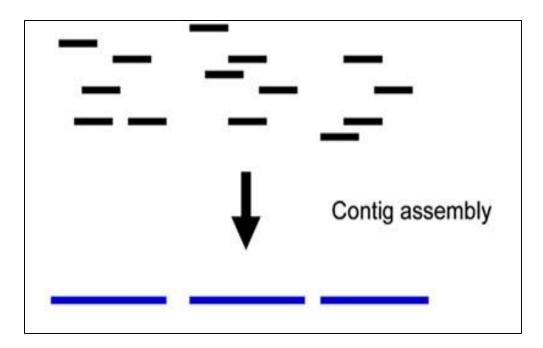
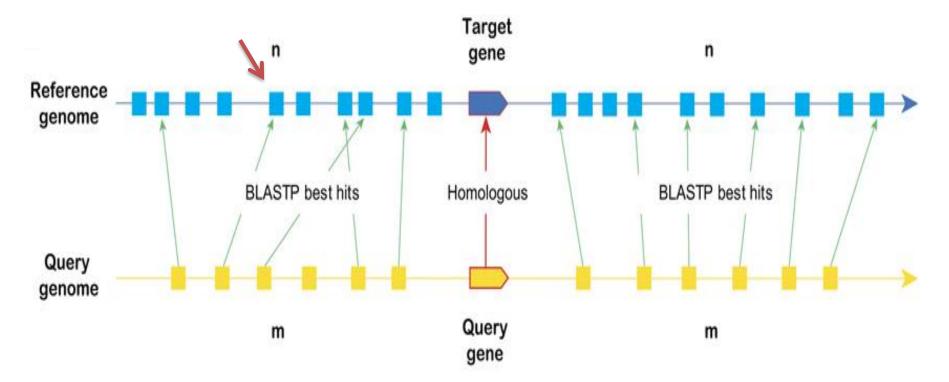

Sequence Alignment

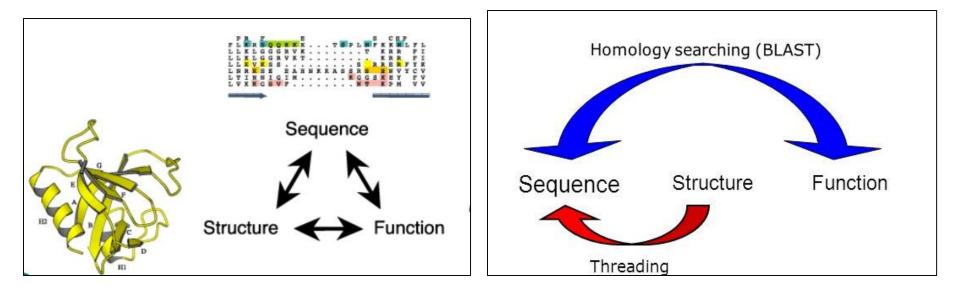
GBIO0002 Archana Bhardwaj University of Liege


What is Sequence Alignment ?

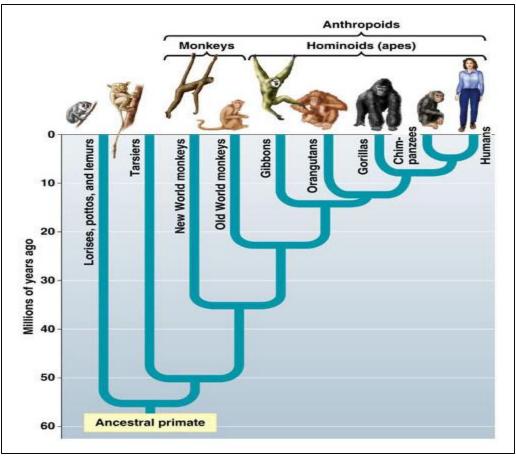
A sequence alignment is a way of arranging the sequences of DNA , RNA, or protein to identify regions of similarity.


Sequence Alignment : Uses (1)

Sequence Assembly : Genome sequence are assembled by using the sequence alignment methods to find the overlap between many short pieces of DNA.

