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2.a Marker level

2.b Subject level

2.c Gender level (not considered in this course)
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1 Setting the pace
1.2 What can your spit tell you about your DNA?

The use of saliva

e People spit for a variety of reasons. We've all employed the technique to
remove a hair or some other distasteful object from our mouths. People
who chew tobacco do it for obvious reasons. Ball players do it because
they're nervous, bored or looking to showcase their masculinity. And
people in many different cultures spit on their enemies to show disdain.

e Thanks to a phenomenon known as direct-to-consumer genetic testing or
at-home genetic testing, people are spitting today for a much more
productive (and perhaps more sophisticated) reason -- to get a glimpse of
their own DNA.
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From saliva to DNA

e Your saliva contains a veritable mother load of biological material from
which your genetic blueprint can be determined.

e For example, a mouthful of spit contains hundreds of complex protein
molecules — enzymes -- that aid in the digestion of food.

e Swirling around with those
enzymes are cells sloughed off
from the inside of your cheek.

e Inside each of those cells lies a
nucleus, and inside each nucleus,
chromosomes, which themselves
are made up of DNA
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From saliva to DNA

e Of course, you can't look at your own spit and see sloughed-off cells, the
DNA they contain or the genetic information coded in the long chain of
base pairs.

® You need special equipment and scientists who know how to use it.
® You also need trained counselors who can help you interpret the data once
you get it back.

® That's where companies like 23andMe, deCODEme and Navigenics come in.
They give you the tools, resources and infrastructure necessary to learn
more about what makes you tick at a cellular level. They each do it slightly
differently, and they each reveal different aspects of your DNA profile.
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Example: 23andMe

Do not eat, dnnk, smoke, chew gum, brush your teeth, or use mouthwash for at
least 30 minutes pnior 1o providing your sample

Collect the recommended volume of saliva The recemmended volume of saliva to
provide 1s 2 mlL, or about )2 teaspoon Your saliva sample should be just above the
fill ne.

Prowide your sample and add the stabiizat:on buffer wathin 20 minutes. The full
saliva sample should be collected within 30 minutes and the funnel contents
should be released nto the tube immediately. Waging longer than 30 minutes may
decrease the yield and quality of your DNA

Cap securely before shipping. Remember to remove and discard the funnel kd and
place the tube cap on securely before mading your sample 1o our laboratory.
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NewStatesman

SCIENCE & TECH 15 JANUARY 2015

23andMe: Why bother with predictions
about yourself when you are almost
certainly average?

Want to understand your genes? Call your parents.
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How many types of genetic tests exist?

e There are >2000 genetic tests available to physicians to aid in the diagnosis
and therapy for >1000 different diseases. Genetic testing is performed for
the following reasons:

— conformational diagnosis of a symptomatic individual

— presymptomatic testing for estimating risk developing disease
— presymptomatic testing for predicting disease

— prenatal diagnostic screening

- newborn screening

— preimplantation genetic diagnosis

— carrier screening

— forensic testing

— paternal testing
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How is genetic testing used clinically?

e Diagnostic medicine: identify whether an individual has a certain genetic
disease. This type of test commonly detects a specific gene alteration but is
often not able to determine disease severity or age of onset. It is estimated
that there are >4000 diseases caused by a mutation in a single gene.
Examples of diseases that can be diagnosed by genetic testing includes
cystic fibrosis and Huntington's disease.

e Predictive medicine: determine whether an individual has an increased risk
for a particular disease. Results from this type of test are usually expressed
in terms of probability and are therefore less definitive since disease
susceptibility may also be influenced by other genetic and non-genetic (e.g.
environmental, lifestyle) factors. Examples of diseases that use genetic
testing to identify individuals with increased risk include certain forms of
breast cancer (BRCA) and colorectal cancer.
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How is genetic testing used clinically?

e Pharmacogenomics: classifies subtle variations in an individual's genetic
makeup to determine whether a drug is suitable for a particular patient,
and if so, what would be the safest and most effective dose. Learn more
about pharmacogenomics.

e Whole-genome and whole-exome sequencing: examines the entire
genome or exome to discover genetic alterations that may be the cause of
disease. Currently, this type of test is most often used in complex
diagnostic cases, but it is being explored for use in asymptomatic
individuals to predict future disease. See also, supporting doc on the course
website: “The promise and challenges of next-generation genome
sequencing for clinical care” (JAMA Intern Med. 2014)


http://www.ama-assn.org/ama/pub/physician-resources/medical-science/genetics-molecular-medicine/current-topics/pharmacogenomics.page?
http://www.ncbi.nlm.nih.gov/pubmed/24217348

GBIO0009

Types of Genetic Tests

e As we will see, we can measure variation between individuals at several
positions on the genome, using so-called molecular markers such as Single
Nucleotide Polymorphisms (SNPs)

e To run a SNP test, scientists embed a subject's DNA into a small silicon chip
containing reference DNA from both healthy individuals and individuals
with certain diseases.

e By analyzing how the SNPs from the subject's DNA match up with SNPs
from the reference DNA, the scientists can determine if the subject might
be predisposed to certain diseases or disorders.
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Reference genome

e A reference genome (also known as a reference assembly) is a digital
nucleic acid sequence database, assembled by scientists as a representative
example of a species' set of genes.

e As they are often assembled from genome (build 37) is derived from

the sequencing of DNA from a
number of donors, reference
genomes do not accurately
represent the set of genes of any
single person. Instead a reference
provides a haploid mosaic of
different DNA sequences from
each donor.

For example GRCh37, the Genome
Reference Consortium human

thirteen anonymous volunteers
from Buffalo, New York
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"Wellcome genome bookcase" by Russ London at en.wikipedia.

