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ABSTRACT

Summary: We describe mbmdr, an R package for implementing
the model-based multifactor dimensionality reduction (MB-MDR)
method. MB-MDR has been proposed by Calle et al. as a dimension
reduction method for exploring gene—gene interactions in case-
control association studies. It is an extension of the popular
multifactor dimensionality reduction (MDR) method of Ritchie et al.
allowing a more flexible definition of risk cells. In MB-MDR, risk
categories are defined using a regression model which allows
adjustment for covariates and main effects and, in addition to the
classical low risk and high risk categories, MB-MDR considers a
third category of indeterminate or not informative cells. An important
improvement added to the current mbmdr algorithm with respect
to the original MB-MDR formulation in Calle et al. and also to
the classical MDR approach, is the extension of the methodology
to different outcome types. While MB-MDR was initially proposed
for binary traits in the context of case-control studies, the mbmdr
package provides options to analyze both binary or quantitative traits
for unrelated individuals.
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1 INTRODUCTION

Model-based multifactor dimensionality reduction (MB-MDR),
has been proposed by Calle er al. (2008) as a dimension
reduction method for exploring gene—gene interactions in case-
control association studies. MB-MDR extends the multifactor
dimensionality reduction (MDR) method of Ritchie er al. (2001)
in several ways. Like MDR, the MB-MDR method merges multi-
locus genotypes into a one-dimensional construct, but the way the
genotype cells are merged differs. In MB-MDR, an additional ‘no-
evidence category’ allows a more accurate categorization into high
level, low level and ‘indeterminate’ or ‘non-informative’ cells.
Other extensions to improve the performance and applicability
of MDR have been proposed, including the odds ratio-based MDR
(OR-MDR) method (Chung et al., 2007) and the generalized MDR
GMDR; (Lou et al., 2007). Unlike these MDR extensions, MB-
MDR does not involve division of the data into training and
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learning sets and therefore does not select the best interaction model
via prediction accuracy and cross-validation consistency measures.
Instead, MB-MDR measures the association between multi-locus
genotypes and the phenotype and provides a set of statistically
significant interactions instead of a single best model. Significance
is assessed through a permutation test. This strategy has proven to be
more powerful than MDR in the presence of genetic heterogeneity
(Cattaert et al., submitted for publication).

An additional feature of MB-MDR is its flexibility for dealing
with different kind of phenotypes by changing the link function of
the regression analysis. MB-MDR was initially proposed for binary
traits in the context of case-control studies (Calle et al., 2008), but
the mbmdr package presented here has been implemented to allow
for quantitative traits.

MB-MDR has been successfully applied to a set of 404 single
nucleotide polymorphisms (SNPs) in 110 inflammation-related
genes as a preliminary phase to identify epistatic effects in the
Spanish Bladder Cancer/EPICURO Study (Calle ez al., 2008). This is
a case-control study conducted in 18 Spanish centers during 1998—
2001 that included 1157 cases and 1157 controls. Unlike MDR,
this approach allowed to adjust the analysis for the main bladder
cancer risk factors (smoking status, age, gender and region). MB-
MDR identified one second-order interaction and five three-way
interactions with P <107>. While some interactions seem to be
biologically sound, others were unexpected and need to be replicated
in independent series before validating them in the lab.

MB-MDR has also been applied to a study on eczema risk
(Mahachie John et al., 2009) where the phenotype was the allergen-
specific IgE levels. This application is specially relevant since,
involving a continuous response, the classical MDR approach
could not be used. Furthermore, the flexible model-based approach
allowed adjustment for well-known established risk factors. A
significant epistatic effect of two variants in FCER1A on eczema
risk was detected.

2 MB-MDR OVERVIEW AND IMPLEMENTATION

MB-MDR approach consists of three steps that are briefly described
next. A more detailed description can be found in Calle et al.
(2007, 2008). mbmdr package contains two main functions: mbmdr
that performs Steps 1 and 2 and mbmdr . PermTest that performs
Step 3, the permutation approach for significance assessment.

We describe the results of applying the mbmdr package to an
example dataset included in the package. The detailed code of
this implementation is provided in the Supplementary Material.
The dataset s1mSNPS contains a simulated dataset from epistatic
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model 1 described in Ritchie et al. (2003). It contains 10 SNPs
for 400 individuals, 200 cases and 200 controls, and a covariate
associated with response. Only the second-order interaction between
SNP1 and SNP2 is functional.

