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About us

Situated at the Faculty of Sciences / Faculty of Engineering and Architecture,
Ghent University

Pl Kathleen Marchal — Jan Fostier
Department of Information Technology

Main interest: method development

Network analysis in the broad sense / Systems biology
Machine learning / data mining

High performance computing

Study of clonal systems: bacteria = tumour cells

Increasing emphasis on medical applications
e Tumour subtyping
* Uncovering mechanisms of actions underpinning subtypes / phenotypes
* Drug repurposing / synergy prediction

Drylab in constant search of wetlab partners



Outline

* Networks for the unitiated

* eQTL prioritization

* Linking genes to traits

* A unified tumour analysis framework

e Extra: non-coding somatic variants in cancer
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An extremely short introduction to
molecular genetics




An extremely short introduction to
molecular genetics

Double helix, four letter sequence {ACTG}

CTGAAACCGTCCCCCAAGCGTTCAGGGTGGGGTTTGCTACGACTTCCGAGTCCAAAGTGTCCGTGTT
TTTGATATATACGCTCAAGGGCGAGAATTGGACCTGGCTTACGTCTTAGTACGTAGCATGGTGACAC
AAGCACAGTAGATCCTGCCCGCGTTTCCTATATATTAAGTTAAATCTTATGGAATATAATAACATGTG
GATGGCCAGTGGTCGGTTGTTACACGCCTACCGCAATGCTGAAAGACCCGGACTAGAGTGGCGAGA
TCTATGGCGTGTGACCCGTTATGCTCCATTTCGGTCAGTGGGTCACAGCTAGTTGTGGATTGGATTG
CCATTCTCCGAGTGTTTTAGCGTGACAGCCGCAGGGATCCCATAAAATGCAATCGTAGTCCACCTGA
TCGTACTTAGAAATGAGGGTCCGCTTTTGCCCACGCACCTGATCGCTCCTCGTTTGCTTTTAAGAACC
GGACGAACCACAGAGCATAAGGAGAACCTCTAGCTGCTTTACAAAGTACTGGTTCCCTTTCCAGCGG
GATGCTTTATCTAAACGCAATGAGAGAGGTATTCCTCAGGCCACATCGCTTCCTAGTTCCGCTGGGA
TCCATCGTTGGCGGCCGAAGCCGCCATTCCATAGTGAGTTCTTCGTCTGTGTCATTCTGTGCCAGATC
GTCTGGCAAATAGCCGATCCAGTTTATCTCTCGAAACTATAGTCGTACAGATCGAAATCTTAAGTCAA
ATCACGCGACTAGACTCAGCTCTATTTTAGTGGTCATGGGTTTTGGTCCCCCCGAGCGGTGCAACCG
ATTAGGACCATGTAGAACATTAGTTATAAGTCTTCTTTTAAACACAATCTTCCTGCTCAGTGGTACAT
GGTTATCGTTATTGCTAGCCAGCCTGATAAGTAACACCACCACTGCGACCCTAATGCGCCCTTTCCAC
GAACACAGGGCTGTCCGATCCTATATTACGACTCCGGGAAGGGGTTCGCAAGTCGCA...




The central dogma of molecular

b I O I Og DOV ACGCCTACCGCAATGCTGAAA

Does stuff

n the activity of a gene measured as
the amount of mMRNA



Genetic variability can cause different phenotypes

Individual 1  ACGCCTACCTCTATGCTGAAA T IPLIS@ PN  ACGCCTACCCCTATGCTGAAA  Individual 2
§ i \\"

the set of observable characteristics of an individual
resulting from the interaction of its genotype with
the environment




Sources and types of genetic variability

Single nucleotide variations / mutations
ACGCCTACCG ACGCGTACCG

Structural variations — copy number
ACGCCTACCG ACGCCTA CCGCCTA CCGCCTACCG

Epigenetic modifications

ACGCCTACCG W

Where does this genetic variation come from?
* Natural variation
* New mutational variants




Problem: phenotype is rarely determined
oy genetic variation in only a single gene
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10 genes for eye color 400 genes for body weight 100 genes fOF schlzophrenla
50 genes for iris structure




Why are so many genes involved in these
traits?
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How can genes interact?
The central dogma of molecular biology

lam lam
a gene! another gene!
gl g2
The transcribed first gene The transcribed other gene
protein

The protein coded for by the first gene The protein coded for by the other gene



How can genes interact?

pl p2

gl gl
Protein 1 and 2 bind
together and form a
complex, that does other
stuff than protein 1 or 2
alone
PY
%

Protein 2 binds to the DNA Protein 2 binds to the DNA Protein 2 modifies protein Protein 2 modifies the

of gene 1 and facilitates of gene 1 and suppresses 1, so protein 1 changes transcribed gene 1, so
transcription, so lots of transcription, so very little and does different stuff protein 1 changes and
protein 1 protein 1 than the original protein 1  does different stuff than

the original protein 1



How can genes interact?