Licensed under CC BY-SA 3.0 via Commons -
https://commons.wikimedia.org/wiki/File:Wellcome_genome_bookc
ase.png#/media/File:Wellcome_genome_bookcase.png


https://en.wikipedia.org/wiki/Nucleic_acid_sequence
https://en.wikipedia.org/wiki/Genome
https://en.wikipedia.org/wiki/DNA
https://en.wikipedia.org/wiki/Genome
https://en.wikipedia.org/wiki/Haploid
https://en.wikipedia.org/w/index.php?title=GRCh37&action=edit&redlink=1
https://en.wikipedia.org/wiki/Human_genome
https://en.wikipedia.org/wiki/Human_genome
https://en.wikipedia.org/wiki/Buffalo,_New_York
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SNP-based genetic tests

e SNP testing is the technique used by almost all at-home genetic testing

companies.
e |t doesn't, however, provide absolute, undisputed results!!!

Can you handle the truth?

Identifying Genetic Markers

Service Provider: 23andMe deCODEme Navigenics

Arthritis ' e
Asthma

Bipolar/Depression

Cardiovascular Disease

¥
Multiple Sclerosis - ¢ M
Osteoporosis

Parkinson’s Disease
Schizophrenia
Thrombosis

Type 1/2 Diabetes
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. E £ 2 = Print this page Key to your results
Your estimated lifetime risk
Condition name
Click anywhere on the colored boxes below 10 access in-depth information about each heaith
@ condition, your genetic predispositions, what you can do, your specific genetic markers, and much
more.
Heart attack You have no o e e
results in this
You: 22% range Tutorial: Review the tutorial
Avg: 26% »
More: How we estimate your
risk
Breast cancer
You: 14% Your genetic counselor
Avg: 13% »
Counsedors are available
weekdays from Sam to Spm PST,
or you ¢an schedule another time
convenient for you,
Call (866) 522-1535
Interratona’
+1 (650) S85-7743
Multiple Deep vein
torost bos! Sha':lng re:ults
You: 0.28% Your: 2.8% with your doctor
Mt AT . Aun ARG L
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1.b Speaking the language - introduction

The evolution of molecular markers (Schiétterer 2004)

OPINION

The evolution of molecular markers
— just a matter of fashion?

Christian Schlotterer

In less than half a century, molecular
markers have totally changed our view of
nature, and in the process they have
evolved themselves. However, all of the
molecular methods developed over the
years to detect variation do so in one of only
three conceptually different classes of
marker: protein variants (allozymes), DNA
sequence polymorphism and DNA repeat
variation. The latest technigues promise to
provide cheap, high-throughput methods
for genotyping existing markers, but might
other traditional approaches offer better
value for some applications?

Being able to distinguish between genotypes
that are relevant to a trait of interest is a key
goal in genetics. Often, this distinction is not
based directly on the trait of interest, but
on informative marker systems. A genetic
marker provides information about allelic
variation at a given locus. The first genetic
map of Drosophila melanogaster was built by
Sturtevant using phenotypic markers'. How-

continuous improvement in the way in which
we assay genetic variation; that is, the latest
marker systems are the most informative ones.
Nevertheless, in reviewing the history of mole-
cular markers and their pros and cons, I argue
that there are only a few conceptually different
classes of marker and that recently devel-
oped high-throughput methods might not be
unconditionally superior to more traditional
approaches.

Allozymes

The first true molecular markers to be estab-
lished were allozymes (a term that originates
from a contraction of the phrase ‘allelic vari-
ants of enzymes’). The principle of allozyme
markers is that protein variants in enzymes can
be distinguished by native gel electrophoresis
according to differences in size and charge
caused by amino-acid substitutions. To visual-
ize the allozyme bands, the electrophoretic gels
are treated with enzyme-specific stains that
contain substrate for the enzyme, cofactors and
an oxidized salt (for example, nitro-blue tetra-

sample sizes are typically studied in allozyme
surveys. Nevertheless, the number of informa-
tive marker loci is too small to use allozymes
for mapping and associarion stupies®. Further-
more, surveys of natural variation based
on allozymes were often challenged by non-
neutral evolution of some of the markers used
(see, for example, REFs 9-11).

The arrival of DNA-based markers
One of the criticisms levelled at allozyme
markers is that they are an indirect and insen-
sitive method of detecting variation in DNA.
A more direct molecular marker would sur-
vey DNA variation itself, rather than rely on
variations in the electrophoretic mobility of
proteins that the DNA encodes. Another
important advantage that DNA-based mark-
ers have over allozymes is that they allow the
number of mutations between different alleles
to be quantified. Given these unambiguous
advantages, the arrival of DNA manipulation
techniques promoted a shift from enzyme-
based to DNA-based markers.

“...the arrival of DNA
manipulation techniques
promoted a shift from
enzyme-based to

DNA-based markers.”
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The evolution of molecular markers

e Nowadays, genetic markers represent sequences of DNA which have been
traced to specific locations on the chromosomes and associated with
particular traits.

e They demonstrate polymorphism, which means that the genetic markers in
different organisms of the same species are different.

e A classic example of a genetic marker is the area of the DNA which codes
for blood type in humans: all humans have and need blood, but the blood
of individual humans can be very different as a result of polymorphism in
the area of the genome which codes for blood.


http://www.wisegeek.com/what-are-chromosomes.htm
http://www.wisegeek.com/what-is-a-genome.htm
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The evolution of molecular markers

e One of the purposes of using “panels of molecular markers” is to hunt for
genes that may be relevant to better understand disease or that allow us to
make predictions

e PS: also the concept of a “gene” has changed over time ...

Pythagoras (580-500 BC, Crick (1916-2004)/Watson (1928-)

“all hereditary material comes “structure of DNA explains hereditary
from a child’s father” processes”
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Hunting for genes - Genetic mapping

e Developing new and better tools to make gene hunts faster, cheaper and
practical for any scientist was a primary goal of the Human Genome Project
(HGP).

e One of these tools is genetic mapping, the first step in isolating a gene.
Genetic mapping - also called linkage mapping - can offer firm evidence that
a disease transmitted from parent to child is linked to one or more genes. It
also provides “clues” about where the gene lies.

e Genetic maps have been used successfully to find the single gene
responsible for relatively rare inherited disorders, like cystic fibrosis, but
have also been useful as a guide to identify the possible many genes
underlying more common disorders, like asthma.
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How to generate a genetic map?

e To produce a genetic map, researchers collect blood or tissue samples from
family members where a certain disease or trait is prevalent.

e Using various laboratory techniques, the scientists isolate DNA from these
samples and examine it for the unique patterns of bases seen only in family
members who have the disease or trait. These characteristic molecular
patterns are referred to as polymorphisms, or markers.

e Before researchers identify the gene responsible for the disease or trait,
DNA markers can tell them roughly where the gene is on the chromosome.
How is this possible?
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How to generate a genetic map? (continued)

e This is possible because of a genetic process known as recombination.