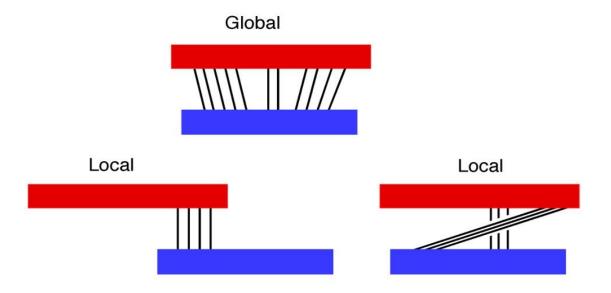

Sequence Alignment : Uses (2)

 Gene Finding : Sequence similarity could help us to find the gene prediction just by doing comparison against the other set of sequences.


Sequence Alignment : Uses (3)

 Function prediction : Function of any unknown sequence could be predicted by comparing with other known sequence.

Sequence Alignment : Uses (4)


 Sequence Divergence : Amount of sequence similarity (10%, 20%,30% ...sometimes 90 %) between sequences tell us how closely they are related

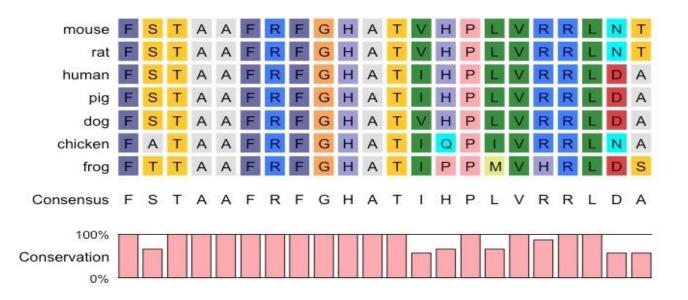
Types of Alignments

Global : This attempt to align every residue in every sequence.

•Local: It is more useful for dissimilar sequences that are suspected to contain regions of similarity or similar sequence motifs within their larger sequence context.

Local Alignment

Target Sequence


5' ACTACTAGATTACTTACGGATCAGGTACTTTAGAGGCTTGCAACCA 3'

Global Alignment

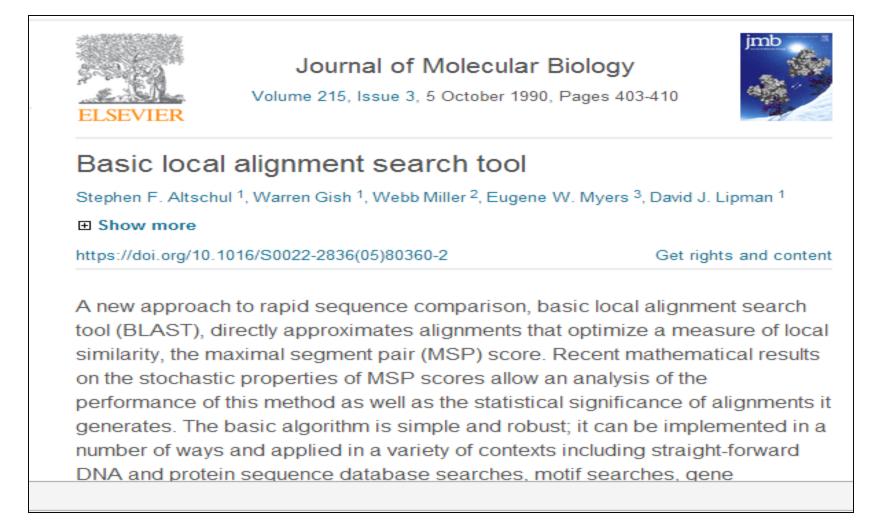
Target Sequence

Types of Alignments: Based on number of sequences

- Pair wise Sequence Alignment : This alignments can only be used between two sequences at a time.
- •Multiple Sequence Alignment : This alignments can only be used between more than two sequences at a time.

Tools for Sequence Alignments

There are many tools for sequence Alignment. In this session, we will discuss about


BLAST

BLAT

CLUSTALW

Sequence Alignment : BLAST

BLAST stands for Basic Local Alignment Search Tool

Blast was developed by Stephan Altschul and colleagues at NCBI in 1990.

BLAST is an algorithm for comparing primary biological sequence information, such as the aminoacid sequences of proteins or the nucleotides of DNA sequences.

Blast is most used bioinformatics program (cited >60000 times).

