
Gene-Gene /SNP-SNP Interaction: BIOFILTER GBI00002 Archana Bhardwaj University of Liege

The combinatorial problem of jointly analyzing the millions of genetic variations accessible by high-throughput genotyping technologies is a difficult challenge.

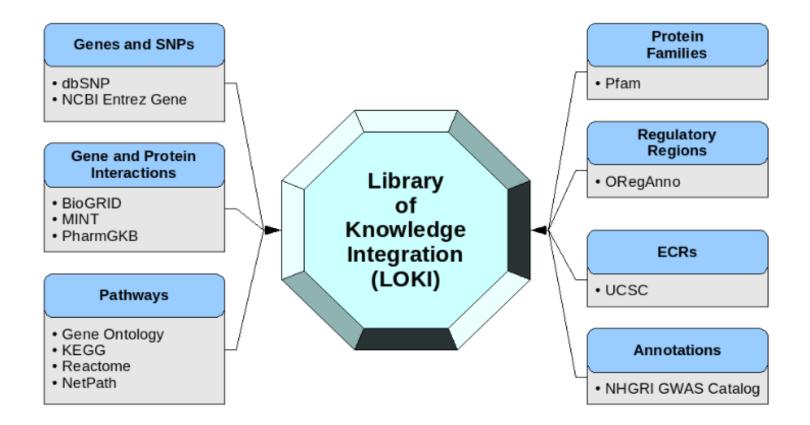
NIH Public Access Author Manuscript

Pac Symp Biocomput. Author manuscript; available in PMC 2010 April 26.

Published in final edited form as: Pac Symp Biocomput. 2009 ; : 368–379.

Biofilter: A Knowledge-Integration System for the Multi-Locus Analysis of Genome-Wide Association Studies*

William S. Bush, Scott M. Dudek, and Marylyn D. Ritchie


Center for Human Genetics Research, Vanderbilt University, Nashville, TN 37232, USA

Abstract

Genome-wide association studies provide an unprecedented opportunity to identify combinations of genetic variants that contribute to disease susceptibility. The combinatorial problem of jointly analyzing the millions of genetic variations accessible by high-throughput genotyping technologies is a difficult challenge. One approach to reducing the search space of this variable selection problem is to assess specific combinations of genetic variations based on prior statistical and biological knowledge. In this work, we provide a systematic approach to integrate multiple public databases of gene groupings and sets of disease-related genes to produce multi-SNP models that have an established biological foundation. This approach yields a collection of models which can be tested statistically in genome-wide data, along with an ordinal quantity describing the number of data sources that support any given model. Using this knowledge-driven approach reduces the computational and statistical burden of large-scale interaction analysis while simultaneously providing a biological foundation for the relevance of any significant statistical result that is found.

Biofilter uses publicly available databases to establish relationships between gene-products

LOKI: Library of Knowledge Integration

LOKI DB : dbSNP

\sim	· · · · · · · · · · · · · · · · · · ·
S NCBI	dbSNP Short Genetic Variations
dbVar Clir	nVar GaP PubMed Nucleotide Protein
Search s	mall variations in dbSNP or large structural variations in dbVar
Search Entrez dbSN	P 🗸 for 🛛 🛛 🕞
Have a question	ANNOUNCEMENT 🔊
about db SNP? Try	
searching the SNP FAQ Archive! Go	dbSNP and dbVar no longer accept submissions for non-human organism data. Please read more <u>here</u> .
GENERAL	
Contact Us	
Organism Data	Search by IDs on All Assemblies
dbSNP Homepage	Note: rs# and ss# must be prefixed with "rs" or "ss", respectively (i.e.
NCBI Variation	rs25, ss25)
Resources Announcements	ID: Reference cluster ID(rs#) V
dbSNP Summarv	Search Reset
FTP Download	
SNP SUBMISSION	Submission Information
DOCUMENTATION	-
SEARCH	• <u>By Submitter</u>
RELATED SITES	<u>New Submitted Batches</u>
	• <u>Method</u>
	<u>Population</u>
	<u>Publication</u>
	Batch
	Enter List
	- <u>NCBI Assay ID(ss)</u>
	- Reference SNP BRisley