As eqggs or sperm develop within a person’s body, the 23 pairs of
chromosomes within those cells exchange - or recombine - genetic
material. If a particular gene is close to a DNA marker, the gene and
marker will likely stay together during the recombination process, and
be passed on together from parent to child. So, if each family member
with a particular disease or trait also inherits a particular DNA

marker, chances are high that the gene responsible for the disease lies
near that marker.
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Linkage Within A Family Linkage Disequilibrium Within A Population
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How to generate a genetic map? (continued)

e The more DNA markers there are on a genetic map, the more likely it is that
one will be closely linked to a disease gene - and the easier it will be for
researchers to zero-in on that gene.

e One of the first major achievements of the HGP was to develop dense

maps of markers spaced evenly across the entire collection of human
DNA.

(http://www.genome.gov/100007154#al-3)
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Having a genetic map : now what ?

BREAKTHROUGH OF THE YEAR: The Runners-Up

Science 314, 1850a (2006);
DOI: 10.1126/science.314.5807.1850a

AYAAAS

Areas to Watch in 2007

Whole-genome association studies. The trickle of studies comparing the
genomes of healthy people to those of the sick is fast becoming a flood.
Already, scientists have applied this strategy to macular degeneration,
memory, and inflammatory bowel disease, and new projects on schizo-
phrenia, psoriasis, diabetes, and more are heating up. But will the wave of
data and new gene possibilities offer real insight into how diseases germi-
nate? And will the genetic associations hold up better than those found the
old-fashioned way?
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Pennisi 2007 Science 318:1842-3
/ -

BREAKTHROUGH OF THE YEAR

Human Genetic |
Variation

Equipped with faster, cheaper technologies for sequencing \ -
DNA and assessing variation in genomes on scales ranging / \

from one to millions of bases, researchers are finding out
how truly different we are from one another

THE UNVEILING OF THE HUMAN GENOME ALMODST 7 YEARS AGO

cast the first famt ight on our complete genetic makeup. Since then, each -

new gemme sequenced and each new mdividual studied has iluminated vmgm . Sl

our genomic landscape mever more detail. In 2007, researchers cameto

apprecide the extent to which our genomes differ from person to person CEE (B 0 BeEeR )

andthe implications of this vanation for deaphenng the genetes of com- Deletion Copy numbear variation

plex diseases and personal traits.

Less than a year ago, the big news was triangulating variation : »

between us and our primate cousins to get a better handle on genetic ST Sl s e Clurioe ) ‘Alen
the number and order of genes (A-D)

changes along the evolutionary tree that led to humans. Now, we have add variety to the human genome. Hetoro s

moved from asking what in our DNA makes us human to striving to

know what in my DNA makes me me.
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Published Genome-Wide Associations through 12/2012
Published GWA at ps5X10* for 17 trait categories

NHGRI GWA Catalog
NIl Pl www.genome.gov/GWAStudies _
S b www.ebi.ac.uk/fgpt/gwas/ EMBL-EBI |
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1.b Speaking the language — by relevant questions

What is ....?

Evolution Genetics Biostatistics Population Genetics

Genetic Epidemiolo Epidemiology H HC Inf&Imm Homepage

Common Terms in Genetics
M.Tevfik DORAK

Please update your bookmark: http://www.dorak.info/genetics/glosgen.html

On Line Biology Book - Glossa Glossary of Genetic Terms Talking Glossary (Genetics
Life: The Science of Biology - Glossary
UCMP Glossary (Evolution) Population Genetics Glossa

Molecular Biology Glossary (ASH) Molecular Biology Glossary (UM) Genome Glossary RNAi Glossary
Genomic Glossaries & Taxonomies More Human Genetics Glossaries

Genetic Epidemiology Glossary Real-Time PCR Glossary

[For best results, please use the FIND option by pressing "CTRL + F" to locate the word you are looking for]

a-helix: Common secondary 3-dimensional structure of proteins in which the linear sequence of amino acids is folded into a spiral that is stabilized by hydrogen bonds between the carboxyl oxygen of each peptide bond.

Ab initio gene prediction: A computing biology technique that attempts to identify genes without any knowledge of their function nor of the genetics of the organism. This can be accomplished because different gene features, such as exons, introns,
promoters, polyadenylation signal etc are associated with unique patterns in the DNA sequence.

Acrocentric chromosome: A chromosome with its centromere towards one end. Human chromosomes 13,14,15,21,22 are acrocentric.

Adaptation: Adjustment to environmental demands through the long-term process of natural selection acting on genotypes.

Additive and non-additive components: In studies of heredity, the portions of the genetic component that are passed and not passed to offspring, respectively.
Allele: A known variation (version) of a particular gene. Formerly called allelomorph.

Allelic association: see linkage disequilibrium.

Allelic exclusion: Expression of only one of the two homologous alleles at a locus in the case of heterozygosity. This usually occurs at loci such as immunoglobulin or T cell receptor (TCR) genes where a functional rearrangement among genes takes place.
One of the alleles is either non-functionally or incompletely rearranged and not expressed. This way, each T-cell expresses only one set of TCR genes.

Allelopathy: The influence exerted by a living plant on other plants nearby or microorganisms through production of a chemical.
Allorecognition: Recognition by T cells of the MHC molecules on an allogeneic individual's antigen-presenting cells which results in allograft rejection in vivo and mixed lymphocyte reaction (MLR) in vitro.
Altered self: A term used to describe the MHC molecule associated with a peptide rather than in its native form. Thus, a native MHC molecule does not induce an immune reaction except when it is presenting a peptide.

