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From GWAS to Sequence Analyses  

Part 1 When variants become rare 

1. GWAS 

2. Rare variants: promises and limitations 

3. Frequency of sequence words: the stats perspective 

Part 2 When effects become non-independent 

Impact and interpretation 

Biological vs statistical epistasis 
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(slide Doug Brutlag 2010) 
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1 GWAS 

Definition (recap) 

• A genome-wide association study is an approach that involves rapidly 
scanning markers across the complete sets of DNA, or genomes, of many 
people to find genetic variations associated with a particular trait.  
 

• A trait can be defined as a coded phenotype, a particular characteristic such 
as hair color, BMI, disease, gene expression intensity level, … 
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Genome-wide association studies in practice 

The genome-wide association study is typically (but not solely!!!) based on a 

case–control design in which single-nucleotide polymorphisms (SNPs) across 

the human genome are genotyped ...                         (Panel A: small fragment) 
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Genome-wide association studies in practice 

 
• Panel B, the strength of association between each SNP and disease is 

calculated on the basis of the prevalence of each SNP in cases and 

controls. In this example, SNPs 1 and 2 on chromosome 9 are associated 

with disease, with P values of 10−12 and 10−8, respectively 

                                                                                                                      (Manolio 2010) 
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Genome-wide association studies in practice 

 

• The plot in Panel C shows the P values for all genotyped SNPs that have 

survived a quality-control screen (each chromosome, a different color).  
                                                                                                                   (Manolio 2010) 
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Detailed flow of a genome-wide association study 

 

(Ziegler 2009) 
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Why is quality control (QC) important? 

 

BEFORE QC  true signals are lost in false positive signals  

 

(Ziegler and Van Steen 2010)  
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Why is quality control important? 

AFTER QC  skyline of Manhattan ( name of plot: Manhattan plot): 

 

(Ziegler and Van Steen 2010) 



GBIO0002          

 

  Van Steen K 
 
 

The Travemünde criteria 

 
(Ziegler 2009) 
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The Travemünde criteria 

 
(Ziegler 2009) 
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The role of regression analysis 

• Galton used the following equation to explain the phenomenon that sons of 

tall fathers tend to be tall but not as tall as their fathers while sons of short 

fathers tend to be short but not as short as their fathers: 

 

 This effect is called the regression effect. 
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The use of regression analysis 

• regression line goes through (mean Y, mean X) 

 
(https://rstudio-pubs-static.s3.amazonaws.com/204984_dd2112475db84af2a03260c4a4f830ac.html)  



GBIO0002          

 

  Van Steen K 
 
 

The use of regression analysis 

• Regression analysis is used for explaining or modeling the relationship 

between a single variable Y, called the response, output or dependent 

variable, and one or more predictor, input, independent or explanatory 

variables, X1, …, Xp.  

• When p=1 it is called simple regression but when p > 1 it is called multiple 

regression or sometimes multivariate regression.  

• When there is more than one Y, then it is called multivariate multiple 

regression 

• Regression analyses have several possible objectives including  

- Prediction of future observations. 

- Assessment of the effect of, or relationship between, explanatory 

variables on the response. 

- A general description of data structure 
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The linear regression model 
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Linear vs non-linear 
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Regression inference 

 

  

(see later) 
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What is R-squared? 

• R-squared is a statistical measure of how close the data are to the fitted 

regression line. It is also known as the coefficient of determination, or the 

coefficient of multiple determination for multiple regression. 

• The definition of R-squared is fairly straight-forward; it is the percentage of 

the response variable variation that is explained by a linear model:  

 

R-squared = Explained variation / Total variation 

 

• R-squared is always between 0 and 100%: 

- 0% indicates that the model explains none of the variability of the 

response data around its mean. 

- 100% indicates that the model explains all the variability of the 

response data around its mean. 
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Graphical representation of R-squared 

• Plotting fitted values by observed values graphically illustrates different R-

squared values for regression models. 

 

 
• The regression model on the left accounts for 38.0% of the variance while 

the one on the right accounts for 87.4%. The more variance that is 

accounted for by the regression model the closer the data points will fall to 

the fitted regression line.  
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Coefficient of determination ~ squared correlation coefficient r2 

• An R2 value of 0.0 means that knowing X does not help you predict Y. 

There is no linear relationship between X and Y, and the best-fit line is a 

horizontal line going through the mean of all Y values.  

 

• When R2 equals 1.0, all points lie exactly on a straight line with no scatter. 

