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From GWAS to Sequence Analyses

Part 1 When variants become rare

1. GWAS

2. Rare variants: promises and limitations

3. Frequency of sequence words: the stats perspective
Part 2 When effects become non-independent

Impact and interpretation

Biological vs statistical epistasis
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1 GWAS
Definition (recap)

o A genome-wide association study is an approach that involves rapidly
scanning markers across the complete sets of DNA, or genomes, of many
people to find genetic variations associated with a particular trait.

e A trait can be defined as a coded phenotype, a particular characteristic such
as hair color, BMI, disease, gene expression intensity level, ...
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Genome-wide association studies in practice

The genome-wide association study is typically (but not solely!!!) based on a
case-control design in which single-nucleotide polymorphisms (SNPs) across
the human genome are genotyped ... (Panel A: small fragment)

A

m Chromosome 9 @

— Personl

— Person2

— Person3
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Genome-wide association studies in practice

B SNP1 SNP2
Cases Initial discovery study .4l e Initial discovery study 1
vy P=1x10-12 . L8 2o P=1x10% aasa

Common Variant

homozygote i Heterozygote homozygote

e Panel B, the strength of association between each SNP and disease is
calculated on the basis of the prevalence of each SNP in cases and
controls. In this example, SNPs 1 and 2 on chromosome 9 are associated
with disease, with P values of 10712 and 1078, respectively

(Manolio 2010)
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Genome-wide association studies in practice

6 7 8 9 10 11 12 131415
Chromosome

16 18 20 22

Position on chromosome 9

e The plot in Panel C shows the P values for all genotyped SNPs that have

survived a quality-control screen (each chromosome, a different color).

(Manolio 2010)
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Detailed flow of a genome-wide association study

Laboratory

Low level analysis

High level analysis

Biological question Sampling —p= Selection of DNA chip |
DNA preparation —hL Chip hybridization J—b- Chip scan :

Image analysis > Normalization —»  Genotype calling ]—»{Standard quality control
IrF{tafcnllic:.ation fVaIidation1+ Impact on population |

Statistical analysis J—P

L.

.

"

Imputation

ns

Statistical analysis

A

—p Replication / Validation

—>| Impact on population ‘

Data mining ]—p

Replication / Validation

™ '

—

Impact on population

(Ziegler 2009)
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Why is quality control (QC) important?

BEFORE QC - true signals are lost in false positive signals
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(Ziegler and Van Steen 2010)
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Why is quality control important?

AFTER QC - skyline of Manhattan (= name of plot: Manhattan plot):

-log(P]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 18 16 17 19 21

chromosome

Ger MI FS |, Affymetrix 500k array set, SNPs on chip: 493,840
SNPs passing standard quality control: 270,701

(Ziegler and Van Steen 2010)
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The Travemiinde criteria

Filter criterion

Standard value for filter

Sample level Call fraction > 97%
Cryptic relatedness Study specific
Ethnic origin Study specific; visual inspection of
principal components
Heterozygosity Mean £ 3 std.dev. over all samples
Heterozygosity by gender Mean £ 3 std.dev. within gender group
SNP level MAF >1%
MiF < 2% in any study group, e.g., in both

MiF by gender
HWE

cases and controls
< 2% in any gender
p < 10

(Ziegler 2009)
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The Travemiinde criteria

Filter criterion Standard value for filter
SNP level Difference between control groups p > 10" in trend test

Gender differences among controls p>10"in trend test
X-Chr SNPs Missingness by gender No standards available

Proportion of male heterozygote calls No standards available

Absolute difference in call fractions for No standards available
males and females

Gender-specific heterozygosity No standard value available

(Ziegler 2009)
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The role of regression analysis

e Galton used the following equation to explain the phenomenon that sons of
tall fathers tend to be tall but not as tall as their fathers while sons of short
fathers tend to be short but not as short as their fathers:

yv— v (x— x)

SD, ' SD,

This effect is called the regression effect.
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The use of regression analysis

e regression line goes through (mean Y, mean X)

Father-son Height Data

75+
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1

Height of son
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|
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Height of father

(https://rstudio-pubs-static.s3.amazonaws.com/204984 dd2112475db84af2a03260c4a4f830ac.html)
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The use of regression analysis

e Regression analysis is used for explaining or modeling the relationship
between a single variable Y, called the response, output or dependent
variable, and one or more predictor, input, independent or explanatory
variables, Xy, ..., Xp.

e When p=1itis called simple regression but when p > 1 it is called multiple
regression or sometimes multivariate regression.

e When there is more than one Y, then it is called multivariate multiple
regression

e Regression analyses have several possible objectives including

- Prediction of future observations.

- Assessment of the effect of, or relationship between, explanatory
variables on the response.

- A general description of data structure
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The linear regression model

= G0+ Bix1 + ...+ Brxk + €

@ y: response variable.

@ Xi,...,Xk. regressor variables, independent variables.

@ 0o.1,..., Bk regression coefficients.
@ ¢: model error.

» Uncorrelated: cov(e;,ej) = 0,7 # J.
» Mean zero, Same variance: var(¢;) = o®. (homoscedasticity)
» Normally distributed.
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Linear vs non-linear

Linear Models Examples:

y = B0+ Bix + Box? + €
y = ,.30 + .,31)(1 - .,82)(2 — 512)(1 Xo + €
y = o+ Pilogxy + Bologxo + €

1 1
|Og_}/ = 30 + 31 () —+ 32 () + €
X1 X2

Nonlinear Models Examples:

Yy = 30 + 31 Xfl + 32 X;z + €
IS
1 + e;’3’1X1 + €

y:

Van Steen K



GBIO0002

Regression inference

y = [0+ B1x1+ ...+ BrxXk + €

@ Least square estimation of the regression coefficients.
b= (XTX)"1XTy.

o Variance estimation for o2 (see later)

o Coefficient of Determination. RZ.
o Partial F test or t-test for Hy : 3; = 0.
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What is R-squared?

e R-squared is a statistical measure of how close the data are to the fitted
regression line. It is also known as the coefficient of determination, or the
coefficient of multiple determination for multiple regression.

e The definition of R-squared is fairly straight-forward; it is the percentage of
the response variable variation that is explained by a linear model:

R-squared = Explained variation / Total variation

e R-squared is always between 0 and 100%:
- 0% indicates that the model explains none of the variability of the
response data around its mean.
- 100% indicates that the model explains all the variability of the
response data around its mean.
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Graphical representation of R-squared

e Plotting fitted values by observed values graphically illustrates different R-
squared values for regression models.

Plots of Observed Responses Versus Fitted Responses for Two Regression Models

Fitted
responses

Observed responses Observed responses

e The regression model on the left accounts for 38.0% of the variance while
the one on the right accounts for 87.4%. The more variance that is
accounted for by the regression model the closer the data points will fall to
the fitted regression line.
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Coefficient of determination ~ squared correlation coefficient r?

e An R?value of 0.0 means that knowing X does not help you predict Y.
There is no linear relationship between X and Y, and the best-fit line is a
horizontal line going through the mean of all Y values.

e When R? equals 1.0, all points lie exactly on a straight line with no scatter.