Step 1: The first step performs an association test for each multilocus
cell with the phenotype: a logistic regression for binary traits, a linear
regression for quantitative traits or any other specified link function.
Each genotype cell is then assigned to one of three categories, high
risk (H), low risk (L) or no evidence (0), as a result of the association
test with a liberal threshold of 0.1 for assigning the genotype to a
risk category, H or L. The following lines are the output of MB-
MBDR stepl for interaction between SNP1 and SNP2, using function
mbmdr and adjusting for covariate X. It provides the results of the
different regressions applied to each multilocus genotype:

SNP1 SNP2 cases controls beta pval cat

0 0 0 9 -0.51 8.3e-03 L
1 0 49 19 0.28 1.9e-04 H
2 0 0 15 -0.52 6.5e-04 L
0 1 50 19 0.16 3.0e-02 H
1 1 0 57 -0.51 4.1e-10 L
2 1 43 30 0.11 1.1e-01 ©
0 2 0 14 -0.21 1.7e-01 O
1 2 58 26 0.18 8.6e-03 H
2 2 0 11 -0.50 4.3e-03 L

In this example, the interaction between SNP1 and SNP2 is highly
predictive and provides perfect classification of cases and controls
in some cells. This perfect classification is known as the separation
problem (Heinze and Schemper, 2002) and provides parameter
estimates extremely inaccurate (equal to infinite). To avoid this
and provide accurate estimates, the mbmdr calls the R package
logistf that implements a penalized likelihood.

Step 2: After merging the multilocus genotypes of the same risk
category, Step 2 performs two new association tests, one for each
risk category, high and low, on the outcome variable. In each test,
the group of interest is compared with the other two groups using a
regression model. This second step provides a Wald statistic, WH,
for the high risk category H versus {L,0} and a Wald statistic, WL,
for the low risk category L versus {H,0}. The test statistic for the
epistatic effect will be based on the maximum between WH and WL.

The output of MB-MDR Step 2 provides the number of multilocus
genotypes classified as High risk (NH), the Wald statistic for the
High risk category (WH) and the corresponding unadjusted P-value
(PH). The same information is provided for the Low risk category
(NL, WL, PL). The minimum between PH and PL is given in the
last column (MIN.P):

SNP1 SNP2 NH WH PH NL WL PL MIN.P
SNP1 SNP2 3 76.62 2.0e-18 4 0.00 0.97 2.0e-18

Step 3: Explores significance of the specified models through a
permutation test on the maximum Wald statistic and is implemented
by the function mbmdr.PermTest. The procedure also can
provide the confidence intervals of the permuted P-value (Nettleton
and Doerge, 2000) at a given significance level. The output of the

permutation test provides again the relevant information of the risk
class (NH, WH, NL, WL), the maximum between the two Wald
statistics (Wmax =max(WH, WL)) and the adjusted permutation
P-value obtained from the permutation distribution of Wmax:

SNP1 SNP2 NH WH NL WL Wmax Perm.P
SNP1 SNP2 3 76.62 4 0.97 76.62 <le-04

Instead of exploring each interaction separately, the default call
of mbmdr function is to explore all possible interactions of a given
order at a time. However, since the permutational approach is very
time consuming and accurate P-values require a large number of
permutations, we suggest to assess their significance in a sequential
way that discards from further exploration those models with no
signal of association (Supplementary Material).

Computer details and time: the full process of exploring all
possible 45 second-order interactions has been run under R software,
as a single thread on a server environment running a 64 bits linux
distribution with Quad Core Intel Xeon processor at 2.5 GHz, 12 MB
of L2 memory, 1333 MHz of FSB and 8 GB of RAM. The running
time for Steps 1 and 2 was 7s and for Step 3 (permutational
significance) with 10000 permutation was 54 min and 25s. In
studies involving a larger number of SNPs, computational time is
an issue and, in some cases, a full exploration of significance will
be unfeasible (Supplementary Material). In this case preselection of
SNPs will be required, as in Calle et al. (2008) where the MB-MDR
methodology is proposed in combination with preselection based on
the observed synergy between SNPs.
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