Knowing X lets you predict Y perfectly. 
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General linear test approach 

• The full model: 

𝑌 =  𝛽0 +  𝛽1𝑋1 +  𝛽2𝑋2 + 𝜀 

• Fit the model by f.i. the method of least squares (this leads to estimations b 

for the beta parameters in the model) 

• It will also lead to the error sums of squares (SSE): the sum of the squared 

deviations of each observation Y around its estimated expected value 

• The error sums of squares of the full model SSE(F): 

∑[𝑌 − 𝑏0 −  𝑏1𝑋1 −  𝑏2𝑋2]2  =  ∑(𝑌 − �̂�)2 
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General linear test approach 

• Next we consider a null hypothesis H0 of interest: 

𝐻0: 𝛽1 = 0 

𝐻1: 𝛽1  ≠ 0  

• The model when H0 holds is called the reduced or restricted model. When 

𝛽1 = 0, then the regression model reduces to  

𝑌 =  𝛽0 +  𝛽2  𝑋2  +  𝜀 

• Again we can fit this model with f.i. the least squares method and obtain an 

error sums of squares, now for the reduced model: SSE(R) 

 

• Question: which error sums of squares will be smaller? SSE(F) or SSE(R)  
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General linear test approach 

• The logic now is to compare both SSEs. The actual test statistic is a 

function of SSE(R)-SSE(F): 

𝐹∗ =  
𝑆𝑆𝐸(𝑅) − 𝑆𝑆𝐸(𝐹)

𝑑𝑓𝑅 −  𝑑𝑓𝐹
∶  

𝑆𝑆𝐸(𝐹)

𝑑𝑓𝐹
 

which follows an F distribution when H0 holds 

• The decision rule (for a given alpha level of significance) is: 

If 𝐹∗  ≤ 𝐹(1 − 𝛼; 𝑑𝑓𝑅 −  𝑑𝑓𝐹 , 𝑑𝑓𝐹), you cannot reject H0 

If 𝐹∗  > 𝐹(1 − 𝛼; 𝑑𝑓𝑅 −  𝑑𝑓𝐹 , 𝑑𝑓𝐹), conclude H1 
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Recall: rejection and non-rejection regions 
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Tests in GWAS using the regression framework 

• Example 1:  

𝑌 =  𝛽0 +  𝛽1𝑆𝑁𝑃 +  𝜀 

- 𝐻0: 𝛽1 = 0 

- 𝐻1: 𝛽1  ≠ 0 

- dfF = n − 2 (this links to df in variance estimation) 

- dfR = n − 1 (this links to df in variance estimation) 

 

It can be shown that for testing 𝛽1 = 0 versus 𝛽1  ≠ 0 

- 𝐹∗ =
𝑆𝑆𝐸(𝑅)−𝑆𝑆𝐸(𝐹)

𝑑𝑓𝑅− 𝑑𝑓𝐹
∶  

𝑆𝑆𝐸(𝐹)

𝑑𝑓𝐹
=   

𝑏1
2

𝑠2(𝑏1)
 = (𝑡∗)2 

Why is the t-test more flexible? 
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Tests in GWAS using the regression framework 

• Example 2: 

𝑌 =  𝛽0 +  𝛽1𝑋1 +  𝛽2𝑃𝐶1 + 𝛽3𝑃𝐶2 +  𝜀 

- 𝐻0: 𝛽1 = 0 

- 𝐻1: 𝛽1  ≠ 0 

- dfF = n − 4 

- dfR = n − 3 

 

How many dfs would the corresponding F-test have? 

How many dfs would a corresponding t(2) test have? 
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Regression analysis in R 

• Main functions 

- The basic syntax for doing regression in R is lm() to fit linear models 

- The R function glm() can be used to fit generalized linear models (i.e., 

when the response is not normally distributed) 

• General syntax rules in R model fitting are given on the next slide. 
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Regression analysis in R 
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Coding matters 

 

 Coding scheme for statistical modeling/testing 
Indiv. 
genotype 

X1 X1 X2 X1 X1 X1 

 Additive 
coding  
 

Genotype 
coding 

(general mode 
of inheritance) 

Dominant 
coding (for 
a) 

Recessive 
coding (for 
a) 

Advantage 
Heterozygous 

AA 0 0 0 0 0 0 
Aa 1 1 0 1 0 1 
aa 2 0 1 1 1 0 
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Coding matters
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Model diagnostics are model-dependent … 

• There are 4 principal assumptions which justify the use of linear regression 

models for purposes of prediction:  

