

Protein – protein interactions

Interactome networks drive molecular organisation of the cell

Dr. Jean-Claude Twizere

Jean-claude.twizere@ulg.ac.be

Molecular organisation of the cell

- Elucidation of Genomes, proteomes, their components and interactions
- Functional organization remains largely unknown
- Cellular function is the result of coordinated intecations
- Interaction networks essential to understand biology, disease and/or drug action

Gene expression regulation

Primary structure

Jean-claude.twizere@ulg.ac.be

Secondary and tertiary structure

Quaternary structure

Homodimerization and DNA/protein interaction

Protein-protein interactions

- Y2H hybrid
- Affinity purification
- Energy transfer (Fluorescence = FRET)
- Co-localisation (Fluorescence based)
- Protein complementation
 - Luciferase based
 - Fluorescence based

The protein interactome network

Nodes: Proteins, DNA, RNA or Metabolites Edges: Bio-physical interactions

Discovering interactions: Yeast two-hybrid

Yeast two-hybrid

- Reconstitution of GAL4 transcription factor
- Fusion proteins DB-ORFX and ORFY-AD
- Reporter gene

A positive selection of the protein – protein interactions

Yeast two-hybrid

Reagents (retroviruses side)

High-throughput Y2H mating

SC-LT

SC-LTH +1 mM 3AT

Sequencing

TAX / PDZ PROTEINS INTERACTOME

Affinity purification/mass spectrometry

Affinity purification/mass spectrometry

Affinity purification/mass spectrometry

LUminescence-based Mammalian IntERactome mapping (LUMIER)

Barrios-Rodiles M, et al. High-throughput mapping of a dynamic signaling network in mammalian cells. Science. 2005 Mar 11;307(5715):1621-5.

High-throughput screening in 293 cells using the Lumier approach

Monitoring assembly: FRET

Monitoring interactions: co-localization

No colocalization between syntenin-1 (PDZ1+PDZ2) and Tax1

Monitoring interactions: localization change

GFPTTP

Тах

Tax1 et TTP

Monitoring interactions: protein complementation

Gaussia princeps luciferase (GL)-based protein complementation assay (PCA)

Protein complementation assay

Monitoring interactions: protein complementation

FJ9 inhibits Tax/syntenin interaction

Protein-protein interactions

- Affinity purification
- Y2H hybrid
- Energy transfer (Fluorescence = FRET)
- Co-localisation (Fluorescence based)
- Protein complementation
 - Luciferase based
 - Fluorescence based

Empirical framework

Adapted from Venkatesan, K. et al. Nat Meth (2009)

Interactomes mapping applications

Tasan et al.

jean-claude.twizere@ulg.ac.be

Host – Pathogens interactome

Preliminary results

Cloning of Tax and HBZ constructs

<u>Comprehensive mapping of Tax/HBZ interactome with</u> <u>Transcriptional and Post-transcriptional regulators</u>

History

Tax1 Interactome (Boxus et al. Retrovirology, 2008)

A host – pathogen interactome for HTLV1/2

Simonis et al., 2012

Inhibition of protein – protein interactions by small molecules

Inhibition of protein – protein and cellular transformation

Disruption of Tax/ PDZ interaction inhibited Tax transformation as measured by a decrease in size and number of Taxinduced Rat-1 foci.

PDZ proteins involved in Tax1 transformation activity

Models for overall functional organization of the cell

MNV1

GII.4 2012 (ORF2+ORF3)

CW1 (complete; P-domain) CR6 (complete) CW3 (complete)

Marco Grodzki, PhD

A human – human noroviruses interactome

jean-claude.twizere@ulg.ac.be

A human – murine noroviruses interactome

jean-claude.twizere@ulg.ac.be

Comparison HNV – MNV: ORF3

Comparison HNV – MNV: Pol

jean-claude.twizere@ulg.ac.be

Comparison HNV – MNV: Pro

Targeted hubs in the human interactome: FAM168A (TCRP1)

VP1 and RNA binding proteins

Mapping an interactome network

All proteins

Yeast two-hybrid

- Reconstitution of GAL4 transcription factor
- Fusion proteins DB-ORFX and ORFY-AD
- Reporter gene

et al.

Human interactome

Rual et al.; Nature 437, 1173-1178 Stelzl et al.; Cell 122 (6), 957-68

>22,000 proteins

Towards completeness of the yeast interactome

Genomic mutations landscape in cancer

Cancer Pathways

~ 500 cancer census genes

~140 cancer driver genes

Guilt by association partners of known cancer genes

Rolland et al., Cell. 2014 Nov 20;159(5):1212-26.

1. The role of EXT1 in T-ALL

Silencing/over-expression of EXT1 in a T-ALL in vivo model

Tumor xenograft experiment

Based on bioluminescence imaging (BLI) with luciferase reporter

The role of EXT1 in T-ALL

Injection of Jurkat over-expressing EXT1 in NOD-SCID mice resulted in a significant increase of the leukemic burden

Color Scale Min = 500 Max = 30000

Drug discovery is facing a crisis

The potential of protein-protein interactions (PPIs)

The PPI-based approach in practice

We need...

an experimental system

that is **scalable** for systematic/high-throughput screening (**HTS**), and

for which powerful validation assays are available

The reverse yeast two-hybrid (RY2H) assay

Julien Olivet, Hideki Endoh & Marc Vidal

Pooling of PPIs for ultra HTS via RY2H

□ Test PPI-based approach: 1,700 PPIs encompassing pRB & BRCA1 pathways

Systematic assessment of pRB & BRCA1 pathways:

HTS

Validations of primary iPPIs from screening

Mammalian cell-based binary PPI assays

- □ G. princeps luciferase-based Protein
 Complementation Assay (GPCA)^{*}
- □ Nanoluciferase Two Hybrid (N2H) assay

Choi, Olivet et al, in preparation (2017)

Applications of interactome mapping

- Organisms Interactome mapping
- Novel disease-related genes
- Host-Pathogens interactomes
- Novel therapies identification