Alternative splicing: Formation of diverse mRNAs through differential splicing of the same RNA precursor. This may result in proteins with different composition of amino acids or it may involve just the length of 3' UTR. One reason for alternative/differential
splicing is base modification during RNA editing causing a change in splice sites.

Amino acids: Building blocks of peptides. Each amino acid is encoded by DNA. See Amino Acids and The Chemistry of Amino Acids.

Amarnh [null allala): A mutatinn that leads to complete loss of function.
www.dorak.info/genetics/glosgen.html . L
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Where is the genetic information located?

¢ Cell has nucleus

e Nucleus carries genetic information in chromosomes

e Chromsomes composed of desoxyribonucleic acid (DNA) and
proteins

e DNA large molecule consisting in two strands

e Each strand has backbone of sugar and phosphate residues

e Sequence of bases attached to backbone

e Bases: adenine (A), guanine (G), cytosine (C), thymine (T)

e Strands connected through hydrogen bonds

o Awith T (2 hydrogen bonds)
o C with G (3 hydrogen bonds)

(Ziegler and Van Steen, Brazil 2010)
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Where is the genetic information located?
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(Ziegler and Van Steen, Brazil 2010)
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Where is the genetic information located?

e Chromosomes are

o Linear arrangements of DNA
o 22 autosomal pairs in humans

o 2 sex chromosomes (X and Y)
e Pair of chromosomes called homologs
e Meiosis: special type of cell division
e Crossover: chromosomal segment exchange between homologs
during meiosis
e Average # crossovers: 55 x in males, 1.5 x higher in females

e Result of crossover: recombination of non-parental chromosomes
in two of the meiotic products

(Ziegler and Van Steen, Brazil 2010)
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What is recombination?

a) A1 A2 A1 @ A1
-
B1 B2 B1 B2 B1
== ; o

o ST

e Relevant measure: recombination fraction (probability of odd
number of crossovers) between two chromosomal positions
e Strong correlation between recombination fraction and distance in

base pairs
(Ziegler and Van Steen, Brazil 2010)
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How much do individuals differ with respect to genetic information?

e Allele: one of several alternative forms of DNA sequence at specific
chromosomal location (locus)

e Genetic marker: polymorphic DNA sequence at single locus

e Polymorphism: existence of > 2 alleles at single locus

e Homozygosity (homozygous): both alleles identical at locus

e Heterozygosity (heterozygous): different alleles at locus

e Mutation:

o Changes allele at specific chromosomal position
o Frequency = 10" to 10° = Individuals differ with freq. of 1/1000 bases

(Ziegler and Van Steen, Brazil 2010)
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How much do individuals differ with respect to genetic information?

e Genotype: The two alleles inherited at a specific locus. If the alleles are the
same, the genotype is homozygous, if different, heterozygous. In genetic
association studies, genotypes can be used for analysis as well as alleles or
haplotypes.

e Haplotype: Linear arrangements of alleles on the same chromosome that
have been inherited as a unit. A person has two haplotypes for any such
series of loci, one inherited maternally and the other paternally. A
haplotype may be characterized by a single allele unless a discrete
chromosomal segment flanked by two alleles is meant.

4

@ MITT THN NEN BE)

http://www.dorak.info/epi/glosge.html
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Are haplotypes always better in association studies for “disease”?

e Analyses based on phased haplotype data rather than “unphased”
genotypes may be quite powerful...

M1 1 1 2 2
DSLL D d d d
M2 1 2 1 2

Test 1 vs. 2 for M1: D+dvs.d
Test 1 vs. 2 for M2: D+dvs.d
Test haplotype H1 vs. all others: D vs. d

e If the Disease Susceptibility Locus (DSL) is located at a marker, haplotype
testing can be less powerful
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What are microsatellite markers?

e Synonymous: short tandem repeat, STR
e Number of repeats varies between individuals

o Mononucleotide, dinucleotide, trinucleotide, tetranucleotide, non-integer
STRs

e Determine allele length (e.g., 133, 136, 139, 142, ...)

e Occurrence in non-coding regions

e High mutation frequency ~ 10” — 10™ events per locus per
generation

e Not easy to score automatically

e Frequent but not dense enough for some applications

(Ziegler and Van Steen, Brazil 2010)
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What are single nucleotide polymorphisms?

e Variations in single base, i.e., one base substituted by another base
e In theory: four different nucleotides possible at base

e |n practice: generally only two different nucleotides observed

¢ Definition strict and loose:

o Strict: minor allele frequency 2 1%
o Loose: 2 2 nucleotides observed in two individuals at position
e Nomenclature:

o ss-number (submitted SNP number)
o rs-number: searchable in dbSNP, mapped to external resources, unique
o rs-numbers do not provide information about possible function of SNP

o Alternative: nomenclature of Human Genome Variation Society

(Ziegler and Van Steen, Brazil 2010)
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Why are SNPs preferred over STRs?

e SNPs very frequent = dense marker map
e Some SNPs functionally relevant = candidate variations for disease
e SNPs more stable, i.e., lower mutation rate

e Genotyping in highly automated fashion

1 10K 50K 500K 1000K snps
T 1 | 1 | >
1985 2000 2003 2005 2008 Year

(Ziegler and Van Steen, Brazil 2010)
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Recall

1st cycle: template DNA
3 [ 5
5 R 3
\.—-—-——'Y'_"'--...J
target sequence
1st step: Denaturation
100°C
3 {5 5 e} 50°C
rc
2nd step: Hybridization
100°C

3 5 5 3 -
rc

3rd step: Elongation
100°C

9 I 5 3 50°C
oc

(Ziegler and Van Steen, Brazil 2010)
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Which genotyping methods are currently being used?

Method Principle Thru-put

Allele-specific PCR 1 common reverse primer, 2 forward allele- Low

specific primers with different tails, amplification
of two allele-specific PCR products of different

lengths, separation by gel electrophoresis

RFLP analysis DNA sample digested by restriction enzymes, Low
resulting restriction fragments separated

according to their lengths by gel electrophoresis

Pyrosequencing Single strand sequencing, enzymatic synthesizing Middle
of complementary strand
SNPstream Single-base primer extension technology Middle /
High

(Ziegler and Van Steen, Brazil 2010)
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Which genotyping methods are currently being used?