- linearity of the relationship between dependent and independent 

variables  

- independence of the errors (no serial correlation)  

- homoscedasticity (constant variance) of the errors  

▪     versus time (when time matters) 

▪     versus the predictions (or versus any independent variable)  

- normality of the error distribution.  (http://www.duke.edu/~rnau/testing.htm) 

 

• To check model assumptions: go to quick-R and regression diagnostics 

(http://www.statmethods.net/stats/rdiagnostics.html) 

http://www.statmethods.net/stats/rdiagnostics.html
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QQ plots for model diagnostics 

 

• A Q-Q plot is a scatterplot created by plotting two sets of quantiles against 

one another. 

• If both sets of quantiles come from the same distribution, we should see 

the points forming a line that’s roughly straight.  

• Here’s an example of a Normal Q-

Q plot when both sets of quantiles 

truly come from Normal 

distributions.  

 

https://data.library.virginia.edu/files/example_qq.jpeg
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QQ plots for model diagnostics 

 

• Quantiles are points in your data below which a certain proportion of your 

data fall.  

What is the 0.5 quantile for normally distributed data? 

• Here we generate a random sample of size 200 from a normal distribution 

and find the quantiles for 0.01 to 0.99 using the quantile function:  
 

quantile(rnorm(200),probs = seq(0.01,0.99,0.01)) 

 

• Q-Q plots take your sample data, sort it in ascending order, and then plot 

them versus quantiles calculated from a theoretical distribution.  

The number of quantiles is selected to match the size of your sample data.  

The quantile function in R offers 9 different quantile algorithms!  

See help(quantile) 
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Examples of QQ plots: no straight line 
 

• QQ plot of a distribution that’s skewed right; a Chi-square distribution with 

3 degrees of freedom against a Normal distribution 
qqplot(qnorm(ppoints(30)), qchisq(ppoints(30),df=3)) 
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Examples of QQ plots: no straight line 

 

• QQ plot of a distribution with heavy tails (vs Normal)  
qqplot(qnorm(ppoints(30)), qcauchy(ppoints(30))) 
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Residual plots for model diagnostics 
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Logistic regression (dichotomous traits; cases and controls) 

In linear regression one equates 

𝐸[𝑌|𝑋] =  𝛽0 +  𝛽1 𝑋1 

In logistic regression one equates 

𝐸[𝑌|𝑋] =  𝑃(𝑌 = 1) = 𝑓(𝛽0 +  𝛽1 𝑋1) 
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Logistic regression (dichotomous traits; cases and controls; conditional 

expectations) 

𝐸[𝑌] =  𝑃(𝑌 = 1) = 𝑓(𝛽0 +  𝛽1 𝑋1) 

𝑓−1(𝐸[𝑌]) = 𝑓−1( 𝑃(𝑌 = 1)) = (𝛽0 +  𝛽1 𝑋1) 

𝑓−1(𝐸[𝑌]) = 𝑙𝑜𝑔𝑖𝑡(𝑃(𝑌 = 1)) == log (
𝑃(𝑌=1)

1− 𝑃(𝑌=1)
) 

 

log (
𝑃(𝑌 = 1)

1 −  𝑃(𝑌 = 1)
) =  𝛽0 +  𝛽1 𝑋1 

Log(Odds|X1 ==1) = 𝛽0 +  𝛽1 1 

Log(Odds|X1 ==0) = 𝛽0 

 

 Log(OR) = 𝛽1  
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Coding matters 
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2 When the need emerges to look at rare variants 

DNA sequence analyses: motivation 
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Sequencing projects 

• Few years later, as sequencing techniques became more advanced, more 
accurate, and less expensive, the 1000 Human Genome Project was 
launched (January 2008). 
 

The main scope of this consortium is to sequence, ~1000 anonymous participants of 
different nationalities and concurrently compare these sequences to each other in 
order to better understand human genetic variation.  

 

• The International HapMap Project (short for “haplotype map”) aims to 
identify common genetic variations among people, making use of data from 
six different countries. 

• Shortly after the 1000 Human Genome Project, the 1000 Plant Genome 
Project (http://www.onekp.com) was launched, aiming to sequence and 
define the transcriptome of ~1000 plant species from different populations 
around the world.  
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Notably, out of the 370,000 green plants that are known today, only ~125,000 
species have recorded gene entries in GenBank and many others still remain 
unclassified.  

