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Population stratification

Population stratification is the presence of a
systematic difference in allele frequencies
between subpopulations in a population
possibly due to different ancestry, especially in
the context of association studies. Population
stratification is also referred as population
structure, in this context.
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Human Diversity
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How to group people?
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DNA: the blueprint of our lives

:

16/11/16



Principal Component Analysis (PCA)

Principal component analysis (PCA) is a
statistical procedure that uses an orthogonal
transformation to convert a set of observations
of possibly correlated variables into a set of
values of linearly uncorrelated variables called

principal components (PCs).
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PCAInR

 prcomp(x, retx = TRUE, center = TRUE, scale. = FALSE,
tol = NULL, ...)

* princomp(formula, data = NULL, subset, na.action, ...)

e eigen(x, symmetric, only.values = FALSE, EISPACK =
FALSE)

* svd(x, nu=min(n, p), nv=min(n, p), LINPACK = FALSE)

library(rARPACK)
e svds(A, k, nu =Kk, nv=k, opts = list(), ...)
e eigs(A, k, which ="LM", sigma = NULL, opts = list(), ...)



PCA for GWAS

nature
genetlcs

Principal components analysis corrects for stratification
in genome-wide association studies

Alkes L Price!?, Nick J Patterson?, Robert M Plenge®>, Michael E Weinblatt?>, Nancy A Shadick® &
David Reich!?

Population stratification—allele frequency differences between cases and controls due to systematic ancestry differences—can
cause spurious associations in disease studies. We describe a method that enables explicit detection and correction of population
stratification on a genome-wide scale. Our method uses principal components analysis to explicitly model ancestry differences
between cases and controls. The resulting correction is specific to a candidate marker’s variation in frequency across ancestral
populations, minimizing spurious associations while maximizing power to detect true associations. Our simple, efficient approach
can easily be applied to disease studies with hundreds of thousands of markers.



PCA for GWAS (Price, 2006)

The above procedure is motivated by the decomposition X = USVT, where U
is an M x N matrix whose kth column contains coordinates of each SNP along
the kth principal component, S is a diagonal matrix of singular values and V'is
an N x N matrix whose kth column contains ancestries g of each individual j
along the kth principal component. It follows that X'X = VS?VT; thus, the
columns of V are the eigenvectors of the matrix X'X. The matrix XX is
equivalent up to a constant to the covariance matrix ¥, and the matrix S? of
squared singular values is equivalent up to a constant to the diagonal matrix of

eigenvalues of V.
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snpStats — Bioconductor Package

* http://www.bioconductor.org/packages/release/bioc/html/
snpStats.html

Usually, principal components analysis is carried out by calculating the eigenvalues and
eigenvectors of the correlation matrix. With N cases and P variables, if we write X for
the NV x P matrix which has been standardised so that columns have zero mean and unit

standard deviation, we find the eigenvalues and eigenvectors of the P x P matrix X .X

(which 18 NV or (N — 1) times the correlation matrix depending on which denominator was
used when calculating standard deviations). The first eigenvector gives the loadings of each
variable in the first principal component, the second eigenvector gives the loadings in the
second component, and so on. Writing the first C' component loadings as columns of the
P x C matrix B, the N x C' matrix of subjects’ principal component scores, S, is obtained by
applying the factor loadings to the original data matrix, i.e. .S = X.B. The sum of squares
and products matrix, ST.S = D, is diagonal with elements equal to the first C' eigenvalues of
the X1.X matrix, so that the variances of the principal components can obtained by dividing
the eigenvalues by N or (N — 1).
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snpStats - PCA

This standard method is rarely feasible for genome-wide data since P is very large in-
deed and calculating the eigenvectors of X1.X becomes impossibly onerous. However, the
calculations can also be carried out by calculating the eigenvalues and eigenvectors of the

N x N matrix X.X". The (non-zero) eigenvalues of this matrix are the same as those
of XT.X, and its eigenvectors are proportional to the principal component scores defined
above; writing the first C' eigenvectors of X. X' as the columns of the N x C matrix, U,
then U = S.D~'/2. Since for many purposes we are not too concerned about the scaling
of the principal components, it will often be acceptable to use the eigenvectors, U, in place
of the more conventionally scaled principal components. However some attention should be
paid to the corresponding eigenvalues since, as noted above, these are proportional to the

variances of the conventional principle components. The factor loadings may be calculated
by B=XT.U.D /2

The next step in the calculation is to obtain the SNP loadings in the components. This
requires calculation of B = XT.5.D~'/2. Here we calculate the transpose of this matrix,
BT = D7'/28T X using the special function snp.pre.multiply which pre-multiplies a
SnpMatrix object by a matrix after first standardizing it to zero mean and unit standard
deviation.
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PCA for SNPs

e Xisthe M x N matrix, where M is a number of
individuals and N is a number of SNPs.