Method Principle Thru-put

TagqMan Quantitative real-time PCR, allele-specific Middle
TagMan probes

SNPlex Oligonucleotide ligation/PCR and capillary Middle
electrophoresis

Affymetrix Microarray based, fluorescence labeled DNA Ultra-high

lllumina Microarray based, fluorescence labeled DNA Ultra-high

(Ziegler and Van Steen, Brazil 2010)
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1.c Genome-wide association studies — analysis workflow

e Note: From —etic to —omic: scale explosion

e A genome-wide association study refers to a method / methodology for
interrogating all 10 million variable points across the human genome.

e Since variation is inherited in groups, or blocks, not all 10 million points
have to be tested.

e Blocks are shorter though (so need for testing more points) the less closely
people are related.

“May he live in interesting times;
Like it or not we live in interesting times.”

Robert Kennedy, June 7, 1966
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. U.S.Department of Health & Human Services

= Office of
‘ J Extramural Research

National Institutes of Health

Home About Grants Funding

Funding Opportunities Genome-Wide Association Studies (GWAS)
Funding Opportunities (RF&s,

PAs) & Notices The NIH is interested in advancing genome-wide association studies (GWAS) to identify commeon genetic factors that influence health and
Unsclicited Applications {Parent disease. For the purposes of this policy, @ genome-vide association study is defined as any study of genetic variation across the entire
Announcements) human genome that is designed to identify genetic associations with observable traits (such as blood pressure or weight), or the presence or
absence of a disease or condition. Whole genome information, vhen combined vith clinical and other phenotype data, offers the potential for
increased understanding of basic biclogical processes affecting human hezalth, improvement in the prediction of disease and patient care,
Development and ultimately the realization of the promise of personalized medicine. In addition, rapid advances in understanding the patterns of human
Small Business (SBIR/STTR) genetic variation and maturing high-throughput, cost-effective methods for genotyping are providing powerful research tools for identifying
genetic variants that contribute to health and disease. The purpose of this Website is to support the implementation of the GWAS Policy.
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Genome-Wide Association Studies

£ What is a genome-wide association study?

Gerome-Wide Association Studies for

M Why are such studies possible now? the Rast of Us: 8dding Genoma-Wids
) How will genome-wide association studies benefit human health? Aszocistion to Population Studies
M What have genome-wide association studies found? ?ziﬁ'zb'z’osé'y

£ How are genome-wide association studies conducted?
£ How can researchers access data from genome-wide association studies?
£ What is NIH doing to support genome-wide association studies?

What is a genome-wide association study?

A genome-vide association study is an approach that involves rapidly scanning markers across the complete sets of DNA, or genomes, of
many pecple to find genetic variations associated vith a particular disease. Once new genetic associations are identified, researchers can
use the information to develop better strategies to detect, treat and prevent the disease. Such studies are particularly useful in finding
genetic variations that contribute to common, complex diseases, such as asthma, cancer, diabetes, heart disease and mental illnesses.

© Top of page

Why are such studies possible now?

With the completion of the Human Genome Project in 2003 and the International HapMap Project in 2005, researchers now have a set of
research tools that make it possible to find the genetic contributions to common diseases. The tools include computerized databases that
contain the reference human genome sequence, 2 map of human genetic variation and a set of new technologies that can quickly and
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What is a genome-wide association study?

e Hence, a genome-wide association study is an approach that involves
rapidly scanning markers across the complete sets of DNA, or genomes, of
many people to find genetic variations associated with a particular “trait”.

e Once new genetic associations are identified, researchers can use the
information to develop better strategies to detect, treat and prevent the

disease.
(http://www.genome.gov/pfv.cfm?pagelD=20019523)

e Note: a trait can be defined as a coded phenotype, a particular
characteristic such as hair color, BMI, disease, gene expression intensity
level, ...
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What do we need to carry out a genome-wide association study?

e The tools include
- computerized databases that contain the reference human genome
sequence,
- a map of human genetic variation and
- a set of new technologies that can quickly and accurately analyze
whole-genome samples for genetic variations that contribute to the

onset of a disease.
(http://www.genome.gov/pfv.cfm?pagelD=20019523)
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What is the flow of a genome-wide association study?

The genome-wide association study is typically (but not solely!!!) based on a
case-control design in which single-nucleotide polymorphisms (SNPs) across
the human genome are genotyped ... (Panel A: small fragment)

A

— Personl

— Person2

— Person3
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What is the flow of a genome-wide association study?

B SNP1 SNP2

Initial discovery study Eantrols e Initial discovery study Controls

c
s P=1x10-12 P=1x10-3

Common Variant

homozygote f Heterozygote homozygote

e Panel B, the strength of association between each SNP and disease is
calculated on the basis of the prevalence of each SNP in cases and
controls. In this example, SNPs 1 and 2 on chromosome 9 are associated
with disease, with P values of 10712 and 1078, respectively

(Manolio 2010)
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What is the flow of a genome-wide association study?

Position on chromosome 9

Chromosome 16 18 20 22

e The plot in Panel C shows the P values for all genotyped SNPs that have
survived a quality-control screen (each chromosome, a different color).

e The results implicate a locus on chromosome 9, marked by SNPs 1 and 2,
which are adjacent to each other (graph at right), and other neighboring
SNPs. (Manolio 2010)
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What is the flow of a genome-wide association study?

Laboratory

Low level analysis

High level analysis

Selection of DNA chip

Biological question Sampling =
DNA preparation —¥# Chip hybridization 9 Chip scan
Image analysis —» Normalization —»  Genotype calling HStandard quality control

-

Statistical analysis J—b

.

~

Replication / Validation

A

b

L.