* There exist many more mechanisms by which genes (or non-gene
elements) can interact, or bu which transcription and translation are
modulated

* Non-gene entities
* Long Non-coding RNA
* miRNA
* Distal regulatory elements
* Non-coding regions of genes are important too
* UTRs
* Alternate splicing + protein variant stability
* Intron variants?
* Epigenetics
e Histone / chromatine modifiers



Pathways of interacting genes
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Unfortunately

* A network of gene interactions can not readily be
used to infer which genes participate in the same

biological processes

* Many of these gene interactions have not been
observed, but are predicted using high-throughput
methods

* Some gene interactions are only valid under certain
conditions
* In a specific tissue
* Under certain disease circumstances
 If the environment changes




Luckily

 We have devised a way to identify genes that are
relevant for a particular phenotype, using the
connectivity of the genes in a less-than-perfect
gene interaction network.

* All our methods build on the assumption that
genes found in the immediate network
neighborhood of each other are likely to
participate in the same biological processes.

* How can we measure if two genes are close or
well connected in a network?




Are we close (genes in a network)?

Many possible ways to quantify how well
genes are connected

* Neighbors / neighbors of neighbors /
neighbors of ...

e Shortest paths: problem with distance
between genes

* Diffusion techniques: the ink analogy




A tiny bit of graph theory

Labeled graph

G={E,V}

V=vertices
E=edges

Degree matrix D
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Connectivity measures in a graph

e Shortest path
* Dijkstra algorithm
* Needs weighted edges

 Random walks (with restart)
« P=L

* P .=(1-aT)"

 Diffusion
* Heat diffusion (e.g., HOTNET, Network based tumour stratifaction)

 Laplacian diffusion kernel (ink diffusion)
o C=eat

restart



The fact that genes are active in some
individuals, and less active in other
individuals

3 Applications

1. Prioritize genes (in yeast) whose genetic variation can be linked to
differential expression of other genes: EPSILON

2. Prioritize genes that can be linked to wood properties in eucalyptus
trees: NBDI

3. ldentify groups of cancer patients that exhibit similar molecular
properties, and prioritize genes and pathways that behave
abnormally in those patients: MUNDIS




Application 1: gene prioritization in yeast

.. wild laboratory strain
8 Saccharomyces cerevisiae [TTTTT x

« Genome: 12,500,000 base pairs [
° - child
*/-6000genes ",
« Two parent yeast strains were crossed e o000 00
e 112 children were produced o BEEEE
child 3
T T
8 Genetic data: Single Nucleotide Polymorphisms -
SNPS child 112

e
e 6 o o o

* The genome of the offspring was sampled at +/-
3000 positions

* Different from whole genome sequencing: SNPs
represent an area on a chromosome <-> point
mutations



Application 1: gene prioritization in yeast

8 Gene expression data

* mRNA levels for 6000 genes
* 112 samples

8 Gene interaction network

e Derived from multiple network resources
* Protein-protein
* Regulatory
* Phosporylation

* 4,375 genes

* 35,569 gene interactions



SNP data Gene expression data
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Step 1: find eQTL

quantitative trait locus child 112

G L

* region on a chromosome

/

* that contains genetic variation

* that can be statistically related to variability of a quantitative
trait (phenotype)

Q
C
Q
(o]4)
N6 .
: oL . \ =
expression quantitative trait locus £ 2 '
— W
* If we can link variability at a locus to the expression of a 5%0 g_ % |
particular gene (the target gene) S X g |
< :
o |
Why looking for QTL - eQTL? O] e —lo-
* Reveal mechanics of gene regulation and discover novel gene
interactions
* Targeted breeding towards specific properties

Children with genetic Children with genetic
variant of parent 1 variant of parent 2



l[dentifying eQTLs

Non parametric regression
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Step 2: Prioritize eQTL

W
Kt

- o8
chromosome
SNP; SNP, SNP; SNP. SNP,
area SNP;j is
representative for

‘

area SNP, is representative for




Step 2: Prioritize eQTL

Candidates

* How to select the best candidate gene?
* Random assignment

e Use a network!

* Take the candidate gene that’s closest to the target gene in the
network

* Take the gene that’s best connected to the target gene
e Evaluate using the knockout data

* Method is called EPSILON: EQTL Prioritization using  Target gene
SImilarities derived from LOcal Networks



Prioritization

SNPs

Find candidate Build a physical
causal genes interaction

network

-
g

el
-

L

An eQTL, containing a
SNP that associates with

our target gene === [T

Calculate network
based similarities

I |+ | IO'2

1+

—+ 0.97
+ [ 0.12

| 1+ | 10.23
+ B 0.61

Pick candidate with
the highest similarity

—



Prioritization

* Now what clever similarity measures did we use?