•A BLAST search enables a researcher to compare a query sequence with a library or databases of sequences, and identify library sequences that resemble the query sequence above a certain threshold.

Types of BLAST (1)

BLASTN : search nucleotide databases using a nucleotide query

(A)Query : ATGCATCGATC

(B) Database : ATCGATGATCGACATCGATCAGCTACG

BLASTP : search protein databases using a protein query

(A)Query : VIVALASVEGAS

(B) DATABASE : TARDEFGGAVIVADAVISASTILHGGQWLC

BLASTX : search protein databases using a translated nucleotide query

(A)Query : ATGCATCGATC (B)DATABASE : TARDEFGGAVIVADAVISASTILHGGQWLC

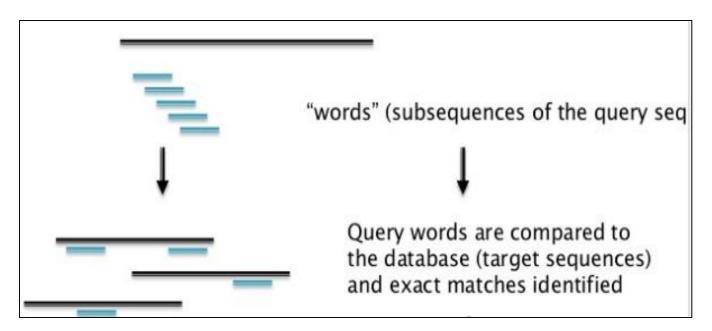
Types of BLAST (2)

•TBLASTN : search translated nucleotide databases using a protein query

> (A)Query : TARDEFGGAVI (B)DATABASE : ATCGATGATCGACATCGATCAGCTACG

• TBLASTX : search translated nucleotide databases using a translated nucleotide query

> (A)Query : CGATGATCG (B)DATABASE : ATCGATGATCGACATCGATCAGCTACG


Types of BLAST : ALL

Program	Database	Query
BLASTN	Nucleotide	Nucleotide
BLASTP	Protein	Protein
BLASTX	Protein	Nt. \rightarrow Protein
TBLASTN	Nt. \rightarrow Protein	Protein
TBLASTX	Nt. \rightarrow Protein	Nt. \rightarrow Protein

How does BLAST Works?

Construct a dictionary of all words in the query

Initiate a local alignment for each word match between query and DB

BLAST: Global Alignment

- It compares the whole sequence with another sequence.
- So, output of Global is one to one comparison of two sequences.
- This method is useful if you have small group of sequences.

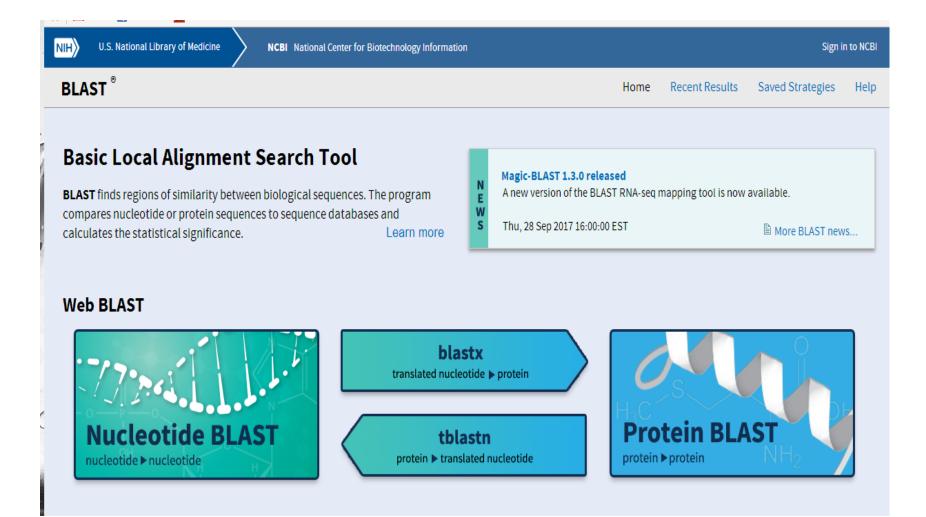
BLAST: Local Alignment

- Local method uses the subset of sequence and attempts to align against the subset of another sequence.
- So, output of local alignment gives the subset of regions which are highly similar.
- Example : Compare two sequence A and B