XX"=UDV'

Note: In this case, U and V are equal because XX is a square matrix

U is the matrix of eigenvectors or PC scores.
BT = D-/2UTX
B is the factor loadings
PCs = X.B



Normalization

* /Zero means
If X is a vector
M = X — mean(X)
* Unit variance
Y =M/ sd(X)

* |In R, it is more efficient to use apply() with
mean() and sd()



Quality Control

* Missing data
* Linkage Disequilibrium (LD) pruning
* Hardy-Weinberg Equilibrium (HWE)

Suggestion: use PLINK
http://pngu.mgh.harvard.edu/~purcell/plink/




Exercise - PCA

* Calculate PCs for the example data -
simSNP_repl, more information:

— Non-redundant SNPs, no LD

— No missing data
— Follow HWE

* Plot the first two eigenvectors
* Plot the first two PCs
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PC Adjustment in PLINK

* For quantitative traits, use
plink --bfile mydata --linear

* For disease traits, specify logistic regression
with
plink --bfile mydaya —logistic

e Adjust with covariates, then the command

plink --bfile mydata --linear --genotypic --covar
mycov.txt



Adjusted Manhattan plot of HW1
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Linear Regression in R

Linear models
Im(formula, data, subset, ...)

Example in help page:
ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)
trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)
group <- gl(2, 10, 20, labels = c("Ctl","Trt"))
weight <- c(ctl, trt)
Im.D9 <- 1Im(weight ~ group)
plot (1Im.D9)

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Im.html




Generalized Linear Models - GLM

glm(formula, family = gaussian, data, weights, ...)

Example from help page:

counts <- ¢(18,17,15,20,10,20,25,13,12)

outcome <- gl(3,1,9)

treatment <- gl(3,3)

print(d.AD <- data.frame(treatment, outcome, counts))

glm.D93 <- glm(counts ~ outcome + treatment, family =
poisson())

http://stat.ethz.ch/R-manual/R-patched/library/stats/html/glm.html




Models for GLM

glm(formula, family=familytype(link=linkfunction), data=)

Family Default Link Function

binomial (link = "logit")

gaussian (link = "identity")

Gamma (link = "inverse")

inverse.gaussian (link ="1/mu”2")

poisson (link = "log")

quasi (link = "identity", variance = "constant")
quasibinomial (link = "logit")

guasipoisson (link = "log")

http://www.statmethods.net/advstats/glm.html




Exercise — Linear regression

Do linear regression with the example data
using

SNPs ~ PC1 + PC2 + PC3 + PC4 + PC5
Calculate PCs from the residuals
Check PC plot

Try with glm() with logistic model



Fixation index (F.-)

* F.;can be used to describe a distance among
population.

* F.;can be biased due to the allele frequencies
and the number of independent SNPs.

Popl = 2,000 individuals Pop2 =500 individuals



F.- among European populations

Sp Fr Be UK Sw No Ge Ro Cz SI Hu Po Ru CEU CHB JPT

Fr 0.0008
Be 0.0015 0.0002

Sw 0.0047 0.0023 0.0018 0.0013

w .004 . . . .

No 0.0047 0.0024 0.0019 0.0014 0.0010 Simon et al. 2008

Ge 0.0025 0.0008 0.0005 0.0006 0.0011 0.0016

Ro 0.0023 0.0017 0.0018 0.0028 0.0041 0.0044 0.0016

Cz 0.0033 0.0016 0.0013 0.0014 0.0016 0.0024 0.0003 0.0016

Sl 0.0034 0.0017 0.0015 0.0017 0.0019 0.0026 0.0005 0.0014 0.0001

Hu 0.0030 0.0015 0.0013 0.0016 0.0020 0.0026 0.0004 0.0011 0.0001 0.0001

Po 0.0053 0.0032 0.0028 0.0027 0.0023 0.0034 0.0012 0.0028 0.0004 0.0004 0.0006

Ru  0.0059 0.0037 0.0034 0.0032 0.0025 0.0036 0.0016 0.0030 0.0008 0.0007 0.0009 0.0003