T - - - 1 CNID ID

	SNP v homo sapiens				
	Create alert Advanced				
	Display Settings: - Summary, 20 per page, Sorted by SNP_ID Send to				
\langle	Search results Items: 1 to 20 of 336845724				
	rs248 [Homo sapiens] 1. ATTTTCTTTTCTTCCAAAGGAGGA [A/G] TTTAACTACCCTCTGGACAATGTCC Chromosome: 8:19953315 Gene: LPL (GeneView) Functional Consequence: synonymous codon Clinical significance: Likely benign Validated: by 1000G, by cluster, by frequency, by hapmap, by submitter Global MAF: A=0.0387/194 HGVS: NC_000008.10:g.19810826G>A, NC_000008.11:g.19953315G>A, NG_008855.1:g.19245G>A, NM_000237.2:c.435G>A, NP_000228.1:p.Glu145 PubMed Varview				
12/5/20	Image: rs268 [Homo sapiens] 2. TGCAACAATCTGGGCTATGAGATCA [A/G] TAAAGTCAGAGCCAAAAGAAGCAGC Chromosome: 8:19956018 Gene: LPL (GeneView) Functional Consequence: missense Allele Origin: A(germline)/G(germline) Clinical significance: Pathogenic Validated: by 1000G, by cluster, by frequency, by hapmap Global MAF: G=0.0052/26 HGVS: NC_00008.10:g.19813529A>G, NC_000008.11:g.19956018A>G, NG 008855.1:a.21948A^GC.MG1 000237.2:c.953A>G, NP 000228.1:b.Asn318Ser				

LOKI DB : KEGG database

http://www.genome.jp/kegg/pathway.html

Henu PATHWAY BRITE MODULE KO GENES LIGAND NETWORK DISEASE DRUG DBGET Select prefix Enter keywords map Organism hsa Go Help Imap Organism Pathway Maps KEGG PATHWAY is a collection of manually drawn pathway maps representing our knowledge on the molecular interaction, reaction and relation networks for: Image Gabal/overview Carbohydrate Energy Lipid Nucleotide Amino acid Other amino Glycan Global/overview Carbohydrate Genetic Information Processing Energy Lipid Nucleotide Amino acid Other amino Glycan Constrained Systems Go G. Cellular Processes Go B. Organismal Systems Go G. Human Diseases Organismal Systems G. Human Diseases Drug Development KEGG PATHWAY is a reference database for Pathway Mapping. Pathway Identifiers Each pathway map is identified by the combination of 2-4 letter prefix code and 5 digit number (see KEGG Identifier). The prefix has the following meaning: map manually drawn reference pathway ko reference pathway highlighting EC numbers or reference metabolic pathway highlighting reactings organis	(KEGG PATHWAY Database Wiring diagrams of molecular interactions, reactions and relations	hsa for "human"
Pathway Maps KEGG PATHWAY is a collection of manually drawn pathway maps representing our knowledge on the molecular interaction, reaction and relation networks for: 1. Metabolism Global/overview Carbohydrate Bibbal/overview Carbohydrate Energy Lipid Nucleotide Amino acid Other amino Glycan Cofactor/vitamin Terpenoid/PK Other secondary metabolite Xenobiotics Chemical structure Cenetic Information Processing 3. Environmental Information Processing A. Cellular Processes 5. Organismal Systems S. Organismal Systems 6. Human Diseases 7. Drug Development KEGG PATHWAY is a reference database for Pathway Mapping. Pathway Identifiers Each pathway map is identified by the combination of 2-4 letter prefix code and 5 digit number (see KEGG Identifier). The prefix has the following meaning: map manually drawn reference pathway ko reference pathway highlighting KOS ko reference pathway highlighting C numbers m reference metabolic pathway highlighting reactions org> organism-specific pathway highlighting reactions	Me	Select prefix Enter keywords	DBGET
molecular interaction, reaction and relation networks for: I. Metabolism Global/overview Carbohydrate Energy Lipid Nucleotide Amino acid Other amino Glycan Cofactor/vitamin Terpenoid/PK Other secondary metabolite Xenobiotics Chemical structure 2. Genetic Information Processing 3. Environmental Information Processing 4. Cellular Processes 5. Organismal Systems 6. Human Diseases 7. Drug Development KEGG PATHWAY is a reference database for Pathway Mapping. Pathway Identifiers Each pathway map is identified by the combination of 2-4 letter prefix code and 5 digit number (see KEGG Identifier). The prefix has the following meaning: map manually drawn reference pathway ko reference pathway highlighting KOs ec reference metabolic pathway highlighting EC numbers m reference metabolic pathway generated by converting KOs to gene identifiers and the numbers starting with the following:	Pa		history]
Global/overview Carbohydrate Energy Lipid Nucleotide Amino acid Other amino Glycan Cofactor/vitamin Terpenoid/PK Other secondary metabolite Xenobiotics Chemical structure 2. Genetic Information Processing 3. Environmental Information Processing 4. Cellular Processes 5. Organismal Systems 6. Human Diseases 7. Drug Development KEGG PATHWAY is a reference database for Pathway Mapping. Pathway Identifiers Each pathway map is identified by the combination of 2-4 letter prefix code and 5 digit number (see KEGG Identifier). The prefix has the following meaning: map manually drawn reference pathway k reference metabolic pathway highlighting EC numbers m reference metabolic pathway highlighting Texations corg> organism-specific pathway generated by converting KOs to gene identifiers and the numbers starting with the following:			on the
Pathway Identifiers Each pathway map is identified by the combination of 2-4 letter prefix code and 5 digit number (see KEGG Identifier). The prefix has the following meaning: map manually drawn reference pathway ko reference pathway highlighting KOS ec reference metabolic pathway highlighting EC numbers rn reference metabolic pathway highlighting reactions <org> organism-specific pathway generated by converting KOs to gene identifiers and the numbers starting with the following:</org>		Global/overview Carbohydrate Energy Lipid Nucleotide Amino acid Other amino Gly Cofactor/vitamin Terpenoid/PK Other secondary metabolite Xenobiotics Chemical struct 2. Genetic Information Processing 3. Environmental Information Processing 4. Cellular Processes 5. Organismal Systems 6. Human Diseases 7. Drug Development	
Each pathway map is identified by the combination of 2-4 letter prefix code and 5 digit number (see KEGG Identifier). The prefix has the following meaning: map manually drawn reference pathway ko reference pathway highlighting KOs ec reference metabolic pathway highlighting EC numbers rn reference metabolic pathway highlighting reactions <org> organism-specific pathway generated by converting KOs to gene identifiers and the numbers starting with the following:</org>	Da		
ko reference pathway highlighting KOs ec reference metabolic pathway highlighting EC numbers rn reference metabolic pathway highlighting reactions <org> organism-specific pathway generated by converting KOs to gene identifiers and the numbers starting with the following:</org>	Pa	Each pathway map is identified by the combination of 2-4 letter prefix code and 5 digit number (s	see
		ko reference pathway highlighting KOs ec reference metabolic pathway highlighting EC numbers rn reference metabolic pathway highlighting reactions	
	2/5/2017		7

