowed 
to reproduce the statistically interacting gene pair ERAP1 x 
HLA-B reported in Evans et  al. (2011) via the interactions 
rs3018 x rs2523608, rs10050860 x rs2523608 and rs30187 
x rs2523608 (Table 3). Notably, these findings were obtained 
with the only protocols using an additive main effects encod-
ings (protocols #7 and #8); Evans and colleagues also pri-
marily based their interaction testing on additive encodings.

However, by allowing more SNPs for interaction test-
ing than in Evans et  al. (2011), we identified gene pairs 
not previously associated to AS: ERAP1 x MICB, MICB x 
SNAPC4 and HLA-B x SNAPC4 (Table 3), pointing towards 
interacting loci or regions between chromosome 5 and 6, 
and between 6 and 9. MICB is MHC Class I Mic-B Anti-
gen linked to cell immune response and is functionally 
similar to MHC Class I encoded by the HLA-B gene. MICB 
is implicated in rheumatoid arthritis (Lopez-Arbesu et  al. 
2007). SNAPC4 encodes small Nuclear RNA Activating 
Complex important for proper functioning of RNA Poly-
merase II and III. ERAP1 encodes for endoplasmic reticu-
lum aminopeptidase that trims peptides.

One of the top 480 common GO terms across GWAI pro-
tocol #1–#8 was GO:0002479 (Table S6). This term is func-
tionally related to antigen processing and exogenous antigen 
presentation via MHC class I, TAP dependent. It may sug-
gest that that AS pathology is partially caused by the inabil-
ity of ERAP1 aminopeptidase to correctly trim HLA class 
I-binding peptides and subsequently to present them to MHC 
complexes (Alvarez-Navarro and Lopez de Castro 2013). 
This possibly causes deregulation of the innate immunity 
and chronic inflammation of spine tissues that are typical 
symptoms displayed by AS patients (Chaudhary et al. 2011). 
Also appearing in the top 10 are GO terms linked to neu-
ral transmission processes (Table  4). This agrees with AS 
known disease pathology characterized by consistent pain 
and inflammation in the spine—part of the central nervous 
system (CNS). In particular, the GO terms highlighted in 
bold in Table 1 and Table S6 (column 1), even though based 
on the top 1000 SNP ×  SNP interactions (not necessarily 
statistically significant) may suggest a link between AS and 
mutations in genes involved in nerve impulse transmission 
and propagation (GO:0007411, GO:0007268, etc.). Further-
more, GO:0007219 (Table S6), linked to genes of the Notch 
signaling pathway (e.g., RBP-J, PSEN1, ADAM10), suggests 
AS interference with the correct development and growth 
of nerve tissue (Housden et al. 2013). It was shown by Gao 
et al. (2013) that the Notch pathway also controls angiogen-
esis and that vascular endothelial growth factor (VEGF) and 
angiopoietin (Ang) are both over-expressed in synovial tis-
sues of psoriatic arthritis and rheumatoid arthritis patients.

Conclusions

Any GWAI analysis involves making choices about the input 
data (e.g., filtering using candidate genes or using prior bio-
logical knowledge), about LD-pruning thresholds, about 
adjusting for lower order effects (and how to encode these), 
and about the selection of the analytical tool (e.g., non-para-
metric, semi-parametric or fully parametric), as well as the 
corrective method for multiple testing (Gusareva and Van 
Steen 2014). We have shown that even slight differences in 
protocols to perform a GWAI study may hamper the results 
reproducibility. We did so by applying the 8 GWAI protocols 
to real-life genome-wide SNP data on AS and controls.

Choices about marker selection (for instance filtering 
based on prior knowledge) are the most severe, as it may 
give rise to a dramatic reduction in SNPs for further GWAI 
analysis (Gusareva and Van Steen 2014; Sun et  al. 2014; 
Van Steen 2012). Although biofiltering may reduce the abil-
ity to generate novel hypotheses about interactions (Sun 
et al. 2014), when doing so the effects of LD pruning and 
other protocol parameters seem to be less impactful on the 
final analysis results. More work is needed though to fully 
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understand the interplay between LD pruning and filter-
ing strategies commonly adopted in GWAIs and to derive 
operational guidelines. In general, the second largest cause 
for heterogeneity in GWAI results is the adopted encod-
ing scheme to adjust the interaction analysis for the lower 
order effects (Gusareva and Van Steen 2014). The third 
largest cause is the adopted LD-pruning strategy. To date, 
no published work exists that comprehensively investigates 
the effect of LD on epistasis findings derived from several 
analytic tools. In order not to waste carefully acquired data, 
researchers are often tempted to adopt exhaustive screening 
tools whenever computationally feasible. As suggested in 
Gusareva and Van Steen (2014), we nevertheless advocate 
LD pruning at an r2 of 0.75, to increase power, yet to reduce 
the generation of redundant (significant) SNP × SNP inter-
actions. Exhaustively applying BOOST to LD-pruned 
AS data at an r2 of 0.75 generated over 2000 significantly 
interacting SNP pairs. The existence of moderate LD may 
induce multicollinearity in regression models and may 
increase the number of false positives (even when using a 
conservative multiple testing correction method such as 
Bonferroni). It shows that when applying a GWAI proto-
col, the results should be interpreted and discussed under 
the appropriate context, which includes the limitations and 
strengths of the adopted protocol, hereby addressing its dif-
ferent components.

Finally, with so many tools for GWAI analysis around, 
truly comparing these remains a challenging task in the 
absence of reference synthetic data sets that are rich enough 
to capture real-life complexities. Care has to be taken when 
“replicating” interactions with analytic tools that have a 
tendency to generate false positives: Can one be sure that 
one is not replicating a false positive? Clearly, no single 
tool will fit all. Tools are heterogeneous in their ability to 
recognize specific active epistasis modes and several such 
modes are likely to occur throughout the genome. This 
observation puts limitations to strategies that use agree-
ment between different GWAI approaches as evidence for 
an interaction. It also favors the development of a hybrid 
SNP × SNP interaction detection tool, combining the best 
of several worlds when screening the genome.
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