Impact on population

A

Imputation

ng

Statistical analysis

A

—p Replication / Validation

—p{ Impact on population ‘

Data mining ]—p

-

Replication / Validation

—-

-

Impact on population

(Ziegler 2009)
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What do we need to carry out a genome-wide association study?

rpe ~T I\
PERSPECTIVE DRIMKIMG FROM THE FIRE HOSE — STATISTICAL ISSUES IN GEMNOMEWIDE ASSOCIATION STUDIES

STATISTICS AND MEDICINE

Drinking from the Fire Hose — Statistical Issues in Genomewide

Association Studies
David ). Hunter, M.B., B.S., and Peter Kraft, Ph.D.

he past 3 months have seen

the publication of a series of
studies examining the inherited
genetic underpinnings of com-
mon diseases such as prostate
cancer, breast cancer, diabetes,
and in this issue of the Journal,
coronary artery disease (reported
by Samani et al., pages 443—453).
These genomewide association
studies have been able to exam-
ine interpatient differences in in-
herited genetic variability ar an
unprecedented level of resolurion,
thanks to the development of mi-
croarrays, or chips, capable of as-

ating the need for guessing which
genes are likely to harbor variants
affecting risk. Most of the robust
associations seen in this type of
study have not been with genes
previously suspected of being re-
lated to the disease. Some of these
associations have been found in
regions not even known to har
bor genes, such as the 8g24 re-
gion, in which multiple variants
have been found to be associar
ed with prostate cancer.®* Such
findings promise to open up new
avenues of research, through both
the discovery of new genes rele-

Related article, page 443

The main problem with this
strategy is that, because of the
high cost of SNP chips, most stud-
ies are somewhat constrained in
terms of the number of samples
and thus have limited power to
generare P values as small as 107,
In addition, most variants identi-
fied recently have been associated
with modest relative risks (e.g.,
1.2 for heterozygotes and 1.6 for
homezygotes), and many true as
sociations are not likely to exceed
P values as extreme as 10~ in an
initial study. On the other hand,
a “sraristically significant” finding
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What do we need to carry out a genome-wide association study?

e To distinguish between true and chance effects, there are several routes to
be taken:

- Set tight standards for statistical significance

- Only consider patterns of polymorphisms that could plausibly have
been generated by causal genetic variants (use understanding of and
insights into human genetic history or evolutionary processes such as
recombination or mutation)

- Adequately deal with distorting factors, including missing data and
genotyping errors (quality control measures)
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APPLICATIONS NOTE

Are GWAs part of the Bioinformatics discipline?

Vol. 24 no. 1 2008, pages 140-142
doi:10.1093/bioinformatics/btm549

Genetics and population analysis

GWAsimulator: a rapid whole-genome simulation program

Chun Li"* and Mingyao Li?

'Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN 37232 and “Department of
Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA

Received on July 20, 2007; revised on October 10, 2007; accepted on October 29, 2007

Advance Access publication November 15, 2007
Associate Editor: Martin Bishop

ABSTRACT

Summary: GWAsimulator implements a rapid moving-window
algorithm to simulate genotype data for case-control or population
samples from genomic SNP chips. For case-control data, the
program generates cases and controls according to a user-specified
multi-locus disease model, and can simulate specific regions if
desired. The program uses phased genotype data as input and has
the flexibility of simulating genotypes for different populations and
different genomic SNP chips. When the HapMap phased data are
used, the simulated data have similar local LD patterns as the
HapMap data. As genome-wide association (GWA) studies become
increasingly popular and new GWA data analysis methods are being
developed, we anticipate that GWAsimulator will be an important
tool for evaluating performance of new GWA analysis methods.
Availability: The C++ source code, executables for Linux, Windows
and MacOS, manual, example data sets and analysis program are
available at http://biostat.mc.vanderbilt.edu/GWAsimulator
Contact: chun.li@vanderbilt.edu

Supplementary information: Supplementary data are available at
Bioinformatics online.

2 METHODS

The program can generate unrelated case-control (sampled retro-
spectively conditional on affection status) or population (sampled
randomly) data of genome-wide SNP genotypes with pattemns of LD
similar to the input data.

2.1 Phased input data and control file

The program requires phased data as input. If the HapMap data are
used, the number of phased autosomes and X chromosomes are 120
and 90 for both CEU and YRI, 90 and 68 for CHB, and 90 and 67 for
JPT. Additional parameters needed by the program should be provided
in a control file, including disease model (see Section 2.2), window size
(see Section 2.3), whether to output the simulated data (see Section 2.4),
and the number of subjects to be simulated.

2.2 Determination of disease model

For simulations of case-control data, a disease model is needed.
The program allows the user to specify disease model parameters,
including disease prevalence, the number of disease loci, and for each
disease locus, its location, risk allele and genotypic relative risk. If the

naw srrmem b b ctemsdata cmanlifia caimans tha et wemd aemd i anlbiaemn waad
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Are GWAs part of the Bioinformatics discipline?

APPLICATIONS NOTE * 515 1005 biomiomatcsintmios

Genetics and population analysis

GenABEL: an R library for genome-wide association analysis

Yurii S. Aulchenko'*, Stephan Ripke?, Aaron Isaacs' and Cornelia M. van Duijn’

'Department of Epidemiology and Biostatistics, Erasmus MC Rotterdam, Postbus 2040, 3000 CA Rotterdam,
The Netherands and “Statistical Genetics Group, Max-Planck-Institute of Psychiatry, Kraepelinstr. 10, D-80804

Munich, Germany

Received on December 3, 2006; revised on February 14, 2007; accepted on March 13, 2007

Advance Access publication March 23, 2007
Associate Editor: Martin Bishop

ABSTRACT

Here we describe an R library for genome-wide association
(GWA) analysis. It implements effective storage and handling of
GWA data, fast procedures for genetic data quality control, testing of
association of single nucleotide polymorphisms with binary or
quantitative traits, visualization of results and also provides easy
interfaces to standard statistical and graphical procedures imple-
mented in base R and special R libraries for genetic analysis. We
evaluated GenABEL using one simulated and two real data sets. We
conclude that GenABEL enables the analysis of GWA data on
desktop computers.