map01100		Metabolic pathways	15983 (kshB), 1.14.13.142, R09860 R09885 K16047 (hsaA), K16048 (hsaB), 1.14.14.12, R09819 K16049 (hs	Neomycin, kanamycin and gentamicin biosynthesis Glycosaminoglycan biosynthesis - chondroitin sulfa
map01120		Microbial metabolism in diverse environments	99.5, R00295 3.12.1.1, 3.12.1.1, R01930 K08352 (phsA), K08353 (phsB), K08354 (phsC), 1.8.5.5, R10149	Vitamine B6 metabolism Xylene degradation Glyoxylate and dicarboxylate metabolism Aminobenzoate
map00984	$\begin{array}{c} \begin{array}{c} \hline \\ \hline $	Steroid degradation	125A), 1.14.13.141, R11357 R09885 R09885 K16047 (hsaA), K16048 (hsaB), 1.14.14.12, R09819 K16049 (hs	STEROID DEGRADATION Cholest-4-en-3-one 1.1.3.6 1.14.13.141 (25S)-3-Oxo- cholest-4-en-26-oate 9alpha

LOKI DB : BioGRID Database

BioGRID^{3.4}

home help wiki tools contribute stats downloads partners about us

Welcome to the Biological General Repository for Interaction Datasets

BioGRID is an interaction repository with data compiled through comprehensive curation efforts. Our current index is version **3.4.155** and searches **63,959** publications for **1,507,991** protein and genetic interactions, **27,785** chemical associations and **38,559** post translational modifications from major model organism species. All data are **freely** provided via our search index and available for download in standardized formats.