(A) GCATTACTAATATATTAGTAAATCAGAGTAGTA
|||||||
(B) AAGCGAATAATATATTTTATACTCAGATTATTGCGCG

BLAST: Input Format

Many program for sequence alignment expect sequences to be in FASTA format


Example 1 :

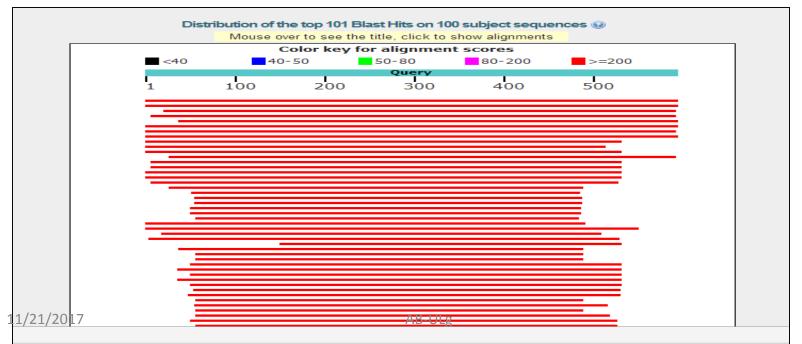
>NM_033360.3 Homo sapiens KRAS proto-oncogene, GTPase (KRAS), transcript variant a, mRNA

20

NCBI BLAST SERVER

Open the website : <u>https://blast.ncbi.nlm.nih.gov/Blast.cgi</u>

Window of **BLASTN**


NIH U.S. National	Library of Medicine NCBI National Center for Biotechnology Information									Sign in to NCBI			
BLAST [®] » bla	stn suite						Home	Recent Results	Saved Strateg	gies	Help		
				Standa	ard Nucleotide BL	AST							
blastn <u>blastp</u> <u>blast</u>	t <u>x tblastn</u> <u>tblastx</u>												
Enter Query Se	auence	BI	LASTN programs s	earch nucl	eotide databases usin	g a nucleotide quer	ry. <u>more</u>		Reset page	<u>Bookmar</u>	r <u>k</u>		
	umber(s), gi(s), or FAS	STA sequence(s) 🌚		<u>Clear</u>	Query subrange 🚱 From To]							
Or, upload file Job Title		e chosen	e e]							
Choose Search	h Set												
Database Organism Optional Exclude	Nucleotide collecti Enter organism nam Enter organism com	ne or id-completions mon name, binomial, c	will be suggested or tax id. Only 20 top) taxa will b	v 😡								
Optional	_	Uncultured/environ	imental sample se	quences									
Limit to Optional	Sequences from	type material											
Entrez Query Optional	Enter an Entrez query	uta limit agarah 🙆		You Tube	Create custom databa	ise							
. 11/21/201	7				AB-ULg					22			

Let us work on **BLASTN**

Select following sequence and give input into NCBI BLASTN query section

>Seq1

You will get list of Hits

You will see statistic of alignments (Identity, E value)