• While the 1000 Plant Genome Project was focused on comparing different 
plant species around the world, within the 1001 Genomes Project, 1000 
whole genomes of A. Thaliana plants across different places of the planet 
were sequenced. 

• Similar to other consortiums, the 10,000 Genome Project aims to create a 
collection of tissue and DNA specimens for 10,000 vertebrate species 
specifically designated for whole-genome sequencing.  
 

Vertebrates have a series of nerves along the back which need support and 
protection. That need brings us to the backbones and notochords. Notochords were 
the first "backbones" serving as support structures. 

 

• The goal of the 1000 Fungal Genome Project (http://1000.fungalgenomes.org) is 
to explore all areas of fungal biology.  
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• In human genetics, metagenome sequencing is becoming increasingly 
important, which lead to the Human Microbiome Project 
(http://www.hmpdacc.org/) 

 

- Metagenome sequencing is defined as an approach for the study of 
microbial populations in a sample representing a community by 
analysing the nucleotide sequence content.  

- The HMP plans to sequence 3000 genomes from both cultured and 
uncultured bacteria, plus several viral and small eukaryotic microbes 
isolated from human body sites.  

- This, in conjunction with reference genomes sequenced by HMP 
Demonstration Projects and other members of the International 
Human Microbiome Consortium (IHMC), will supplement the available 
selection of non-HMP funded human-associated reference genomes. 

  

http://www.human-microbiome.org/
http://www.human-microbiome.org/
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Why do we need reference sequences? 

• Within the human body, it is estimated that there are 10x as many 
microbial cells as human cells.  

• Our microbial partners carry out a number of metabolic reactions that are 
not encoded in the human genome and are necessary for human health ( 

human genome =  human genes + microbial genes).  

• The majority of microbial species present in the human body have never 
been isolated, cultured or sequenced, typically due to the inability to 
reproduce necessary growth conditions in the lab ( study microbial 

communities – metagenomics)  

• In order to assign metagenomic sequence to taxonomic and functional 
groupings, and to differentiate the novel from the previously described, it is 
necessary to have a large pool of described genomes from the same 
environment (reference genomes).  
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Why Reference Sequences? 

  

(http://www.hmpdacc.org/) 
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Why reference sequences? 

(https://www.genome.gov/images/content/gwas_infographic.jpg) 
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Which reference sequence? 

 

(http://www.hgvs.org/mutnomen/refseq.html)  
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Which reference sequence? 

 

(http://www.hgvs.org/mutnomen/refseq.html#standard)  
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Common workflow for whole-exome and whole genome sequencing 

 

 

 

(Pabinger et al. 2013) 
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Work flow genome-wide association study with sequence data 
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(Lee et al. 2014) 

Impact of rare variants arising from sequence data on inference 

• A variant – genetic association test implies filling in the table below and 

performing a chi-squared test for independence between rows and 

columns  

 AA Aa aa 
Cases    
Controls    

 

 

• How many observations do you expect to have two copies of a rare allele? 

Example: MAF for a = 0.001  expected aa frequency is 0.001 x 0.001 or 1 

out of 1 million 

Sum of entries = 

cases+controls 
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• In a chi-squared test of independence setting (comparing two variables in 

a contingency table to see if they are related): 

When MAF <<< 0.05 then some cells above will be  

sparse and large-sample statistics (classic chi-squared tests of 

independence) will no longer be valid. This is the case when there are less 

than 5 observations in a cell 

 

𝑋2 = ∑
(𝑂𝑖−𝐸𝑖)2

𝐸!
𝑎𝑙𝑙 𝑐𝑒𝑙𝑙𝑠 𝑖    (contrasting Observed minus Expected) 

 

• In a regression framework:  

The minimum number of observations per independent variable should be 

10, using a guideline provided by Hosmer and Lemeshow  (Applied Logistic 

Regression, one of the main resources for Logistic Regression) 
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Increased false positive rates 

Q-Q plots from GWAS data, unpublished 

  

N=~2500 

MAF>0.03 

N=~2500 

MAF<0.03 

N=~2500 

MAF<0.03 

Permuted 

N=50000 

MAF<0.03 

Bootstrapped  
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Remediation: do not look at a single variant at a time, but collapse 

• Rationale for aggregation tests 

- Alpha level of 0.05, corrected by number of bp in the genome= 1.6*10-11 

- One needs VERY LARGE samples sizes in order to be able to reach that 

level, even if you find “the variant”. 