Knowing X lets you predict Y perfectly.

r’=0.0

-I --H
u .- .I_. am
L

iy I'.ﬁ--l

r=0.5

r=1.0
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General linear test approach
e The full model:
Y= fo+ p1X1+ B2Xz + ¢

e Fit the model by f.i. the method of least squares (this leads to estimations b
for the beta parameters in the model)

e It will also lead to the error sums of squares (SSE): the sum of the squared
deviations of each observation Y around its estimated expected value

e The error sums of squares of the full model SSE(F):

NIV = by = biXy — byXp2 = ) (¥ = 7)?
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General linear test approach

e Next we consider a null hypothesis Hp of interest:
Hy: 51 =0
Hl: 181 * O
e The model when HO holds is called the reduced or restricted model. When
1 = 0, then the regression model reduces to
Y —_ ﬁo + ﬁz X2 + £
e Again we can fit this model with f.i. the least squares method and obtain an
error sums of squares, now for the reduced model: SSE(R)

e Question: which error sums of squares will be smaller? SSE(F) or SSE(R)
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General linear test approach

e The logic now is to compare both SSEs. The actual test statistic is a
function of SSE(R)-SSE(F):

e _ SSE(R) — SSE(F) SSE(F)
- dfg — dfe  dfy

which follows an F distribution when Hg holds

e The decision rule (for a given alpha level of significance) is:
If F* < F(1 —a; dfg — dfg,dfr), you cannot reject Ho
If F* > F(1 —a; dfg — dfr, dfr), conclude H;
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Recall: rejection and non-rejection regions

Density of F-statistic under Ho

E,'T}-'DiI:EII" F=

sample means about as far
apar as you'd expectif
population means egual

W rejection region
(upper tail anly)

Large F =
Sample means far

small F =
from equal

sample means
are very close

/

Tzmall T medium .
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Tests in GWAS using the regression framework

e Example 1:
Y = ﬁo"‘ ,315NP+ &E
-Hy: 5, =0
_Hl:ﬁl * O

— dfg = n — 2 (this links to df in variance estimation)
— dfg = n — 1 (this links to df in variance estimation)

It can be shown that for testing f; = O versus f; # 0
__ SSE(R)-SSE(F) . SSE(F) _ b _ (t*)z
dfg—dfr dfF s2(by)
Why is the t-test more flexible?

- F*
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Tests in GWAS using the regression framework

e Example 2:
Y= o+ p1Xy + B2PCy + p3PC; + €
-Hy: 5, =0
-Hi:p; #0
-dff =n—4
- dfg =n-—3

How many dfs would the corresponding F-test have?

How many dfs would a corresponding t(?) test have?

Van Steen K



GBIO0002

Regression analysis in R

e Main functions
- The basic syntax for doing regression in R is Im() to fit linear models
- The R function glm() can be used to fit generalized linear models (i.e.,
when the response is not normally distributed)
e General syntax rules in R model fitting are given on the next slide.
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Regression analysis in R

Syntax Model Comments
Y ~A Y =0,+[A Straight-line with an implicit y-
intercept
Y~-1+A Y =pA Straight-line with no y-intercept:

that 1s. a fit forced through (0.0)

Y ~A+1(A%2)

Y= BD_ EJIA N BZAE

Polynomial model: note that the
identity function I( ) allows terms
in the model to include normal
mathematical symbols.

Y~A+B Y =p(,+pA+ BB A first-order model in A and B
without interaction terms.

Y ~AB Y =p,+ p;AB A model containing only first-order
interactions between A and B.

Y ~ A*B Y =B+ BiA+ BB+ p;AB | A full first-order model with a term:

an equivalent code s Y ~A+B +
A:B.

Y - (A + B + C')’*‘Z -&7 = BD_ ﬁlA T B:B Ll BEC B
ﬁ4AB il BsAC + BﬁAC

A model including all first-order

effects and interactions up to the n™

order, where n 1s given by ( )"n.
An equivalent code 1n this case 1s
Y ~ A*B*C - A:B.C.
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Coding matters

Coding scheme for statistical modeling/testing

Indiv. X1 X1 X2 X1 X1 X1
genotype
Additive Genotype |[Dominant |Recessive |Advantage
coding coding coding (for | coding (for | Heterozygous
(general mode ||a) a)
of inheritance)
AA 0 0 0 10 0 0
Aa 1 1 0 1 0 1
aa 2 0 1 1 1 0
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Coding matters

Use of 1m() Iin genetics

For a continuous ocutcome,

Im(outcome ~ genetic.predictor, [...]

)

: and predictor

e weights — for advanced analyses

Model Description

predictor

Common name

Number of minor alleles

Fresence of minor allele
Homozygous for minor allele
Distinct effects

for hetero/homozygous

(g==‘Aa’) + 2*(g==‘aa’)
Oor as.numeric(g)
(g==‘Aa’) | (g==‘aa’)
g==: aa’
factor(g)

Additive
Dominant

2 parameter,
DI' iLE d.l,—n
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Use of 1m() in genetics

Some data; cholesterol levels plotted by genotype (single SNP)
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Use of 1m() in genetics

Additive model (the most commonly used)

cholesteral

aa
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Use of 1m() in genetics

Dominant model (best fit to this data)

R . T T R T

cholesteral

aa
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Use of 1m() in genetics

Recessive model (least stable for rare aa)

cholesterol

______________________________

Al Aa aa
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Use of 1Im() in genetics

2 parameter model (robust but can be overkill)

cholasteral

N T EE R EEEEEEEEE E

Van Steen K



GBIO0002

1m(): Estimates, Intervals, p-values

1m() produces point estimates for your model,

> n.minor <- (g=="Aa") + 2*(g=="aa")

> my.lm <- 1m( cholesterol ~ n.minor )
> my.lm
Call:
Ilm{formula = cholesterocl ~ n.minor)
Coefficients:
(Intercept) n.minor

0.2104 0.9507

— also available via my.1lm$coefficients.

The coefficients in the output tell yvou the additive increase
In outcome associated with a one-unit difference in the genetic
predictor.