INTERACTION STATISTICS

LATEST DOWNLOADS

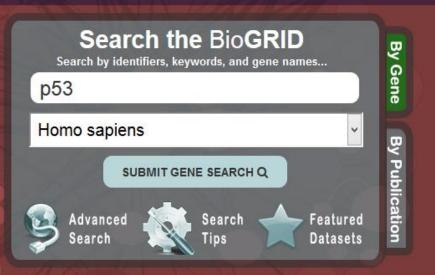
AREAS OF INTEREST TO HELP YOU GET STARTED

Build and Download Interaction Datasets

Create custom interaction datasets by protein or by publication. You can also download our entire dataset in a wide variety of standard formats.

Online Tools and Resources

We've developed tools that make use of BioGRID data. Check out the list of tools to see if we can help you work with our data. 12/5/2017



Link To Us or Submit Interactions

Send us your datasets or link to the BioGRID directly from your own website or database. Full details on how to contribute are available here.

Find out how many organisms, proteins, publications, and interactions are available in the current release of the BioGRID. AB-ULg

BIOGRID FUNDING AND PARTNERS

R

Bio GRID ^{3.4}	home	help wiki tools con	tribute stats	downloads partners ab	oout us 📘
Result Su	mmary		Gene / Ide p53 Homo sap	entifier Search	GO
TP53		Homo sapiens	Stats & Options		
BCC7, LFS1, P53, TRP53			Current Statis	STICS F	Publications: 1103 Low Throughpu
tumor protein p53			<mark>514 (18%</mark>)	2877 Physical Interactions	2363 (82%)
UBI NEDD FAT10 SUMO			104 (81%) Search Filters	128 Genetic Interactions Customize how your res	24 (19%)
GO Process (61)	GO Function (25)	GO Component (14)		v All Associations	ene displayed.
HGNC OMIM VEGA	ERNAL DATABASE LINKOU Entrez Gene RefSeq Uniproth 000 Published Interactions For	KB Ensembl HPRD			
Switch View: Interactors (1034) Interactions (3005) Netw	vork Chemicals (2) PTM Sites ((4)		
Displaying 1 - 300 of 1034 Sort By: [Evidence] [Alph	· · · · · · · · · · · · · · · · · · ·	5		< Previous 1 2	3 4 Next >
MDM2 ACTFS, HDMX, ho MDM2 proto-oncogene, E3 ub UBI NEDD FAT10 SUMO					413 1 [details]
EP300 RP1-85F18.1, KAT E1A binding protein p300 UBI SUMO	T3B, RSTS2, p300				85 1 [details]

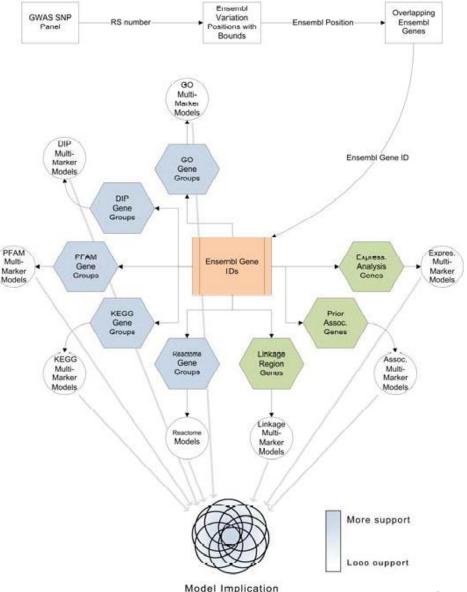
Use of Biofilter software (1)

□ We can annotate genomic location or region based data, such as results from association studies, or CNV analyses, with relevant biological knowledge for deeper interpretation.

□ We can filter genomic location or region based data on biological criteria, such as filtering a series SNPs to retain only SNPs present in specific genes within specific pathways of interest.

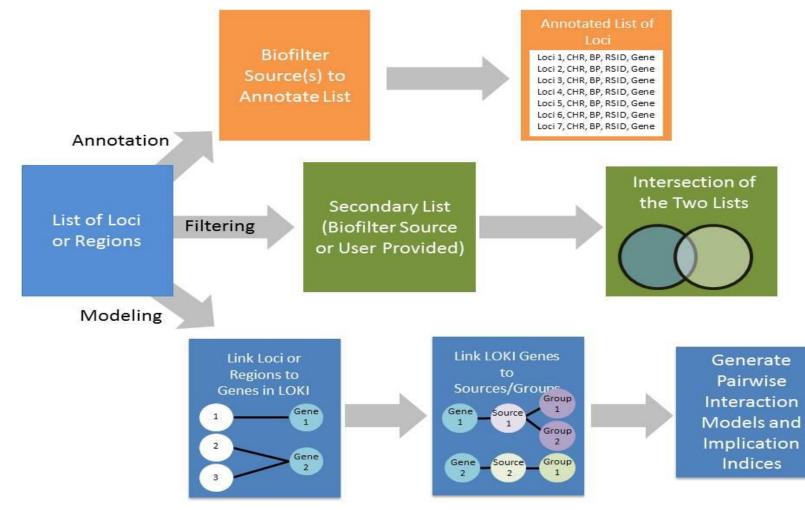
Use of Biofilter software (2)

 Biofilter allows researchers to annotate and/or filter data as well generate gene-gene interaction models based on existing biological knowledge.