• Remedy = aggregate / pool variants 

- Requires specification of a so-called “region of interest” (ROI) 

- A ROI can be anything really: 

o Gene 

o Locus 

o Intra-genic area 

o Functional set 
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Key features of burden tests 

• Collapse many variants into single risk score 

• Several flavors exist: 
- In general they all combine rare variants into a genetic score 

Example: Combine minor allele counts into a single risk score (dominant 
genetic model) 

- Weighted or unweighted versions (f.i., to prioritize certain variant 
types, based on predictions about damaging effect) 
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Some problems with burden tests 

• Problem 1: When high linkage disequilibrium (LD) [allelic non-
independence] exists in the “region”, combined counts may be artificially 
elevated 

• Problem 2: Assumes that all rare variants in a set are causal and associated 
with a trait in the same direction 
- Counter-examples exist for different directionality (e.g. autoimmune 

GWAs) 
- Violations of this assumption leads to power loss 
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(Lee et al. 2014) 
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Other tests 

 

(Lee et al. 2014) 
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Other tests 

 

(Lee et al. 2014) 
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(Dering et al. 2014) 
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 (Dering et al. 2014) 
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For what else are human DNA sequences used by scientists?  

A. In recent years, DNA sequencing technology has advanced many areas of 
science. For example, the field of functional genomics is concerned with 

- figuring out what certain DNA sequences do, as well as  
- which pieces of DNA code for proteins and  
- which have important regulatory functions.  

 
B. An invaluable first step in making these determinations is learning the 
nucleotide sequences of the DNA segments under study. 
 
C. Another area of science that relies heavily on DNA sequencing is 
comparative genomics, in which researchers compare the genetic material of 
different organisms in order to learn about their evolutionary history and 
degree of relatedness.  
 
D. Complex disease analysis 
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A. Sequence annotation 

(see practicals) 
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B. Counting letters or words 

• The CpG sites or CG sites are regions of DNA where a cytosine nucleotide 
occurs next to a guanine nucleotide in the linear sequence of bases along its 
length. "CpG" is shorthand for "—C—phosphate—G—", that is, cytosine 
and guanine separated by only one phosphate. The "CpG" notation is used 
to distinguish this linear sequence from the CG base-pairing of cytosine and 
guanine.            (https://en.wikipedia.org/wiki/CpG_site) 

  

 

https://en.wikipedia.org/wiki/DNA
https://en.wikipedia.org/wiki/Cytosine
https://en.wikipedia.org/wiki/Nucleotide
https://en.wikipedia.org/wiki/Guanine
https://en.wikipedia.org/wiki/DNA_sequence
https://en.wikipedia.org/wiki/Base_pair
https://en.wikipedia.org/wiki/Phosphate
https://en.wikipedia.org/wiki/Base_pair
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Recall: DNA biosynthesis 

• DNA biosynthesis proceeds in the 

5′- to 3′-direction. This makes it 

impossible for DNA polymerases 

to synthesize both strands 

simultaneously. A portion of the 

double helix must first unwind, 

and this is mediated by helicase 

enzymes. 

• The leading strand is synthesized 

continuously but the opposite 

strand is copied in short bursts of 

about 1000 bases, as the lagging 

strand template becomes 

available. The resulting short 

strands are called Okazaki 

fragments (after their discoverers, 

Reiji and Tsuneko Okazaki).  
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C. Comparing multiple sequences 

• After collection of a set of related sequences, how can we compare them as 

a set? 

• How should we line up the sequences so that the most similar portions are 

together? 

• What do we do with sequences of different length? 
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D. Genomic variation for complex diseases 
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3 Investigating frequencies of occurrences of words 

 
Introduction  
 

• Words are short strings of letters drawn from an alphabet 

• In the case of DNA, the set of letters is A, C, T, G 

• A word of length k is called a k-word or k-tuple 

• Differences in word frequencies help to differentiate between different 

DNA sequence sources or regions 

• Examples: 1-tuple: individual nucleotide; 2-tuple: dinucleotide; 3-tuple: 

codon 

• The distributions of the nucleotides over the DNA sequences have been 
studied for many years  hidden correlations in the sequences (e.g., CpGs) 
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Probability distributions 

 

Probability is the science of uncertainty 

 

1. Rules  data: given the rules, describe the likelihoods of various 

events occurring 

2. Probability is about prediction – looking forwards 

3. Probability is mathematics 
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Statistics is the science of data 

1. Rules  data: given only the data, try to guess what the rules were. 

That is, some probability model controlled what data came out, and 

the best we can do is guess – or approximate – what that model was. 