Availability: http://cran.r-project.org

Contact: i.aoultchenko@erasmusmc.nl

With these objectives in mind, we developed the GenABEL
software, implemented as an R library. R is a free, open
source language and environment for statistical analysis
(http://www.r-project.org/). Building upon existing statistical
analysis facilities allowed for rapid development of the package.

2 IMPLEMENTATION

2.1 Objective (1)

GWA data storage using standard R data types is ineffective.
A SNP genotype for a single person may take four values
(AA, AB, BB and missing). Two bits, therefore, are required to
store these data. However, the standard R data types occupy
32 bits, leading to an overhead of 1500%, compared to the
theoretical optimum. Use of the raw R data format. occupving

OJX0"SONRULIOJuIOlq//: Y WOy PIpROjuUMO
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Are GWAs part of the Bioinformatics discipline?

Vol. 26 ISMB 2010, pages i208-i216
doi:10.1093/bioinformatics/btq191

Multi-population GWA mapping via multi-task regularized

regression

Kriti Puniyani, Seyoung Kim and Eric P. Xing*

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA

ABSTRACT

Motivation: Population heterogeneity through admixing of different
founder populations can produce spurious associations in genome-
wide association studies that are linked to the population structure
rather than the phenotype. Since samples from the same population
generally co-evolve, different populations may or may not share the
same genetic underpinnings for the seemingly common phenotype.
Our goal is to develop a unified framework for detecting causal
genetic markers through a joint association analysis of multiple
populations.

Results: Based on a multi-task regression principle, we present a
multi-population group lasso algorithm using L;/L,-regularized
regression for joint association analysis of multiple populations
that are stratified either via population survey or computational
estimation. Our algorithm combines information from genetic
markers across populations, to identify causal markers. It also
implicitly accounts for correlations between the genetic markers, thus
enabling better control over false positive rates. Joint analysis across
populations enables the detection of weak associations common to
all populations with greater power than in a separate analysis of each
population. At the same time, the regression-based framework allows
causal alleles that are unique to a subset of the populations to be
correctly identified. We demonstrate the effectiveness of our method
on HapMap-simulated and lactase persistence datasets, where we
significantly outperform state of the art methods, with greater power
for detecting weak associations and reduced spurious associations.
Availability: Software will be available at http://www.sailing.cs.cmu
.eduw/

the geographical distribution of the individuals. For example, it has
been shown that such heterogeneity is present in the HapMap data
(The International HapMap Consortium, 2005) across European,
Asian and African populations; and heterogeneity at a finer scale
within European ancestry has been found in many genomic regions
in the UK samples of Wellcome trust case control consortium
(WTCCC) dataset (Wellcome Trust Case Control Consortium,
2007). Although the standard assumption in existing approaches
for association mapping is that the effects of causal mutations are
likely to be common across multiple populations, the individuals
in the same population or geographical region tend to co-evolve,
and are likely to possess a population-specific causal allele for the
same phenotype. For example, Tishkoff ef al. (2006) reported that
the lactase-persistence phenotype is caused by different mutations
in Africans and Europeans. In addition, the same genetic variation
has been observed to be correlated with gene-expression levels with
different association strengths across different HapMap populations.
Our goal is to be able to leverage information across multiple
populations, to find causal markers in a multi-population association
study.

1.1 Highlights of this article

We propose a novel multi-task-regression-based technique that
performs a joint GWA mapping on individuals from multiple
populations, rather than separate analysis of each population, to
detect associated genome variations. The joint inference is achieved
by using a multi-population group lasso (MPGL). with an L /L

015903 £q /B10'sBwInOfproyo'sonBULIONUIONY//:dRY WY ppRojIAmOQ
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APPLICATIONS NOTE

Are GWAs part of the Bioinformatics discipline?

Vol. 25 no. 5 2009, pages 662-663
doi:10.1093/bioinformatics/btp017

Genome analysis

AssociationViewer: a scalable and integrated software tool for
visualization of large-scale variation data in genomic context
Olivier Martin®-T, Armand Valsesia’-2-t, Amalio Telenti®, loannis Xenarios’

and Brian J. Stevenson':2:*

1Swiss Institute of Bioinformatics, 2Ludwig Institute for Cancer Research, 1015 Lausanne and 3Institute of
Microbiology, University Hospital, University of Lausanne, 1011 Lausanne, Switzerland

Received on September 16, 2008; revised on December 16, 2008; accepted on January 5, 2009

Advance Access publication January 25, 2009
Associate Editor: John Quackenbush

ABSTRACT

Summary: We present a tool designed for visualization of large-scale
genetic and genomic data exemplified by results from genome-wide
association studies. This software provides an integrated framework
to facilitate the interpretation of SNP association studies in genomic
context. Gene annotations can be retrieved from Ensembl, linkage
disequilibrium data downloaded from HapMap and custom data
imported in BED or WIG format. AssociationViewer integrates
functionalities that enable the aggregation or intersection of data
tracks. Itimplements an efficient cache system and allows the display
of several, very large-scale genomic datasets.

Availability: The Java code for AssociationViewer is distributed
under the GNU General Public Licence and has been tested on
Microsoft Windows XP, MacOSX and GNU/Linux operating systems.
It is available from the SourceForge repository. This also includes
Java webstart, documentation and example datafiles.

Contact: brian.stevenson@licr.org

Supplementary information: Supplementary data are available at
http://sourceforge.net/projects/associationview/ online.

represented in BED or WIG format and implements aggregation
(union) or intersection of data tracks.

2 PROGRAM OVERVIEW

2.1 Cache and memory management

With increasing data volumes, efficient resource management is
essential. One approach is to store the data in a cache with fast
indexing mechanisms to retrieve the data, and to keep in memory
only the information that is visualized. We implemented such a
system in AssociationViewer. For comparison, loading a single
dataset with 500 K SNPs in WGAViewer needs about 224 MB of
RAM., whereas loading 10 different datasets (a total of 10M data
points) and displaying all genes on chromosome 1 needs only 50 MB
in AssociationViewer.