The coefficient for n.minor is in units of cholesterol
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Im(): Estimates, Intervals, p-values

You will also want confidence intervals;

> confint.default(my.1lm)

2.5 % 97.5 %
(Intercept) 0.08391672 0.3368275
n.minor 0.85279147 1.0486953

Remember to round these numbers to an appropriate number
of significant figures! (2 or 3 is usually enough)

We are seldom interested in the Intercept
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1m(): Estimates, Intervals, p-values

Two-sided p-values are also available;

> summary (my.lm)
Coefficients:
Estimate Std. Error t wvalue Pr(>|t]|)

(Intercept) 0.21037 0.06426 3.274 0.00119 **
n.minor 0.95074 0.04977 19.101 < Ze—-16 **=*
Signif. codes: 0 “**%x’ 0.001 “**? 0.01 ‘*° 0.05 *.” 0.1 ¢ * 1

In this data, we have strong evidence of an additive effect of
the minor allele on cholesterol

summary (my.1lm) gives many other details — ignore for now

Confidence intervals are just Estimate £ 2xStd.Error
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Model diagnostics are model-dependent ...

e There are 4 principal assumptions which justify the use of linear regression
models for purposes of prediction:
- linearity of the relationship between dependent and independent
variables

- independence of the errors (no serial correlation)

- homoscedasticity (constant variance) of the errors
= versus time (when time matters)
= versus the predictions (or versus any independent variable)

- normality of the error distribution. (http://www.duke.edu/~rnau/testing.htm)

e To check model assumptions: go to quick-R and regression diagnostics
(http://www.statmethods.net/stats/rdiagnostics.html)

Van Steen K
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QQ plots for model diagnostics

e A Q-Q plot is a scatterplot created by plotting two sets of quantiles against
one another.

e If both sets of quantiles come from the same distribution, we should see
the points forming a line that’s roughly straight.

e Here’s an example of a Normal Q- Normal G- Plot

Q plot when both sets of quantiles

truly come from Normal

distributions.

Van Steen K
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QQ plots for model diagnostics

e Quantiles are points in your data below which a certain proportion of your
data fall.
What is the 0.5 quantile for normally distributed data?
e Here we generate a random sample of size 200 from a normal distribution
and find the quantiles for 0.01 to 0.99 using the quantile function:

quantile(rnorm(200),probs = seq(0.01,0.99,0.01))

e Q-Q plots take your sample data, sort it in ascending order, and then plot
them versus quantiles calculated from a theoretical distribution.
The number of quantiles is selected to match the size of your sample data.
The quantile function in R offers 9 different quantile algorithms!
See help(quantile)
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Examples of QQ plots: no straight line

e QQ plot of a distribution that’s skewed right; a Chi-square distribution with

3 degrees of freedom against a Normal distribution
ggplot(gnorm(ppoints(30)), gchisq(ppoints(30),df=3))

gnorm(ppoints(30))
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Examples of QQ plots: no straight line

e QQ plot of a distribution with heavy tails (vs Normal)
gqplot(gnorm(ppoints(30)), gcauchy(ppoints(30)))

20

10

(o]
(o]

o
o0
000000
0000000
0000
00

qcauchy(ppoints(30))
0
L

-10

=20
o

gnorm(ppoints(30))
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Residual plots for model diagnostics

tized Residuals

20

1.0

05

02

10

15 20 25 30

Fitted Values
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Logistic regression (dichotomous traits; cases and controls)

In linear regression one equates
E[Y|X] = Bo+ B1 X1
In logistic regression one equates

E[Y|X]=P(Y =1) = f(Bo + B1X1)

@ y is binary: logistic regression.

1
P( Y = 1) = 1 I e_(lll.-j’o__:;‘j’lxl—l—...——I,:"j'ka}

@ y is measured on an ordinal scale: ordinal logistic regression.
@ y is measured on non-ordered scale: multinomial logistic regression.

@ y is counts: Poisson or Negative Binomial regression.
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Logistic regression (dichotomous traits; cases and controls; conditional
expectations)

E[Y]=PY =1)=f(fo+ b1X1)
fHEYD =f1(P¥ =1) =B+ B X1)
FUELY]) = logit(P(Y = 1)) == log(—2=2

l 1— P(Y=1))

1 PY=1) \
08(1_ P(Y = 1)>— Bo + b1 X4

Log(Odds|X1==1) = Bp + B 1
— Log(Odds|X1-=0) =

Log(OR) = 5,

Van Steen K
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Coding matters

Use of glm() in genetics

Odds are a [gambling-friendly] measure of chance;

=
—

0.8
I

0.8

Prob of survival, 10 yrs
0.4

0.2

0.0

Al Aa aa
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2 When the need emerges to look at rare variants

DNA sequence analyses: motivation

Published Genome-Wide Associations through 12/2013
Published GWA at p<5X10-8 for 17 trait categories

@ Digestive system disease

® Cardiovascular disease

© Metabolic disease

O Immune system disease

O Nervous system disease

) @ Liver enzyme measurement

i © Lipid or lipoprotein measurement
© Inflammatory marker measurement
© Hematolagical measurement

© Body measurement

© Cardiovascular measurment

® Other measurement

© Response to drug

© Biological process

@ Cancer

® Other disease

@ Other trait

DN -

NHGRI GWA Catalog
www.genome.gov/GWAStudies

InuH. .|/ National Human
Genome Research

nstitute www.ebi.ac.uk/fgpt/gwas/ EMBL-EB

Van Steen K



GBIO0002

Sequencing projects

e Few years later, as sequencing techniques became more advanced, more
accurate, and less expensive, the 1000 Human Genome Project was
launched (January 2008).

The main scope of this consortium is to sequence, ~1000 anonymous participants of
different nationalities and concurrently compare these sequences to each other in
order to better understand human genetic variation.

e The International HapMap Project (short for “haplotype map”) aims to
identify common genetic variations among people, making use of data from
six different countries.

e Shortly after the 1000 Human Genome Project, the 1000 Plant Genome
Project (http://www.onekp.com) was launched, aiming to sequence and
define the transcriptome of ~1000 plant species from different populations
around the world.
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Notably, out of the 370,000 green plants that are known today, only ~125,000
species have recorded gene entries in GenBank and many others still remain
unclassified.

e While the 1000 Plant Genome Project was focused on comparing different
plant species around the world, within the 1001 Genomes Project, 1000
whole genomes of A. Thaliana plants across different places of the planet
were sequenced.

e Similar to other consortiums, the 10,000 Genome Project aims to create a
collection of tissue and DNA specimens for 10,000 vertebrate species
specifically designated for whole-genome sequencing.

Vertebrates have a series of nerves along the back which need support and
protection. That need brings us to the backbones and notochords. Notochords were
the first "backbones" serving as support structures.

e The goal of the 1000 Fungal Genome Project (http://1000.fungalgenomes.org) is
to explore all areas of fungal biology.

Van Steen K



GBIO0002

¢ In human genetics, metagenome sequencing is becoming increasingly

important, which lead to the Human Microbiome Project
(http://www.hmpdacc.org/)

— Metagenome sequencing is defined as an approach for the study of
microbial populations in a sample representing a community by
analysing the nucleotide sequence content.

— The HMP plans to sequence 3000 genomes from both cultured and
uncultured bacteria, plus several viral and small eukaryotic microbes
isolated from human body sites.