•We can generate Predictive Models for gene-gene, SNP-SNP, or CNV-CNV interactions based on biological information, with priority for models to be tested based on biological relevance, thus narrowing the search space and reducing multiple hypothesis-testing.

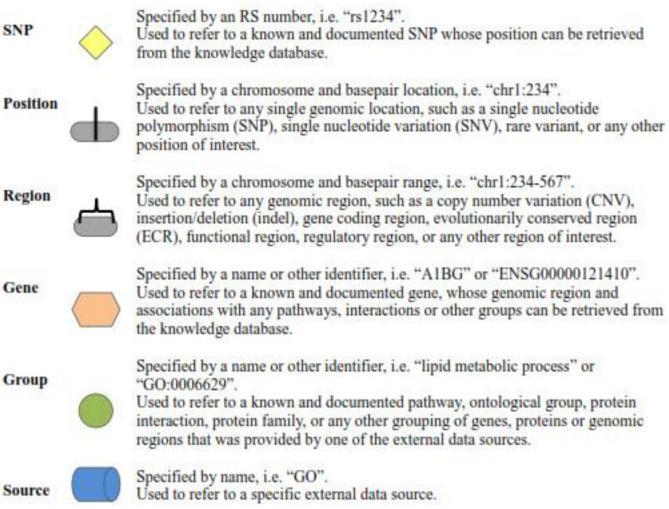
Biofilter : Overview

□GWAS platform SNPs are mapped to Ensembl gene Ids.


Multi-marker models
 are generated from SNPs
 within knowledge related genes.

Derived models are overlaid to assess overall model implication.

Biofilter : Three Analysis mode


Biofilter has three primary analysis modes and uses the available biological knowledge in slightly different ways.

Biofilter Data types

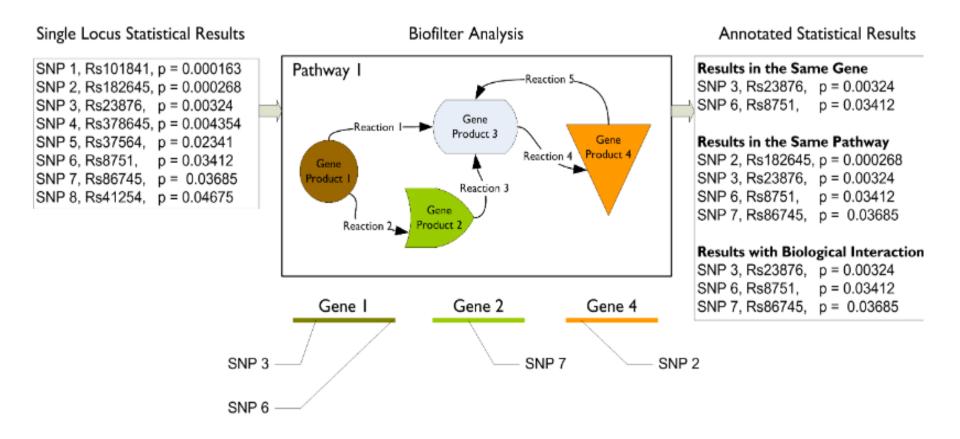
Data Types

Biofilter can work with and understand the relationships between six basic types of data:

Biofilter : Filtering mode

Given any combination of input data, Biofilter can cross-reference the input data using the relationships stored in the knowledge database to generate a filtered dataset of any supported type (or types).

□For example, a user can provide a list of SNPs (such as those covered by a genotyping platform) and a list of genes (such as those thought to be related to a particular phenotype) and request a filtered set of SNPs. Biofilter will use LOKI's knowledge of SNP positions and gene regions to filter the provided


SNP list, removing all those that are not located within any of the provided genes.