🕻 Alignments 🗒 Download 👻 <u>GenBank</u> <u>Graphics</u> <u>Distance tree of results</u>						
Description Click here	Max score		Query cover	E value	ldent	Access
PREDICTED: Homo sapiens hemoglobin subunit zeta (HBZ), transcript variant X2, mRNA	1088	1088	100%	0.0	100%	<u>XM 005258</u>
Homo sapiens hemoglobin subunit zeta (HBZ), mRNA	1088	1088	100%	0.0	100%	<u>NM 00533</u>
Homo sapiens hemoglobin, zeta, mRNA (cDNA clone MGC:34397 IMAGE:5224569), complete cds	1048	1048	96%	0.0	100%	BC027892
PREDICTED: Pan paniscus hemoglobin, zeta (HBZ), mRNA	1035	1035	98%	0.0	99%	XM 00380
PREDICTED: Homo sapiens hemoglobin subunit zeta (HBZ), transcript variant X1, mRNA	1020	1020	93%	0.0	100%	XM 00525
PREDICTED: Papio anubis hemoglobin subunit zeta (HBZ), mRNA	968	968	100%	0.0	96%	XM 02193
PREDICTED: Macaca nemestrina hemoglobin, zeta (HBZ), transcript variant X1, mRNA	968	968	99%	0.0	97%	<u>XM 01174</u>
PREDICTED: Cercocebus atys hemoglobin subunit zeta (LOC105574663), mRNA	966	966	100%	0.0	96%	XM 01203
PREDICTED: Pan troglodytes hemoglobin subunit zeta (HBZ), mRNA	941	941	89%	0.0	99%	XM 01692
PREDICTED: Gorilla gorilla hemoglobin subunit zeta (HBZ), mRNA	918	918	86%	0.0	99%	XM 00405
PREDICTED: Macaca nemestrina hemoglobin, zeta (HBZ), transcript variant X2, mRNA	896	896	89%	0.0	97%	<u>XM 01174</u>
PREDICTED: Rhinopithecus roxellana hemoqlobin subunit zeta (LOC104676970), mRNA	893	893	95%	0.0	96%	<u>XM 01038</u>
PREDICTED: Macaca fascicularis hemoglobin subunit zeta (HBZ), mRNA	891	891	88%	0.0	98%	<u>XM 00559</u>
PREDICTED: Macaca mulatta hemoglobin subunit zeta (LOC100428886), mRNA	880	880	88%	0.0	97%	<u>XM 01512</u>
PREDICTED: Cebus capucinus imitator hemoglobin subunit zeta (HBZ), mRNA	863	863	89%	0.0	96%	XM 01751

How well alignment is ? : Bad, Good, Very Good?

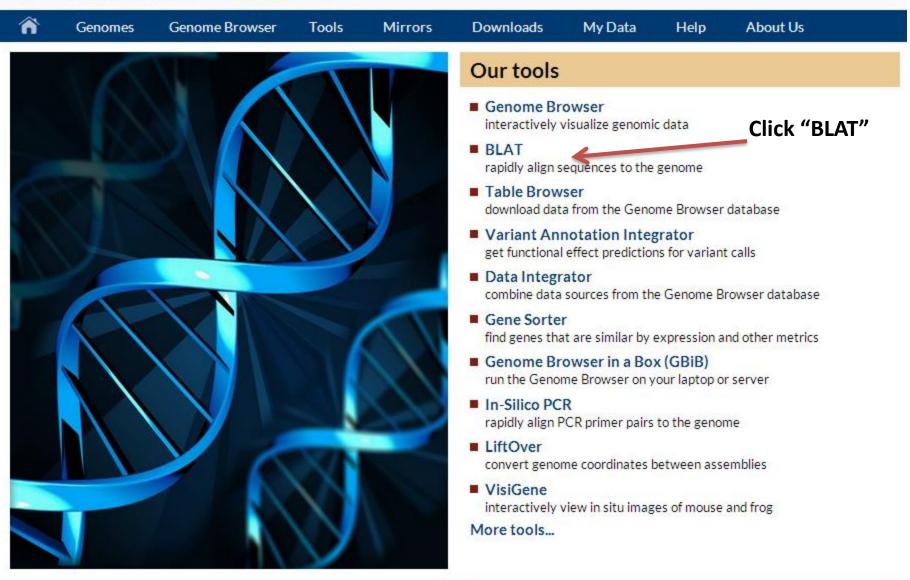
PREDICTED: Homo sapiens hemoglobin subunit zeta (HBZ), transcript variant X2, mRNA Sequence ID: XM_005255288.3 Length: 1342 Number of Matches: 1