We might guess wrong, we might refine our guess as we obtain / 

collect more data 

2. Statistics is about looking backward. Once we make our best 

statistical guess about what the probability model is (what the rules 

are), based on looking backward, we can then use that probability 

model to predict the future 

3. Statistics is an art. It uses mathematical methods but it is much more 

than maths alone 

4. The purpose of statistics is to make inference about unknown 

quantities from samples of data. 
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Statistics is the science of data 

• Probability distributions are a fundamental concept in statistics.  

• Before computing an interval or test based on a distributional assumption, 

we need to verify that the assumption is justified for the given data set.  

• For this chapter, the distribution does not always need to be the best-fitting 

distribution for the data, but an adequate enough model so that the 

statistical technique yields valid conclusions.  

• Simulation studies: one way to obtain empirical evidence for a probability 

model 
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Assumptions 

• Simple rules specifying a probability model: 

- First base in sequence is either A, C, T or G with prob pA, pC, pT, pG 

- Suppose the first r bases have been generated, while generating the 

base at position r+1, no attention is paid to what has been generated 

before.  

• Then we can actually generate A, C, T or G with the probabilities above 

• Notation for the output of a random string of n bases may be: L1, L2, …, Ln  

(Li = base inserted at position i of the sequence) 

• Whatever we would like to do with such strings, we will need to introduce 

the concept of a random variable 
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Probability distributions 

• Suppose the “machine” we are using produces an output X that takes 

exactly 1 of the J possible values in a set 𝜒 =  {𝑙1, 𝑙2, … , 𝑙𝑛 } 

- In the DNA sequence J=4 and 𝜒 =  {𝐴, C, T, G } 

- L is a discrete random variables (since its values are uncertain) 

- If pj is the prob that the value (realization of the random variable L) lj 

occurs, then 

▪ 𝑝1, … , 𝑝𝐽  ≥ 𝑂 and 𝑝1 +  … +  𝑝𝐽 = 1 

• The probability distribution (probability mass function) of L is given by the 

collection 𝑝1, … , 𝑝𝐽 

- P(L=lj) = pj, j=1, …, J 

• The probability that an event S occurs (subset of 𝜒) is P(L ∈ 𝑆) = 

∑  (𝑝𝑗𝑗:𝑙𝑗 ∈𝑆 ) 
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Probability distributions 

• What is the probability distribution of the number of times a given pattern 

occurs in a random DNA sequence L1, …, Ln? 

- New sequence X1, …, Xn: 

Xi=1 if Li=A and Xi=0 else 

- The number of times N that A appears is the sum 

N=X1+…+Xn 

- The prob distr of each of the Xi: 

P(Xi=1) = P(Li=A)=pA 

P(Xi=0) = P(Li=C or G or T) = 1 - pA 

• What is a “typical” value of N? 

- Depends on how the individual Xi  (for different i) are interrelated  
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Independence 

• Discrete random variables X1, …, Xn are said to be independent if for any 

subset of random variables and actual values, the joint distribution equals 

the product of the component distributions 

• According to our simple model, the Li are independent and hence 

P(L1=l1,L2=l2, …,Ln=ln)=P(L1=l1) P(L2=l2) …P(Ln=ln) 
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Expected values and variances 

• Mean and variance are two important properties of real-valued random 

variables and corresponding probability distributions. 

• The “mean” of a discrete random variable X taking values x1, x2, . . . (de- 

noted EX (or E(X) or E[X]), where E stands for expectation, which is another 

term for mean) is defined as: 

E(X) =∑ 𝑥𝑖  𝑃(𝑋 = 𝑥𝑖)𝑖  

 

- E(Xi)= 1 ×pA+0 × (1 −pA) 

- If Y=c X, then E(Y) = c E(X) 

- E(X1 +… + Xn) = E(X1) + … + E(Xn) 

• Because Xi are assumed to be independent and identically distributed (iid): 

E(X1 +… + Xn) = n E(X1) = n pA 
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Expected values and variances 

• The idea is to use squared deviations of X from its center (expressed by the 
mean). Expanding the square and using the linearity properties of the 
mean, the Var(X) can also be written as: 
 

𝑉𝑎𝑟(𝑋) = 𝐸(𝑋2) − [𝐸(𝑋)]2] 
 

- If Y=c X then Var (Y) = c2 Var (X) 
- The variance of a sum of independent random variables is the sum of 

the individual variances 
 

• For the random variables Xi: 

Var (Xi) = [12  × 𝑝𝐴 +  02  ×′ (1 − 𝑝𝐴)] −  𝑝𝐴
2 = 𝑝𝐴(1 − 𝑝𝐴) 

    Var (N) = n Var (X1) = 𝑛𝑝𝐴(1 − 𝑝𝐴)
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Expected values and variances 

• The expected value of a random variable X gives a measure of its location. 
Variance is another property of a probability distribution dealing with the 
spread or variability of a random variable around its mean. 