Biofilter : Annotation mode

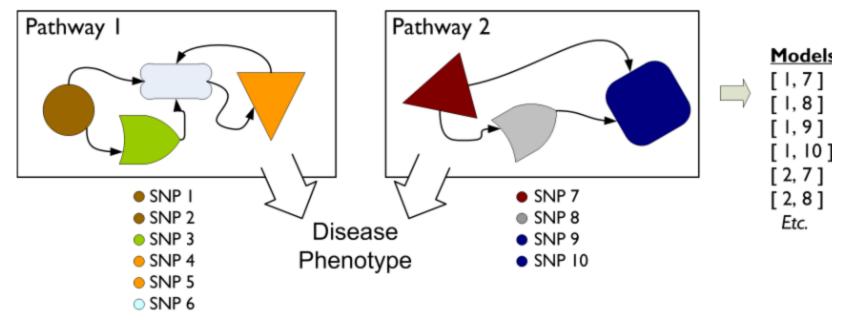
UThe annotations are based on the relationships stored in the knowledge database; unlike filtering, any data which cannot be annotated as requested (such as a SNP which is not located within any gene) will still be included in the output, with the annotation columns of the output simply left blank.

□For example, a list of SNPs can be annotated with positions to generate a new list of all the same SNPs, but with extra columns containing the chromosome and genomic position for each SNP (if any). Any SNP with multiple known positions will be repeated, and any SNP with no known position will have blanks in the added columns.

Biofilter : Annotation mode

Biofilter : Model analysis mode(1)

□The last of Biofilter's primary analysis modes is a little different from filtering and annotation.


□In addition to simply cross-referencing any given data with the other available prior knowledge, Biofilter can also search for repeated patterns within the prior knowledge which might indicate the potential for important interactions between SNPs or genes.

Biofilter : Model analysis mode(2)

The key idea behind this analysis is that If the same two genes appear together in more than one grouping, they're likely to have an important biological relationship; if they appear in multiple groups from several independent sources, then they're even more likely to be biologically related in some way.

Biofilter : Model analysis mode (3)

□ Biofilter has access to thousands of such groupings and can analyze all of them to identify the pairs of genes or SNPs appearing together in the greatest number of groupings and the widest array of original data sources. These pairs can then be tested for significance within a research dataset, avoiding the prohibitive computational and multipletesting Burden of an exhaustive pairwise analysis.

Compiling Prior Knowledge: Loki.db

□The LOKI prior knowledge database must be generated before Biofilter can be used. This is done with the "loki-build.py" script which was installed along with Biofilter. There are several options for this utility which are detailed below, but to get started, you just need "--knowledge" and "--update":

loki-build.py --verbose --knowledge loki.db –update

□This will download and process the bulk data files from all supported knowledge sources, storing the result in the file "loki.db" (which we recommend naming after the current date, such as "loki20140521.db").

Updating Prior Knowledge: Loki.db (1)

—--update Arguments: [source] [...] Default: all

Instructs the build script to process the bulk data from the specified sources and update their representation in the knowledge database. If no sources are specified, all supported sources will be updated.

—--update-except Arguments: [source] [...] Default: none

Similar to "--update" but with the opposite meaning for the specified sources: all supported sources will be updated **except for the ones specified. If no sources are specified, none are excluded, and all** supported sources are updated.

D--option Arguments: *<source> <options> Default: none* Passes additional options to the specified source loader module. The options string must be of the form "option1=value,option2=value" for any number of options and values. Supported options and values for each²source can be shown with "AR-list-sources".

Updating Prior Knowledge : Loki.db (2)

D--force-update Argument: none

The build script will normally only update from a sources if it detects that an update is necessary, either because new data files have been downloaded from the source or because the source's loader module code has been updated. With this option, the build script will update all specified sources, even if it believes no update is necessary.

LD Profiles : GWAS information

□Biofilter and LOKI allow for gene regions to be adjusted by the linkage disequilibrium (LD) patterns in a given population.

□When comparing a known gene region to any other region or position (such as CNVs or SNPs), areas in high LD with a gene can be considered part of the gene, even if the region lies outside of the gene's canonical boundaries.