— This, in conjunction with reference genomes sequenced by HMP
Demonstration Projects and other members of the International
Human Microbiome Consortium (IHMC), will supplement the available
selection of non-HMP funded human-associated reference genomes.

Van Steen K
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Why do we need reference sequences?

e Within the human body, it is estimated that there are 10x as many
microbial cells as human cells.
e Our microbial partners carry out a number of metabolic reactions that are

not encoded in the human genome and are necessary for human health (2
human genome = human genes + microbial genes).

e The majority of microbial species present in the human body have never
been isolated, cultured or sequenced, typically due to the inability to

reproduce necessary growth conditions in the lab (2 study microbial
communities — metagenomics)

e In order to assign metagenomic sequence to taxonomic and functional
groupings, and to differentiate the novel from the previously described, it is
necessary to have a large pool of described genomes from the same
environment (reference genomes).
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Why Reference Sequences?

v

SEQUENCE ALIGN METAGENOMIC MAP TAXONOMY
WGS AND REFERENCE & FUNCTIONAL
GENOME SEQUENCE ANNOTATION

(http://www.hmpdacc.org/)
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Why reference sequences?

NHGRI FACT SHEETS

genome.gov

Individuals with disease  Individuals without disease

Using a CHIP can genotype
500,000 - 5 Million SNPs

SNP 1
No association
to disease

SNP 2
No association
to disease

SNP 3
Associated
to disease

@ NiH) et

(https://www.genome.gov/images/content/gwas_infographic.jpg)
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Which reference sequence?

\(_-/ @ www.hgvs.org/mutnomen/refseq.html EJ ¢ Q Search wBe O 3 4 4 - O

™ Search Most Visited =& MyULg C: Ipvs us Montefiore us http://www.ulg.ac.be/

HGV§ A reference sequence - discussions and FAQs

HUMAN GENOME
VARIATION SOCIETY

Last modified September 11, 2015

Since references to WWW-sites are not yet acknowledged as citations, please mention den Dunnen JI and Antonarakis SE (2000). Hum. Mutat. 15:7-12 when referring to these pages.

Contents

o Reference sequence descriptions

o reference sequence indicators
o Reference sequence - genomic or coding DNA ?
o practical problems genomic reference sequence
o practical problems coding DNA reference sequence
* Reference sequence - recommendations
new use a LRG (Locus Reference Genomic sequence, Dalgleish et al. 2010), see LRG website
o genomic reference sequence
o coding DNA reference sequence
o examples
¢ Numbering exons & introns
o discussion & recommendations
Changed recommendations

(http://www.hgvs.org/mutnomen/refseq.html)
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Which reference sequence?

Practical problems genomic reference sequence

® a gene can be very large (over 2.0 Mb) - this makes nucleotide numbering based on a genomic reference sequence rather impractical (e.g. g.1567234 1567235insTG).
Furthermore, genomic reference sequences based on GenBank NT_ files become increasingly long (e.g. the CFTR gene in NT_007933.15, >77 Mb) and consequently loose
their informativity. Downloading such large files is, even with good internet connections, time consuming and working with these files is rather difficult.

* when a genomic reference sequence is taken from a complete genome sequence, e.g. a bacterium or the human X-chromosome, the transcriptional orientation of the gene of
interest may be on the minus (-) strand. This makes the description of sequence variants rather complicated, especially when the consequences on RNA and/or protein level
need to be described; nucleotides on DNA and RNA level are complementary and numbering goes in different directions - a confusing situation that should be prevented.

* when different genes (partly) overlap, using the same or the minus (-) DNA strand, which reference sequence should one use to describe the variant and to which gene should
the change be assigned ? (see Recommendations).

* when the gene sequernce is incomplete (especially when large introns are present) - a genomic sequence can not be used.

* genes may contain very large introns with many intronic (Jength) variants present in the population - it is thus very difficult to give THE genomic reference sequence (see
Genomic sequience changes regularly).

Practical problems coding DNA reference sequence

o the exact transcriptional start site (cap-site) of a gene has often not been determined and/or its assignment is debated - the first nucleotide can thus not be assigned with
certainty. The same might be true for the translation initiation site (ATG-codon).

* a gene may have several transcripts, using different promoters / 5'-first exons, alternatively spliced internal exons, different 3'-terminal exons and polyA-addition sites - one
complete coding DNA reference sequence can thus not be generated (see Alternatively spliced exons - niicleotide numbering),

¢ the different transcripts may encode different proteins (isoforms) with, when different promoters are used, different N-terminal sequences and even using different reading
frames in one or more exons. One complete protein reference sequence can thus not be assigned.

¢ when different genes (partly) overlap, using the same or the minus (-) DNA strand, which reference sequence should one use to describe the variant and to which gene should
the change be assigned ? (see Recommendations).

(http://www.hgvs.org/mutnomen/refseq.html#tstandard)
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Common workflow for whole-exome and whole genome sequencing

Lab

Library Preparation, Exome Capturing, ...

[ Whole-Exome-Seq ] * Whole-Genome-Seq

NGS Platform

lllumina, SOLID, 454, ...

¥

Quality Assessment

Trimming, Filtering, ...

Y

Read Alignment O Prioritization / Filtering
Reference Genome =
= Y
Q Lab
E Validation

(Pabinger et al. 2013)
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Work flow genome-wide association study with sequence data

] Set up analysis plan
\ “ / { Choose a genotyping/sequencing
L platform ’.
Variant calling and QC
| ‘3 4 , Check DNA contamination, |

, global QC, and per-variant QC |

Bioinformatics assay and functional annotation \

v

Test for rare-variant association
A
| |

| Prioritization of association signals |

| Select genes or variants |
v | on the basis of statistical significance |
" | and biological relevance |

’
-

Replication of the top regions

| —
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(Lee et al. 2014)

Impact of rare variants arising from sequence data on inference

e A variant — genetic association test implies filling in the table below and

performing a chi-squared test for independence between rows and

columns

AA

Aa

dd

Cases

Controls

Sum of entries =
cases+controls

e How many observations do you expect to have two copies of a rare allele?
Example: MAF for a = 0.001 - expected aa frequency is 0.001 x 0.001 or 1

out of 1 million
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¢ In a chi-squared test of independence setting (comparing two variables in
a contingency table to see if they are related):
When MAF <<< 0.05 then some cells above will be
sparse and large-sample statistics (classic chi-squared tests of
independence) will no longer be valid. This is the case when there are less
than 5 observations in a cell

0;—E;)* : :
X2=Y_ Cellsi% (contrasting Observed minus Expected)

® In a regression framework:
The minimum number of observations per independent variable should be
10, using a guideline provided by Hosmer and Lemeshow (Applied Logistic
Regression, one of the main resources for Logistic Regression)
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Increased false positive rates