 
𝑉𝑎𝑟(𝑋) = 𝐸 ( [𝑋 − 𝐸(𝑋)]2 ) 

 
- The positive square root of the variance of X is called its standard 

deviation sd(X) 
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The binomial distribution 
 

• The binomial distribution is used when there are exactly two mutually 
exclusive outcomes of a trial. These outcomes are appropriately labeled 
"success" and "failure". The binomial distribution is used to obtain the 
probability of observing x successes in a fixed number of trials, with the 
probability of success on a single trial denoted by p. The binomial 
distribution assumes that p is fixed for all trials. 

• The formula for the binomial probability mass function is : 

𝑃(𝑁 = 𝑗) = (
𝑛
𝑗 ) 𝑝𝑗(1 − 𝑝)𝑛−𝑗, j = 0,1, …,n 

with the binomial coefficient (
𝑛
𝑗 ) determined by 

(
𝑛
𝑗 ) =  

𝑛!

𝑗! (𝑛 − 𝑗)!
, 

and j!=j(j-1)(j-2)…3.2.1, 0!=1 
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The binomial distribution 

 

• The mean is np and the variance is np(1-p) 

• The following is the plot of the binomial probability density function for 

four values of p and n = 100. 
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Simulating from probability distributions 

• The idea is that we can study the properties of the distribution of N when 

we  can get our computer to output numbers N1, …, Nn having the same 

distribution as N 

- We can use the sample mean to estimate the expected value E(N): 

�̅� =  (𝑁1 +  … +  𝑁𝑛)/𝑛 

- Similarly, we can use the sample variance to estimate the true variance 

of N: 

𝑠2 =  
1

𝑛 − 1
 ∑(𝑁𝑖 −  �̅�)2

𝑛

𝑖=1

 

Why do we use (n-1) and not n in the denominator?  
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Simulating from probability distributions 

• What is needed to produce such a string of observations? 

- Access to pseudo-random numbers: random variables that are 

uniformly distributed on (0,1): any number between 0 and 1 is a 

possible outcome and each is equally likely 

• In practice, simulating an observation with the distribution of X1: 

- Take a uniform random number u 

- Set X1=1 if 𝑈 ≤ 𝑝 ≡  𝑝𝐴  and 0 otherwise.  

- Why does this work?   …  

- Repeating this procedure n times results in a sequence X1, …, Xn from 

which N can be computed by adding the X’s 
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Simulating from probability distributions 

 

• Simulate a sequence of bases L1, …, Ln: 

- Divide the interval (0,1) in 4 intervals with endpoints 

0,𝑝𝐴, 𝑝𝐴 + 𝑝𝐶 , 𝑝𝐴 + 𝑝𝐶 + 𝑝𝐺 , 1 

- If the simulated u lies in the leftmost interval, L1=A 

- If u lies in the second interval, L1=C; if in the third, L1=G and otherwise 

L1=T 

- Repeating this procedure n times with different values for U results in a 

sequence L1, …, Ln 

• Use the “sample” function in R: 
pi <- c(0.25,0.75) 

x<-c(1,0) 

set.seed(2009) 

sample(x,10,replace=TRUE,pi) 
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Simulating from probability distributions 

 

• By looking through a given 

simulated sequence, we can count 

the number of times a particular 

pattern arises (for instance, the 

base A) 

• By repeatedly generating 

sequences and analyzing each of 

them, we can get a feel for 

whether or not our particular 

pattern of interest is unusual 
 

  
x<- rbinom(2000,1000,0.25) 
mean(x) 
sd(x)^2 
hist(x,xlab="Number of successes",main="") 
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R documentation 

 

(https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Binomial.html) 

> rbinom(1,1000,0.25) 

[1] 250  you got lucky!!!! 