This step require use of additional tool

Biofilter : Command lines vs Configuration

Biofilter can be run from a command-line terminal by executing

biofilter.py or python biofilter.py

❑ All options can either be provided directly on the command line

biofilter.py --option-name

Configuration files could be given as input such as

biofilter.py analysis.config

Biofilter : Configuration file

Input files:

input1	input2
#snp	#snp
rs9	rs14
rs11	rs15
rs12	rs16
rs13	rs17
rs14	rs18
rs15	rs19
rs16	

Configuration:

KNO	VLEDGE	E test.db
SNP	FILE	input1
SNP	FILE	input2
FIL	rer sr	np

•biofilter.py test.config

Biofilter : Command lines vs Configuration

□Options on the command line are lower-case, start with two dashes and may contain single dashes to separate words (such as "-- snp-file"),

□while in a configuration file the same option would be in uppercase, contain no dashes and instead use underscores to separate words (i.e. "SNP_FILE").

□Many command line options also have alternative shorthand versions of one or a few letters, such as "-s" for "--snp-file" and "--aag" for "--allowambiguous-genes".

Configuration Options

🗅 --help / HELP

Displays the program usage and immediately exits.

Q--version / VERSION

Displays the software versions and immediately exits. Note that Biofilter is built upon LOKI and SQLite, each of which will also report their own software versions.

Q--report-configuration / REPORT_CONFIGURATION

Argument: [yes/no] Default: no Generates a Biofilter configuration file which specifies the current effective value of all program options, including any default options which were not overridden.

Prior Knowledge Options

Argument: <file> Default: none

Interpretent in the second second

Interpreter in the second state of the seco

-report-group-name-stats / REPORT_GROUP_NAME_STATS
Argument: [yes/no] Default: no

D--allow-unvalidated-snp-positions /
ALLOW_UNVALIDATED_SNP_POSITIONS
Argument: [yes/no] Default: yes

—--allow-ambiguous-snps / ALLOW_AMBIGUOUS_SNPS

Primary Input Data Options

--snp / SNP

Arguments: <snp> [snp] [...] Default: none

□ --snp-file / SNP_FILE Arguments: <file> [file] [...] Default: none

Interposition / POSITION
Arguments: <position> [position] [...] Default: none

□ --position-file / POSITION_FILE Arguments: <file> [file] [...] Default: none

I -region / REGION
Arguments: <region> [region] [...] Default: none

ପ *--region-file / REGION_FILE* Argଧments: <file> [file] [...] Default: none

Output Options : Mode of analysis

--filter / FILTER Argument: <type> [type] [...] Default: none Perform a filtering analysis which outputs the specified type

--annotate / ANNOTATE Argument: <type> [type] [...] [:] <type> [type] [...] Default: none

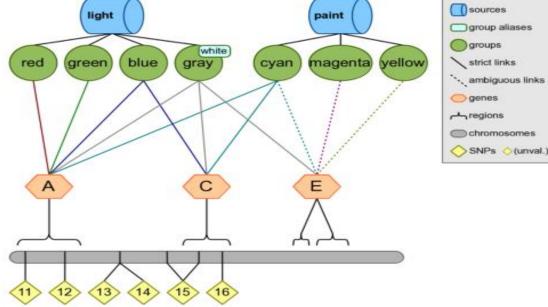
--model / MODEL Argument: <type> [type] [...] [:] [type] [...] Default: none