N=~2500
MAF>0.03

N=~2500
MAF<0.03

Permuted

d

Q-Q plots from GWAS data, unpublished

N=~2500
MAF<0.03

N=50000
MAF<0.03
Bootstrapped
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Remediation: do not look at a single variant at a time, but collapse

e Rationale for aggregation tests
- Alpha level of 0.05, corrected by number of bp in the genome= 1.6*10!!
- One needs VERY LARGE samples sizes in order to be able to reach that
level, even if you find “the variant”.
e Remedy = aggregate / pool variants
- Requires specification of a so-called “region of interest” (ROI)
- A ROl can be anything really:
o Gene
o Locus
o Intra-genic area
o Functional set
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Key features of burden tests

e Collapse many variants into single risk score
e Several flavors exist:
— In general they all combine rare variants into a genetic score
Example: Combine minor allele counts into a single risk score (dominant
genetic model)
— Weighted or unweighted versions (f.i., to prioritize certain variant
types, based on predictions about damaging effect)
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Some problems with burden tests

e Problem 1: When high linkage disequilibrium (LD) [allelic non-
independence] exists in the “region”, combined counts may be artificially
elevated

e Problem 2: Assumes that all rare variants in a set are causal and associated
with a trait in the same direction

— Counter-examples exist for different directionality (e.g. autoimmune

GWA:s)
— Violations of this assumption leads to power loss
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REVIEW

Rare-Variant Association Analysis:
Study Designs and Statistical Tests

Seunggeung Lee,! Gongcalo R. Abecasis,! Michael Boehnke,! and Xihong Lin2*

Despite the extensive discovery of trait- and disease-associated common variants, much of the genetic contribution to complex traits
remains unexplained. Rare variants can explain additional disease risk or trait variability. An increasing number of studies are underway
toidentify trait- and disease-associated rare variants. In this review, we provide an overview of statistical issues in rare-variant association
studies with a focus on study designs and statistical tests. We present the design and analysis pipeline of rare-variant studies and review
cost-effective sequencing designs and genotyping platforms. We compare various gene- or region-based association tests, including
burden tests, variance-component tests, and combined omnibus tests, in terms of their assumptions and performance. Also discussed
are the related topics of meta-analysis, population-stratification adjustment, genotype imputation, follow-up studies, and heritability
due to rare variants. We provide guidelines for analysis and discuss some of the challenges inherent in these studies and future research
directions.

(Lee et al. 2014)
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Other tests

Description

Methods

Advantage

Disadvantage

Software Packages”

Burden tests

Adaptive bunden tests

Vardance-component
tests

collapse rare vardants
into genetic scores

use data-adaptive
weights or thresholds

test vadance of genetic
effects

ARIEL test,™ CAST,”'
CMC method, ™
MZ test,”” W55

aSum,” Step-up,””
EREC test,” VT,™
KBAC method,™
RBTJ!:I

SKAT,”" 88U test,”
C-alpha test””

are powerful when a
large proportion of
varants are causal and
effects are in the same
direction

are more robust than
burden tests using fixed
weights or thresholds;
some tests can improve
result interpretation

are powerful in the
presence of both trait-
increasing and trait-
decreasing variants or a
small fraction of causal
varants

lose power in the presence
of both trait-increasing and

EPACTS, GRANVIL,
PLINE/SEC), Bvtests,

trait-decreasing variants ora SCORE-5eq, SKEAT, VAT

small fraction of causal
variants

are often computationally
intensive; VT requires the

EPACTS, KBAC,
PLIMNE/SEC), Bviests,

same assumptions as burden S5C0RE-Seq, VAT

tests

are less powerful than
burden tests when maost
variants are causal and
effects are in the same
direction

EPACTS, PLINK/SEQ,
SCORE-5eq, SEAT, VAT

(Lee et al. 2014)
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Other tests

Combined tests combine burden and SEAT-0," Fisher are more robust with can be slightly less EPACTS, PLINE/SECQ),
variance-component method,”” MiST™" respect to the percentage powerful than burden MiST, SKAT
tests of causal vadants and Or vafance-component
the presence of both tests if their assumptions
trait-increasing and trait- are largely held; some
decreasing variants methods (e.g., the

Fisher method) are
computationally intensive

EC test exponentially combines EC test™ is powerful when a very is computationally no software is available
score statistics small proportion of intensive; is less powerful vet
vaniants are causal when a moderate or large
proportion of variants are
causil

Abbreviations are as follows: ARIEL, accumulation of rare variants integrated and extended locus-specific; aSum, data-adaptive sum test; CAST, cohort allelic sums
test; CMC, combined multivariate and collapsing; EC, exponential combination; EPACTS, efficient and parallelizable assodation container toolbox; EREC, esti-
mated regression coefficient; GRAMVIL, gene- or region-based analysis of variants of intermediate and low frequency; KBAC, kernel-based adaptive cluster;
MiST, mixed-effects score test for continuous outcomes; MZ, Morris and Zeggini; RET, replication-based test; Rvtests, rare-variant tests SKAT, sequence kernel

association test; 35U, sum of squared score; VAT, variant association tools; VT, variable threshold; and W3S, weighted-sum statistic.
“More information is given in Table 3.

(Lee et al. 2014)
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of the investigated statistical approachas use permutation reguiring high computational
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For what else are human DNA sequences used by scientists?

A. In recent years, DNA sequencing technology has advanced many areas of
science. For example, the field of functional genomics is concerned with

— figuring out what certain DNA sequences do, as well as

— which pieces of DNA code for proteins and

— which have important regulatory functions.

B. An invaluable first step in making these determinations is learning the
nucleotide sequences of the DNA segments under study.

C. Another area of science that relies heavily on DNA sequencing is
comparative genomics, in which researchers compare the genetic material of
different organisms in order to learn about their evolutionary history and
degree of relatedness.

D. Complex disease analysis

Van Steen K



GBIO0002

A. Sequence annotation

(see practicals)

oe, ate, o Search:

Biocond UCtor Install Developers About

OPEN SOURCE SOFTWARE FOR BIOINFORMATICS

Home » Bioconductor 3.2 » Annotation Packages » org.Hs.eg.db

Documentation »

Org . H S . eg - d b Bioconductor

= Package vignettes and manuals.
= Workflows for learning and use.

platforms [all | downloads |top 5% [ posts [10 /1 /3 [ 2 = Course and conference material.
= Videos.

= Community resources and tutorials.

] ) R / CRAN packages and documentation
Genome wide annotation for Human

Bioconductor version: Release (3.2)
Genome wide annotation for Human, primarily based on mapping using Entrez Gene identifiers.