CEU 0.0026 0.0008 0.0005 0.0002 0.0011 0.0012 0.0006 0.0028 0.0014 0.0016 0.0016 0.0026 0.0031

CHB 0.1096 0.1094 0.1093 0.1096 0.1073 0.1081 0.1085 0.1047 0.1080 0.1069 0.1058 0.1086 0.1036 0.1095

JPT 0.1118 0.1116 0.1114 0.1117 0.1095 0.1103 0.1107 0.1068 0.1102 0.1091 0.1079 0.1108 0.1057 0.1117 0.0069

YRI 0.1460 0.1493 0.1496 0.1513 0.1524 0.1531 0.1502 0.1463 0.1503 0.1498 0.1490 0.1520 0.1504 0.1510 0.1901 0.1918
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To understand F;, here are simulated data using Balding method and the examples of EU
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populations as reported in (Simon et al. 2008)



F.- — R Packages

Package ‘PopGenome’ Package ‘hierfstat’

May 4, 2015 December 4, 2015
Version 0.04-22

Title An Efficient Swiss Army Knife for Population Genomic Analyses Date 2015-11-24
Version 2.1.6 Title Estimation and Tests of Hierarchical F-Statistics

Type Package

Date 2015-05-1

Package ‘StAMPP’

July 6, 2015

Type Package

Title Statistical Analysis of Mixed Ploidy Populations
Depends R (>=2.14.0), pegas

Imports parallel, doParallel, foreach, adegenet, methods, utils
Version 1.4

Date 2015-06-30



Estimating F;

Method

Estimating and interpreting Fst: The impact
of rare variants

Gaurav Bhatia,'*®” Nick Patterson,®” Sriram Sankararaman,*> and Alkes L. Price**>’

"Harvard-Massachusetts Institute of Technology (MIT), Division of Health, Science, and Technology, Cambridge,

Massachusetts 02139, USA; 2Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA; 3 Department of Genetics,
Harvard Medical School, Boston, Massachusetts 02115, USA; 4Department of Epidemiology, Harvard School of Public Health, Boston,
Massachusetts 02115, USA; ° Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts 02115, USA

In a pair of seminal papers, Sewall Wright and Gustave Malécot introduced Fst as a measure of structure in natural
populations. In the decades that followed, a number of papers provided differing definitions, estimation methods, and
interpretations beyond Wright’s. While this diversity in methods has enabled many studies in genetics, it has also in-
troduced confusion regarding how to estimate Fst from available data. Considering this confusion, wide variation in
published estimates of Fst for pairs of HapMap populations is a cause for concern. These estimates changed—in some cases
more than twofold—when comparing estimates from genotyping arrays to those from sequence data. Indeed, changes in
Fst from sequencing data might be expected due to population genetic factors affecting rare variants. While rare variants
do influence the result, we show that this is largely through differences in estimation methods. Correcting for this yields
estimates of Fst that are much more concordant between sequence and genotype data. These differences relate to three
specific issues: (1) estimating Fst for a single SNP, (2) combining estimates of Fst across multiple SNPs, and (3) selecting the
set of SNPs used in the computation. Changes in each of these aspects of estimation may result in Fst estimates that are
highly divergent from one another. Here, we clarify these issues and propose solutions.
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Hudson’s Fst

Definition
Hudson et al. (1992) defined Fsr in terms of heterozygosity. The
fundamental difference between these estimators is that for

Hudson, the total variance is based upon the ancestral population
and not the current sample.

Estimator

Hudson's estimator for Fgr is given by

. H

FSH?ydson —1— H_l;/’ (9)
where H,, is the mean number of differences within populations,
and H,, is the mean number of differences between populations.
While Hudson did not give explicit equations for H,, and H,, we
cast his description into an explicit estimator (see Supplemental
Material for a derivation). The estimator that we analyze is

(B _pz)z_Plr(lj:{l’l)_Pzr(li:ﬁz) o)
P1(L=py) +po(1—py) 7

i»Hudson __
FST -

where n; is the sample size and p; is the sample allele frequency in
population i for i € {1, 2}. Analyzing this estimator using the def-
inition of Weir and Hill (2002), we show (see Supplemental Ma-
terial) that Fgrestimated using Hudson'’s estimator will tend toward
Equation 3 (see Results), which is exactly the average of population-
specific Fst values that we seek to estimate. This emerges naturally,
as the proposed estimator is the simple average of the population-
specific estimators given in Weir and Hill (2002). This estimator has
the desirable properties that it is (1) independent of sample com-
position, and (2) does not overestimate Fgr (it has a maximum value
of 1). We recommend its use to produce estimates of Fsy for two

opulations.
popuiati KC- Ulg
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Exercise — F¢; estimation

* Implement Hudson’s method

* Estimate the average pairwise F.values for
Popl-6.