Filter mode : search SNPs that correspond to a list of genes

Linput1	input
#snp	#gen
rs11	A
rs12	С
rs13	Е

rs14

rs15

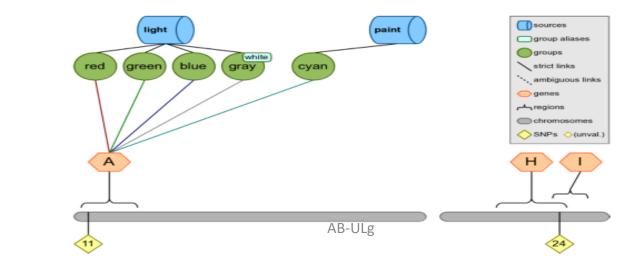

rs16

□Test.config

KNOWLEDGE test.db SNP_FILE input1 GENE_FILE input2 FILTER snp

u**t2** ne

Annotation mode : a SNP with gene region information


□Test.config

KNOWLEDGE test.db SNP rs11 rs24 rs99 ANNOTATE snp region

Biofilter.py test.config

Output

#snp	chr	region	start	stop
rs11	1	A	8	22
rs24	2	Н	22	42
rs24	2	I	38	48
rs99				

Pair wise Gene-Gene and SNP-SNP interaction

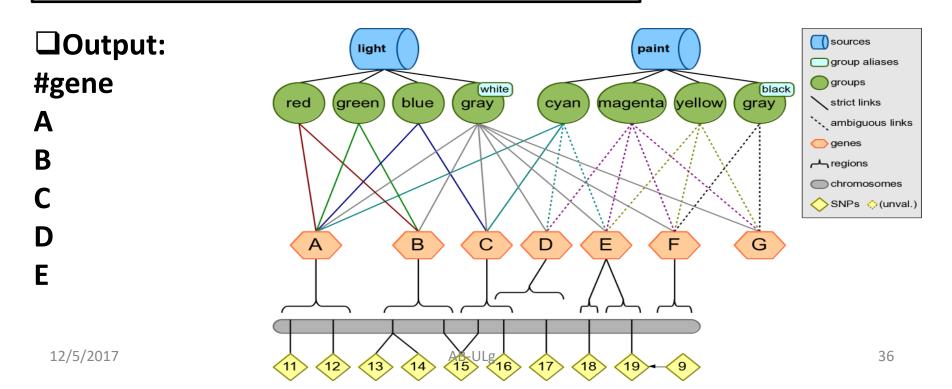
<u>Step 1</u>

Map the input list of SNPs to genes within Biofilter.

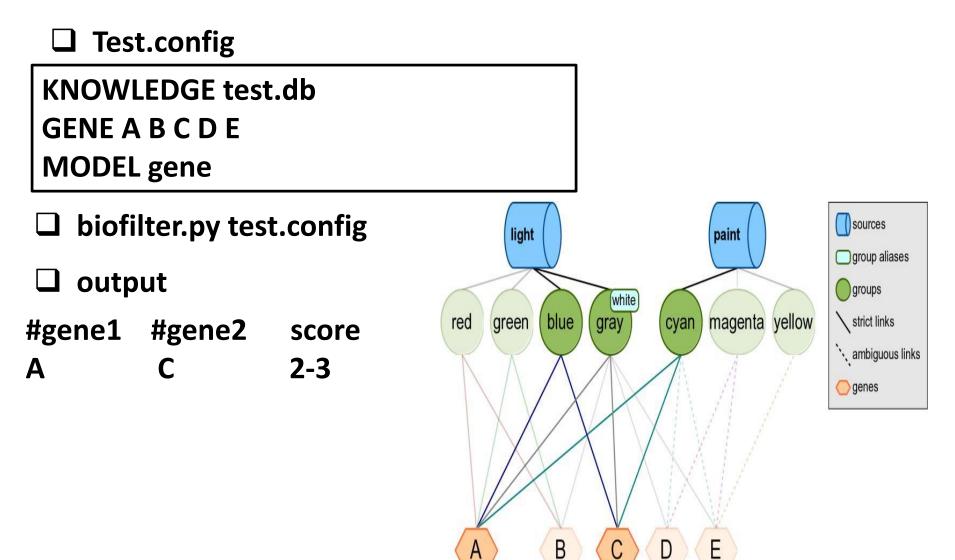
<u>Step 2</u>

Connect, pairwise, the genes that contain SNPs in the input list of SNPs.

<u>Step 3</u>


Break down the gene-gene models into all pairwise combinations of SNPs across the genes within sources

Step 1 : Pair wise Gene-Gene and SNP-SNP interaction


we will use all of the SNPs on the first chromosome.

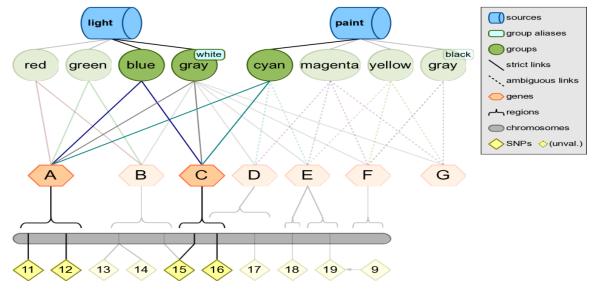
□Test.config

KNOWLEDGE test.db SNP 11 12 13 14 15 16 17 18 19 FILTER gene

Step 2 : Connect, pairwise, the genes that contain SNPs in the input list of SNPs.

AB-U/g

Step 3 : Break down the gene-gene models into all pairwise combinations of SNPs


biofilter.py test.config

KNOWLEDGE test.db SOURCE light paint MODEL snp

Output:

Configuration:

#snpl rs11 rs11	snp2 rs15 rs16		
rs12	rs15	2-3	
rs12	rs16	2-3	