Author: Marc Carlson

Support »
Maintainer: Bioconductor Package Maintainer <maintainer at bioconductor.org>
] _ Please read the posting guide. Post
Citation (from within R, enter citation("org.Hs.eg.db")): questions about Bioconductar to one of

. . the following locations:
Carlson M. org.Hs.eg.db: Genome wide annotation for Human. R package version 3.2.3. 9

= Support site - for questions about
. Bioconductor packages
Installation = Bioc-devel mailing list - for package

devel
To install this packaae, start R and enter: evelopers
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B. Counting letters or words

e The CpG sites or CG sites are regions of DNA where a cytosine nucleotide

occurs next to a guanine nucleotide in the linear sequence of bases along its

length. "CpG" is shorthand for "—C—phosphate—G—", that is, cytosine
and guanine separated by only one phosphate. The "CpG" notation is used

to distinguish this linear sequence from the CG base-pairing of cytosine and
(https://en.wikipedia.org/wiki/CpG_site)

guanine.

CATTC  CCTTCTCTCC  AGGTGGE TEGGEA
GGTGETTTTGCT  GGTTCTGTAAGAATAGGCCAGG
CAGCTTCO GEATG CTCATCCCCTCT G
GGETTC  CTCCCAC c TGt GTT
CoOCCTG  AGATGTTTTC A GACAATGATTC
CACTCT G CCTCCCATGTTGATCCCAGCTCCT
CTG GG TCAGGACCCCTGGGCOC  CCC
CTCCACTCAGTCAATCTTTTGTCCC  TATAAGG
GATTAT GOGTAGCTEEGEGEGE  GCTGATTC A
AATGCCCTTGGEGEGEGETCACE GGEAGGGAACTC
GGCTC GCOTTTGGCCAGCC CACCCCTGGT
TEGAGC GCC  AGGGCCACCAGGGEGE  CT
ATGTTCCTGCAGCCCCC  CAGCAGCCCCACTCC
C  GCTCACCCTA  ATTGGCTGGC CCC AG
CTCTGTGCTGTGATTGGTCACAGCC  TGTC T
GG C GGG GATA  AGGTGA CA
GAGGCCCAGCT GGG GTGTCC CooG
ACTG GG GAGTTT AGGGEC  AAG
GGGCAGTGTGA GCAG  GTCCTGEGAGG  C
c T GAGCAGCTCOC TCOTC  CA
GG TCAC GOoGE TG COCTGGOOS
TCC  CACT CACTCCTGTS  © GCCAC
CCCACCTCCCACZCT  ATG  GTGC GGECTGC
TG TGATGGGGCTG GAG G CCCTG G
CT G GC  CTGCT CTGAGGTG T
GTGCC GCoCCC CoCe c
GOTCOTGTTEACS  GTC  CC T GTCTGC
Ll GOTEAGGTAAGG G GGECTGEGE
GTTGG O GT GEGTTGEGEAGGEE
GG CTTS GEGAGGAG GO GGOCGHE

g o [

CTOTTAGTTTTGGGETGCATTTETOTGAETOTTOCAAA
CTAGATTGAAAGCTCTGAAAAMAMAMACTATCTTGT
GTTTCTATCTAETTGAGC TCATAGTAGGTATCCAGGA
AGTAGTAGGGTTGACTGCATTEATTTGEGACTACAD
TGEGAGTTTTCTT  CCATCTOCOCTTTAGTTTTCCT
TTTTTTCTTTCTITCTTTITCT T I T T T T TCTITIoITIT
TTGAGATGT  TCTTGCTCAGTCCCCCAGGLTGEA
GTGCAGTGGETG  ATCTTGGCTCACTGTAGCCTCG
ACCTCCCAGGTTCAAGCAATTCTACTGCCTTAGCCT
CC  AGTAGCTGGGATTACAAGCACC CCACCAT
TCOTGECTAATTTTTTTTITTTGTATT I TTAGTTGAGA
CAGGGTTTCACCATGTTGGTGATGCTEGETCTCAGA
CTCCTGGGGECCTAG  ATCCCCCTGOCTCAGCCT
COCAGAGTGTTAGGATTACAGGCATGAGCCACTGT
ACC  GCCTCTCTCCAGTTTCCAGTTGRAATCCAA
GEGAAGTAAGTTTAAGATAAAGTTA  ATTTTGAAAT
CTTTEGATTCAGAAGAATTTEGTCACCTTTAACACCT
AGAGTTGAA  TTCATACCTGGAGAGCCTTAACATT
AAGCCCTAGCCAGCCTCCAGCAAGTGGACATTGGT
CAGGTTTGGCAGGATT  TCOCOCTGAAGTGGACT
GAGAGCCACACCCTGGOCTGTCACCATACCCATCG
COTATCCTTAGTGAAGCAAAMACTCCTTTGTTCCCTT
CTCCTTCTCCTAGTGACAGGAAATATTGTGATCCTA
AAGAATGAAMATAGCTTGTCACCT TGGCCTCAG
GCCTCTTGACTTCAGE  GTTCTGTTTAATCAAGT
GACATCTTCS  AGECTCCCTGAATGTGGECAGATG
AAAGAGACTAGTTCAACCCTGACCTGAGGGGAAAG
COTTTGTGAAGGGTCAGGAG

=1



https://en.wikipedia.org/wiki/DNA
https://en.wikipedia.org/wiki/Cytosine
https://en.wikipedia.org/wiki/Nucleotide
https://en.wikipedia.org/wiki/Guanine
https://en.wikipedia.org/wiki/DNA_sequence
https://en.wikipedia.org/wiki/Base_pair
https://en.wikipedia.org/wiki/Phosphate
https://en.wikipedia.org/wiki/Base_pair
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Recall: DNA biosynthesis

e DNA biosynthesis proceeds in the
5'- to 3'-direction. This makes it
impossible for DNA polymerases
to synthesize both strands
simultaneously. A portion of the
double helix must first unwind,
and this is mediated by helicase
enzymes.

e The leading strand is synthesized
continuously but the opposite
strand is copied in short bursts of
about 1000 bases, as the lagging

strand template becomes
available. The resulting short
strands are called Okazaki
fragments (after their discoverers,
Reiji and Tsuneko Okazaki).

single-stranded binding proteins
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C. Comparing multiple sequences

e After collection of a set of related sequences, how can we compare them as
a set?

e How should we line up the sequences so that the most similar portions are
together?

e What do we do with sequences of different length?
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D. Genomic variation for complex diseases

S|eNPIAIPU| JO JaquinN

Number of different SNPs
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3 Investigating frequencies of occurrences of words

Introduction

e Words are short strings of letters drawn from an alphabet

e |n the case of DNA, the set of lettersis A, C, T, G

e A word of length k is called a k-word or k-tuple

e Differences in word frequencies help to differentiate between different
DNA sequence sources or regions

e Examples: 1-tuple: individual nucleotide; 2-tuple: dinucleotide; 3-tuple:
codon

e The distributions of the nucleotides over the DNA sequences have been
studied for many years = hidden correlations in the sequences (e.g., CpGs)
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Probability distributions