» Kernels calculated on graph nodes (each gene is a node in the interaction
graph), producing node similarity matrices

* The kernels we use are typically used for recommendation tasks like
e Customers who bought this also bought ...
* People you may know ...
* Web page importance ranking

 We are not the first to use kernels for prioritization (see e.g. Nitsch et al.
2010) but to our knowledge, this is a new application



Prioritization

* To evaluate our prioritization, we use an existing compendium of knockout
experiments (Hughes et al. 2000)

* Knockout pairs are proved causal relations between genes
* Aim is to retrieve as much knockout pairs as possible

* Any prioritization method should perform better than randomly
picking a candidate



Prioritization

* We have our similarity measure. And an evaluation strategy. Let’s try
it out!
* We assembled an interaction network
* Derived an adjacency matrix from it
* And calculated a host of kernel matrices
e All that is left is to use the similarity matrices to do the prioritization

e Unfortunately
* |t Does not work.
e At least not very well
* |In fact, our results are on par with randomly picking a candidate



Prioritization

160
140
120 -
100
80
60 -
40 -
20 -

0
Maximum

4

Total number of
knockout pairs that a
perfect method would
be able to retrieve

Global kernel
barely better than
random

Slight improvement
when picking the least
f similar candidate

- , . .
Random Global kernel Negative global

& Kernel

On average 5-6
candidates per eQTL, so
we expect to find +- 30
at random



More prioritization

* The hublike structure of our interaction network is causing problems

e |dea:

* For each eQTL-target gene pair, find a local network connecting the target
gene with all candidate causal genes

e Calculate a similarity measure on this local network

* How to find a local network
» Take shortest path from candidates to target, and filter network to contain
only nodes that are on such a shortest path

e Let’s add an extra reference method: take the candidate with the
shortest path to the target gene



More prioritization

160

140

120 -

100 -

380

60

40

20

Maximum

But using a local
Oops, our new subnetwork pays off
reference method is
doing quite well!

Random Global kernel Negatwe global Shortest path Local Kernel
Kernel shortest path



Even more prioritization

* We think we can do even better
* The shortest path subnetwork is still depending on the hubs in the network
* |dea: use several alternative paths instead of a single shortest paths
* => k shortest paths
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Even more prioritization
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USIONS

* We have used SNP data and gene expression data of
S. cerevisiae to detect eQTLs using different mapping
methods

conc

* Using a physical interaction network, we prioritized
eQTLs spanning multiple genes to individual causal
genes using a kernel based approach

* We obtained superior results when evaluating using
knockout pairs, and when compared to random
assignment or a shortest path approach



Molecular subtypes in clonal systems

Subtype 2

Subtype 1

Pathway 1

athway 2




Mutual exclusivity of somatic variants within a

nathway
hypothetical signaling
pathway
l'_ a: [HNRRNRREND [
9 1111
9 11
9a i
l I Gene is mutated in a patient

Apoptosis



Application 3: a data integration framework
for tumour analysis

8 Human tumour samples
* Genome: 3,000,000 base pairs
* +/- 25,000 genes
* Samples were retrieved from the TCGA public repository

* Three different tumour types
* Breast cancer (BRCA)
* Glioblastoma multiforme (GBM)
* Overian cancer (OV)

8 Gene expression data

* mRNA levels for all genes



Application 3: a data integration framework
for tumour analysis

Mutation data
e Somatic mutations only
e Single nucleotide variants

8 Copy number data

e Structural variants
* Quantifies the number of copies of a gene are present in a tumour sample
* Will influence gene expression

Methylation data
* Epigenetic data
* Quantifies the methylation status of a gene
* In general, exciessive methylation will prevent gene expression



Application 3: a data integration framework
for tumour analysis

Ej Network data

» Derived from different public repositories

* In total, 12,000 genes are present in the network, with +/- 100,000
gene interactions

Ej Clinical data

* Information of patients

* Contains age, sex, ...

* Contains time of diagnosis, treatment
* Contains survival data



The problems we want to solve

Find groups of patients that exhibit similar molecular properties

Find out which genes and pathways are disturbed in a homogeneous set
of patients

Solved using a method called MUNDIS: MUIt purpose Network-based
Data-Integration Strategy



Integrate all data into a single model

. Genes in the expression dataset



Integrate all data into a single model
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Calculate connectivity metrics
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Adjacency matrix representation of the
comprehensive network model
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— Link representation of entries in the
input datasets

Link between a gene from a dataset
and the corresponding gene in the
interaction network

----- Gene-gene interaction
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Global similarity matrix

Remember this?




An intuition for the diffusion method

mutations in pathway
downstream differential
expression
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An intuition for the diffusion method
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Survival probability

Results: patient subtyping

Ovarian cancer Glioblastoma
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Results: patient subtyping

This says how good
our patient groups
correlate with patient
survival
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Results: driver networks for subtypes

Good outcome

Bad outcome
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Results: pathway ranking: BRCA

Basal-like
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Conclusions and take-home message

ACGCCTACCGCAATGCTGAAA

ACGCCTACCCCTATGCTGAAA

Genetic variability drives phenotypic variation Most traits are influenced by many genes



Conclusions and take-home message
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Genes can interact with each other Interacting genes constitute pathways and networks
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The better genes are connected in a network,
the more likely they participate in the same
biological processes

Conclusions and take-home message

EE%@» 8
We developed several network-based methods for
data-integration and gene prioritization



Conclusions and take-home message
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Conclusions and take-home message

log rank p=2.1e-07
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We could identify groups of patients with similar

We could rank pathways according to their
survival and molecular characteristics

relevance for tumour samples