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Binomial.html
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Simulating from probability distributions 

• Using R code: 
 
x<- rbinom(2000,1000,0.25) 
mean(x) 
sd(x)^2 
hist(x,xlab="Number of successes",main="") 

                              

                               What is the number of observations? 
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Simulating from probability distributions 

• Using R code: 
 
x<- rbinom(2000,1000,0.25) 
mean(x) 
sd(x)^2 
hist(x,xlab="Number of successes",main="") 

                              

                               What is the number of observations? 

  

Number of sequences = 2000 

Number of trials = 1000 
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Back to our original question 

• Suppose we have a sequence of 1000bp and assume that every base occurs 

with equal probability. How likely are we to observe at least 300 A’s in such 

a sequence? 

- Exact computation using a closed form of the relevant distribution 

- Approximate via simulation  

- Approximate using the Central Limit Theory 
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Exact computation via closed form of relevant distribution 

• The formula for the binomial probability mass function is : 

𝑃(𝑁 = 𝑗) = (
𝑛
𝑗 ) 𝑝𝑗(1 − 𝑝)𝑛−𝑗, j = 0,1, …,n 

   and therefore 

𝑃(𝑁 ≥ 300) =  ∑ (
1000

𝑗
) (

1000

𝑗=300

1/4)𝑗(1 − 1/4)1000−𝑗  

      = 0.00019359032194965841  

 

• Note that the probability 𝑃(𝑁 ≥ 300) is estimated to be 0.0001479292 via  
 

1-pbinom(300,size=1000,prob=0.25) 
pbinom(300,size=1000,prob=0.25,lower.tail=FALSE) 
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(http://faculty.vassar.edu/lowry/binomialX.html)  
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Approximate via simulation 

• Using R code and simulations from the theoretical distribution, 

 𝑃(𝑁 ≥ 300) can be estimated as 0.000196 via 

x<- rbinom(1000000,1000,0.25) 
sum(x>=300)/1000000 
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Approximate via Central Limit Theory 

• The central limit theorem offers a 3rd way to compute probabilities of a 

distribution 

• It applies to sums or averages of iid random variables 

• Assuming that X1, …, Xn are iid random variables with mean 𝜇 and variance 

𝜎2, then we know that for the sample average 

�̅�𝑛 =  
1

𝑛
 (𝑋1 +  … +  𝑋𝑛), 

E(�̅�𝑛) = 𝜇 and Var (𝑋̅̅ ̅
𝑛) = 

𝜎2

𝑛
 

• Hence,  

𝐸 (
�̅�𝑛 −  𝜇

𝜎/√𝑛
) = 0, 𝑉𝑎𝑟 (

�̅�𝑛 −  𝜇

𝜎/√𝑛
) = 1 
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Approximate via Central Limit Theory 

• The central limit theorem states that if the sample size n is large enough,  

𝑃 (𝑎 ≤  
�̅�𝑛− 𝜇

𝜎

√𝑛

 ≤ 𝑏) ≈  𝜙(𝑏) −  𝜙(𝑎), 

with 𝜙(. ) the standard normal distribution defined as 

𝜙(𝑧) = 𝑃(𝑍 ≤ 𝑧) =  ∫ 𝜙(𝑥)𝑑𝑥
𝑧

−∞
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Approximate via Central Limit Theory 

• Estimating the quantity 𝑃(𝑁 ≥ 300) when N has a binomial distribution 

with parameters n=1000 and p=0.25, 

𝐸(𝑁) = 𝑛𝜇 = 1000 × 0.25 = 250, 

𝑠𝑑(𝑁) =   √𝑛 𝜎 = √1000 ×
1

4
×

3

4
 ≈ 13.693 

𝑃(𝑁 ≥ 300) = 𝑃 (
𝑁 − 250

13.693
 >  

300 − 250

13.693
) 

 

                                       ≈ 𝑃(𝑍 >  3.651501) =  0.0001303560 

• R code: 
pnorm(3.651501,lower.tail=FALSE) 

 

How do the estimates of 𝑃(𝑁 ≥ 300) compare? 
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Approximate via Central Limit Theory 

 

• The central limit theorem in action using R code: 

bin25<-rbinom(1000,25,0.25) 
av.bin25 <- 25*0.25 
stdev.bin25 <- sqrt(25*0.25*0.75) 
bin25<-(bin25-av.bin25)/stdev.bin25 
hist(bin25,xlim=c(-4,4),ylim=c(0.0,0.4),prob=TRUE,xlab="Sample size 
25",main="") 
x<-seq(-4,4,0.1) 
lines(x,dnorm(x))   
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Approximate via Central Limit Theory 
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Supporting doc to this class (complementing course slides) 
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Questions? 

 