Probability is the science of uncertainty

1. Rules = data: given the rules, describe the likelihoods of various
events occurring
Probability is about prediction — looking forwards
Probability is mathematics
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Statistics is the science of data

1. Rules € data: given only the data, try to guess what the rules were.
That is, some probability model controlled what data came out, and
the best we can do is guess — or approximate — what that model was.
We might guess wrong, we might refine our guess as we obtain /
collect more data

2. Statistics is about looking backward. Once we make our best
statistical guess about what the probability model is (what the rules
are), based on looking backward, we can then use that probability
model to predict the future

3. Statistics is an art. It uses mathematical methods but it is much more
than maths alone

4. The purpose of statistics is to make inference about unknown
guantities from samples of data.
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Statistics is the science of data

e Probability distributions are a fundamental concept in statistics.

e Before computing an interval or test based on a distributional assumption,
we need to verify that the assumption is justified for the given data set.

e For this chapter, the distribution does not always need to be the best-fitting
distribution for the data, but an adequate enough model so that the
statistical technique yields valid conclusions.

e Simulation studies: one way to obtain empirical evidence for a probability
model
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Assumptions

e Simple rules specifying a probability model:
- First base in sequence is either A, C, T or G with prob pa, pc, p1, ps
- Suppose the first r bases have been generated, while generating the
base at position r+1, no attention is paid to what has been generated
before.
e Then we can actually generate A, C, T or G with the probabilities above
e Notation for the output of a random string of n bases may be: L3, L, ..., L,
(L; = base inserted at position i of the sequence)
e Whatever we would like to do with such strings, we will need to introduce
the concept of a random variable
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Probability distributions

e Suppose the “machine” we are using produces an output X that takes
exactly 1 of the J possible valuesinaset y = {l,[,,...,L, }
- In the DNA sequence J=4 and y = {4,C,T,G }
- Lis a discrete random variables (since its values are uncertain)
- If pjis the prob that the value (realization of the random variable L) /;
occurs, then
" py, by =0andp; + ...+ p; =1
e The probability distribution (probability mass function) of L is given by the
collection p4, s D)
- P(L=l) =pj, j=1, ..., )
e The probability that an event S occurs (subset of y)is P(L€E€ S) =
Zj:lj €S (Pj)
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Probability distributions

e What is the probability distribution of the number of times a given pattern
occurs in a random DNA sequence Ly, ..., Ln?
- New sequence Xy, ..., X:
Xi=1 if Li=A and X;=0 else
- The number of times N that A appears is the sum
N=X1+...4+Xn
- The prob distr of each of the X;:
P(Xi=1) = P(Li=A)=pa
P(Xi=0) =P(Li=CorGorT)=1-pa
e What is a “typical” value of N?
- Depends on how the individual X; (for different i) are interrelated
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Independence

e Discrete random variables Xy, ..., X, are said to be independent if for any
subset of random variables and actual values, the joint distribution equals
the product of the component distributions

e According to our simple model, the L; are independent and hence

P(L1=l1,L2=ly, ...,La=ln)=P(L1=11) P(L2=l3) ...P(Ln=In)
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Expected values and variances

e Mean and variance are two important properties of real-valued random
variables and corresponding probability distributions.

e The “mean” of a discrete random variable X taking values x3, x5, . . . (de-
noted EX (or E(X) or E[X]), where E stands for expectation, which is another
term for mean) is defined as:

E(X) =X x; P(X = x;)

- E(Xi)=1 Xpa+0 X (1 —pa)
- If Y=c X, then E(Y) = c E(X)
- E(X1+... + Xn) = E(X1) + ... + E(X})
e Because X;are assumed to be independent and identically distributed (iid):
E(X1 +... + Xn) = n E(X1) = n pa
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Expected values and variances

e The idea is to use squared deviations of X from its center (expressed by the
mean). Expanding the square and using the linearity properties of the
mean, the Var(X) can also be written as:

Var(X) = E(X?) — [E(X)]?]

- If Y=c X then Var (Y) = c?Var (X)
- The variance of a sum of independent random variables is the sum of
the individual variances

e For the random variables X;:

Var (X)) = [1* X py + 0% x' (1 = pa)] — P4 =pa(1 —p4)
Var (N) =nVar (X1) =np4(1 —p,)
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Expected values and variances

e The expected value of a random variable X gives a measure of its location.
Variance is another property of a probability distribution dealing with the
spread or variability of a random variable around its mean.

Var(X) = E ([X — ECO)?)

- The positive square root of the variance of X is called its standard
deviation sd(X)

Van Steen K



GBIO0002

The binomial distribution

e The binomial distribution is used when there are exactly two mutually
exclusive outcomes of a trial. These outcomes are appropriately labeled
"success" and "failure". The binomial distribution is used to obtain the
probability of observing x successes in a fixed number of trials, with the
probability of success on a single trial denoted by p. The binomial
distribution assumes that p is fixed for all trials.

e The formula for the binomial probability mass function is :

P(N =j) = (7) p/(1—-p)*7,j=0,1, ..,n
n
J

(n) _ n!
J7 i (n=j)r
and jI=j(j-1)(j-2)...3.2.1, 0!=1

with the binomial coefficient ( ) determined by

Van Steen K
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The binomial distribution

e The mean is np and the variance is np(1-p)
e The following is the plot of the binomial probability density function for
four values of p and n = 100.
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Simulating from probability distributions

e The idea is that we can study the properties of the distribution of N when
we can get our computer to output numbers Ny, ..., N, having the same
distribution as N

- We can use the sample mean to estimate the expected value E(N):

N= (N, + ..+ N)/n

- Similarly, we can use the sample variance to estimate the true variance
of N:

n
1 _
2 = N: — N)2
s n_lgu )
1=

Why do we use (n-1) and not n in the denominator?

Van Steen K
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Simulating from probability distributions

e What is needed to produce such a string of observations?

- Access to pseudo-random numbers: random variables that are
uniformly distributed on (0,1): any number between O and 1 is a
possible outcome and each is equally likely

e In practice, simulating an observation with the distribution of Xi:

- Take a uniform random number u

- SetX1=1ifU <p = p, and 0 otherwise.