Range 1	1: 748 t	o 1336 Gent	Bank Graph	nics	Vext M	atch 🔺 P	revious Match
Score		E	xpect	Identities	Gaps	Strand	
1088 l	bits(58	9) (0.0	589/589(100%)	0/589(0%)	Plus/Pl	us
Query	1			GCAGGCCCAACTCCAGTGCAGC			60
Sbjct	748			GCAGGCCCAACTCCAGTGCAGC			807
Query	61			GGACCATCATTGTGTCCATGTG			120
Sbjct	808			GGACCATCATTGTGTCCATGTG			867
Query	121			AGACTCTGGAGAGGCTCTTCCT			180
Sbjct	868			AGACTCTGGAGAGGCTCTTCCT			927
Query	181			ACCTGCACCCGGGGTCCGCGCA			240
Sbjct	928			ACCTGCACCCGGGGTCCGCGCA			987
Query	241			GCGACGCGGTGAAGAGCATCGA			300
Sbjct	988			GCGACGCGGTGAAGAGCATCGA			1047
Query	301			ACGCCTACATCCTGCGCGTGGA			360
Sbjct	1048			ACGCCTACATCCTGCGCGTGGA			1107
Query	361			CACCTGGCCGCGCGCTTCCC			420
Sbjct	1108			ICACCCTGGCCGCGCGCTTCCC			1167
Query	421			AGTTCCTATCGGTCGTATCCTC			480
Sbjct	1168			AGTTCCTATCGGTCGTATCCTC			1227
Query	481			GACCCCCAGGACAGGCTGCGGC			540
Sbjct	1228			GACCCCCAGGACAGGCTGCGGC			1287
Query	541			GCGTAATGCGCCAATAAACCAA		Э	
Sbjct	1288					36	

RESULT INTERPRETATION

- 1. How many sequences crossed the threshold E value ???
- 2. How many sequences show > 50 % identity with database ??
- 3. How many sequences show > 90 % identity with database ??
- 4. Prepare tabular output for BLASTP and BLASTN results.

QUESTIONS


Blastx : Let us run

- **1**. Perform the blastx
- 2. How many sequences shows 90% identity against the database
- 3. What is their e-value ??

QUESTIONS

- Is it possible to localise its position on human genome?
- How to analysis its gene structure ?
- For this, Open the UCSC Browser available at https://genome.ucsc.edu/

Genome Browser

UNIVERSITY OF CALIFORNIA

Difference Between BLAST and BLAT

BLAT is an alignment tool like BLAST, but it is structured differently.

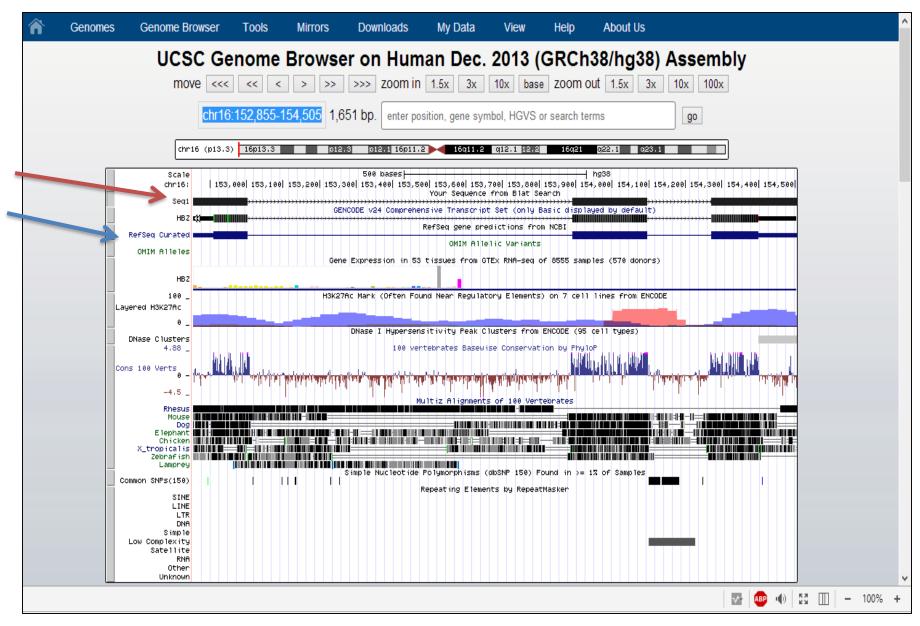
- BLAT works by keeping an index of an entire genome in memory.
- Thus, the target database of BLAT is not a set of GenBank sequences, but instead an index derived from the assembly of the entire genome.

Advantages of BLAT over BLAST

Its Speed is very high (no queues, response in seconds).

The ability to submit a long list of simultaneous queries in fasta format.

- A direct link into the UCSC browser.
- Alignment block details in natural genomic order.


An option to launch the alignment later as part of a custom track.

Paste following sequence into Query search Box and click Submit

>Seq1

Which output did you see ?? Can you have a look at your sequence ? How ? How many exons are present in your sequence ?

11/21/2017

QUESTIONS