- Why does this work? ... P(X; =1)= P(U < p4) =pa

- Repeating this procedure n times results in a sequence Xy, ..., Xn from
which N can be computed by adding the X’s

Van Steen K
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Simulating from probability distributions

e Simulate a sequence of bases Ly, ..., Lx:
Divide the interval (0,1) in 4 intervals with endpoints
0,P4,Pa + Pc,Pa+Pc+ P61
If the simulated u lies in the leftmost interval, L1=A
If u lies in the second interval, L1=C; if in the third, L1=G and otherwise
L,=T
Repeating this procedure n times with different values for U results in a

sequence Ly, ..., Ly

e Use the “sample” function in R:

pi <- ¢(0.25,0.75)

x<-¢(1,0)

set.seed(2009)
sample(x,10,replace=TRUE,pi)

Van Steen K
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Simulating from probability distributions

e By looking through a given
simulated sequence, we can count
the number of times a particular
pattern arises (for instance, the
base A)

e By repeatedly generating
sequences and analyzing each of
them, we can get a feel for
whether or not our particular
pattern of interest is unusual

500
|

400
|

Frequency
ano
L

200
|

100
|

—

[ T T I T |
200 220 240 260 280 300

1

0
[

Mumber of successes

x<- rbinom(2000,1000,0.25)

mean(x)

sd(x)"2

hist(x,xlab="Number of successes",main="")




GBIO0002

R documentation

Binomial {stats} R Documentation
The Binomial Distribution

Description

Density, distribution function, quantile function and random generation for the binomial distribution with parameters size and prob.

This is conventionally interpreted as the number of ‘successes’ in size trials.

Usage

pbinom(q, size, prob, lower.tail

gbinom(p, size, prob, lower.tail
rbinom(n, size, prob)

TRUE, log.p
TRUE, log.p

FALSE)

dbinom(x, size, prob, log = FALSE)
= FALSE)

Arguments

p-o r q
vector of quantiles.

P

vector of probabilities.
n

number of observations. If 1ength (n) > 1, the length is taken to be the number required.
size

number of trials (zero or more).

(https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Binomial.html)

> rbinom(1,1000,0.25)

[1] 250 = you got lucky!!!!


https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Binomial.html
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Simulating from probability distributions

e Using R code:

x<- rbinom(2000,1000,0.25)

mean(x)

sd(x)"2

hist(x,xlab="Number of successes",main="")

What is the number of observations?



GBIO0002

Simulating from probability distributions

e Using R code:

x<- rbinom(2000,1000,0.25)
mean(x)
sd(x)"2

hist(x,xlab="Number of successes",main="")

What is the number of observations?

Number of sequences = 2000

Number of trials = 1000
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Back to our original question

e Suppose we have a sequence of 1000bp and assume that every base occurs
with equal probability. How likely are we to observe at least 300 A’s in such
a sequence?
- Exact computation using a closed form of the relevant distribution
- Approximate via simulation
- Approximate using the Central Limit Theory
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Exact computation via closed form of relevant distribution

e The formula for the binomial probability mass function is :

P(N =j) = (7) pI(1—p)"7,j=0,1,..n
and therefore
1000
P(N = 300) = z (10].00) (1/4)7 (1 — 1/4)1000~J
j=300

= 0.00019359032194965841

e Note that the probability P(N = 300) is estimated to be 0.0001479292 via

1-pbinom(300,size=1000,prob=0.25)
pbinom(300,size=1000,prob=0.25,lower.tail=FALSE)
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P: exactly 300 out of 1000
Method 1. exact binomial calculation 0.00004566114740576428

Method 2. approximation viz normal 0.000038

Method 3. approximation viz Poisson --—-
P: 300 or fewer out of 1000

Method 1. exact binomial calculation 0.9995520708293378

Method 2. approximation viz normal 0999885

Method 3. approximation viz Poisson ------

F: 300 or more out of 1000
Method 1. exact binomial calculation 0.0001935%032194265841

Method 2. approximation viz normal 0.000153

Method 3. approximation via Poisson ------

15 testing 0 or more oul of 1000

Two-Tail
0.0003025705168772097

One-Tail
Method 1. exact binomial calculation 0.000193590321945965841

Method 2. approximation viz normal 0.000153 0.000306

. approximation via Poisson - | ------

(http://faculty.vassar.edu/lowry/binomialX.html)
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Approximate via simulation

e Using R code and simulations from the theoretical distribution,
P(N = 300) can be estimated as 0.000196 via

x<- rbinom(1000000,1000,0.25)
sum(x>=300)/1000000



GBIO0002

Approximate via Central Limit Theory

e The central limit theorem offers a 3" way to compute probabilities of a
distribution

e |t applies to sums or averages of iid random variables

e Assuming that Xy, ..., X, are iid random variables with mean u and variance

a?, then we know that for the sample average
1

Xn == X1+ .+ Xp),
— _ 0.2
E(X,,) =uand Var (X,) = —

e Hence,

Xp— u _ Xp— u _
E<a/ﬁ>_°’var<a/ﬁ>_l
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Approximate via Central Limit Theory
e The central limit theorem states that if the sample size n is large enough,

P(a < Btk o b) ~ ¢(b) — ¢(a),

N
with ¢ (. ) the standard normal distribution defined as

6(2) = P(Z <72) = f b () dx

Normal Curve

Standard Deviation

7N\

2

19.1%|[19.1%

15.0% 15.0%

0.1% 0.5%

T%
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Approximate via Central Limit Theory
e Estimating the quantity P(N = 300) when N has a binomial distribution
with parameters n=1000 and p=0.25,
E(N) =nu =1000 x 0.25 = 250,

1 3

sd(N) = vno= [1000 X=X~ ~ 13.693
N 47 4

N—250 300 - 250)

13.693 ~ 13.693

P(N > 300) = p(

~ P(Z > 3.651501) = 0.0001303560

e R code:
pnorm(3.651501,lower.tail=FALSE)

How do the estimates of P(N = 300) compare?
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Approximate via Central Limit Theory

e The central limit theorem in action using R code:

bin25<-rbinom(1000,25,0.25)

av.bin25 <- 25*0.25

stdev.bin25 <- sqrt(25*0.25*0.75)
bin25<-(bin25-av.bin25)/stdev.bin25
hist(bin25,xlim=c(-4,4),ylim=c(0.0,0.4),prob=TRUE,xlab="Sample size
25", main="")

x<-seq(-4,4,0.1)

lines(x,dnorm(x))
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Approximate via Central Limit Theory
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Supporting doc to this class (complementing course slides)

v

REVIEW

Rare-Variant Association Analysis:
Study Designs and Statistical Tests

Seunggeung Lee,! Goncalo R. Abecasis,! Michael Boehnke,! and Xihong Lin**

Despite the extensive discovery of trait- and disease-associated common variants, much of the genetic contribution to complex traits
remains unexplained. Rare variants can explain additional disease risk or trait variability. An increasing number of studies are underway
to identify trait- and disease-assodated rare variants. In this review, we provide an overview of statistical issues in rare-variant association
studies with a focus on study designs and statistical tests. We present the design and analysis pipeline of rare-variant studies and review
cost-effective sequencing designs and genotyping platforms. We compare various gene- or region-based association tests, induding
burden tests, variance-component tests, and combined omnibus tests, in terms of their assumptions and performance. Also discussed
are the related topics of meta-analysis, population-stratification adjustment, genotype imputation, follow-up studies, and heritability
due to rare variants. We provide guidelines for analysis and discuss some of the challenges inherent in these studies and future research
directions.

AJHG 2014, 95, 5-23
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Questions?