2.2 Data import and export

A typical GWA dataset consists of a list of SNPs with P-values
derived from an association analysis. In AssociationViewer, such
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(Martin et al 2009)
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Fig. 1. General view of AssociationViewer (A and B). Also displayed are
the input files (C), annotation data downloaded (D), cross-references (E) and
export format (F).



GBIO0009

2 GWA:s in details: study design
What are the components of a study design for GWA studies?

e The design of a genetic association study may refer to

- study scale:
= Genome-wide
= Genomic

- marker design:
= Which markers are most informative? Microsatellites? SNPs? CNVs?
= Which platform is the most promising?

- subject design
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Does scale matter?

A \ \\‘\\
candidate gene approach _Can t see the forest fi;r the

_.‘,trees L5

VS

genome-wide screening approach
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Does scale matter?

MNumber of SNPs

Genotype full set
Stage 1 R k k ﬂ R k R of SNPs in relatively
small population at

liberal p value

Stage 2

Screen second,
larger population
at more stringent
p value

Stage 3 k R
Optional third stage

for increased
stringency

S e e ZHe >3
e e e e =5
S S SEe 53 =3
SR e e e 5B




GBIO0009

2.a Marker Level
Which genetic markers to select?

e Continuous distribution of genetic variants, shaped by mutation and
selection

e The Common Disease/Common Variant hypothesis (CDCV)

Effect

Major genes

Oligogenes

Polygenes

Frequency

(Ziegler and Van Steen, 2010)
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Types of genetic diseases: Mendelian, oligogenic, polygenic

e Monogenic diseases are those in which defects in a single gene produce
disease. Often these disease are severe and appear early in life, e.g., cystic
fibrosis. For the population as a whole, they are relatively rare. In a sense,
these are pure genetic diseases: They do not require any environmental
factors to elicit them. Although nutrition is not involved in the causation of
monogenic diseases, these diseases can have implications for nutrition.
They reveal the effects of particular proteins or enzymes that also are
influenced by nutritional factors

(http://www.utsouthwestern.edu)
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e Oligogenic diseases are conditions produced by the combination of two,
three, or four defective genes. Often a defect in one gene is not enough to
elicit a full-blown disease; but when it occurs in the presence of other
moderate defects, a disease becomes clinically manifest. It has long been
the expectation of human geneticists that many chronic diseases can be
explained by the combination of defects in a few (major) genes.

e A third category of genetic disorder is polygenic disease. According to the
polygenic hypothesis, many mild defects in genes conspire to produce some
chronic diseases. To date the full genetic basis of polygenic diseases has not
been worked out; multiple interacting defects are highly complex !!!

(http://www.utsouthwestern.edu)
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e Complex diseases refer to conditions caused by many contributing factors.
Such a disease is also called a multifactorial disease.
- Whereas some disorders, such as sickle cell anemia and cystic fibrosis,
are caused by mutations in a single gene,
- common medical problems such as heart disease, diabetes, and obesity
likely associated with the effects of multiple genes in combination with
lifestyle and environmental factors, all of them possibly interacting.

‘ Challenge for many years to come ...



http://ghr.nlm.nih.gov/condition=cysticfibrosis
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Number of human Mendelian tralts
for which molecular basls found

1800 - + 100
—#— Human Mendelian traits

4 2 + 90
- —&— All complex traits

14004 | —&— Human complex traits

1200 4

1000 4

800 +

600 4

Number of complex trait

1980 1985 1990 1995 2000
Year

(Glazier et al 2002)



GBIO0009

Dichotomous Traits Quantitative Traits
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Arking & Chakravarti 2009 Trends Genet

Food for thought:

e The higher the MAF (minor allele frequency), the higher the detection rate?
e The higher the MAF, the lower the penetrance?
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Which genetic markers to select?

Linkage 1z
anil

AEE0C1IAL0n ﬁ

(Figure: courtesy of Ed Silverman)

e Linkage exists over a very broad
region, entire chromosome can
be done using data on only 400-
800 DNA markers

e Broad linkage regions imply
studies must be followed up
with more DNA markers in the
region

e Must have family data with
more than one affected subject

E.g., microsatellites
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Which genetic markers to select?

e Association exists over a narrow
region; markers must be close to
disease gene

- The basic concept is linkage
disequilibrium (LD) — see
later in this chapter

e Initially used for candidate genes
or in linked regions

e Can use population-based
(unrelated cases) or family-
based design

E.g., SNPs

O B0 B0

Linkage 'z

anil

E) 1V 3 12
i3 if3 a3

] & 13 113 1% 1¥3

The Future of Genetic Studies of
Complex Human Diseases

Neil Risch and Kathleen Merikangas
SCIENCE e VOL. 273 » 13 SEPTEMBER 1996
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Which DNA SNPs to select? (adapted from Manolio 2010)

Cost per genotype (Cents, USD)

102

10

ABI
TagMan
ABI
SNPlex
[llumina
Golden Gate Affymetrix
Affymetrix pegaiele
10K [llumina
Infinium/Sentrix Perlegen

Affymetrix

100K/500K
Nb of
1 10 102 103 10 105 10° SNPs
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How can technology bias be avoided?

e Standard experimental design problems
o Cases and controls not balanced / randomized across plates
o Controls borrowed from other studies
o Trios/families split across plates
o Genotyping performed at different sites and / or using different technologies

and / or chips

e Consequences of desigh problems
o Batch effects

o High type | error fractions
o Up to 50% of top hits discarded

o Analyses of copy number variation extremely compromised

(Ziegler and Van Steen, Brazil 2010)
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How can technology bias be avoided?

e DNA extraction

o Same site

o Same tissue (e.g., blood only)

o Same extraction kit

o Same time between freezing

o Same collection time of cases and controls

o Avoid cell lines

o Avoid whole genome amplification (if necessary do it in both cases and

controls)

(Ziegler and Van Steen, Brazil 2010)
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How can technology bias be avoided?

e Plating
o Randomize phenotype/s across plates using statistical design
o Stratify by gender
o Run technical duplicates within and across plates to assess variability
o Keep families together
o Do it yourself, do not leave it to the laboratory
¢ Genotyping
o All chips from single manufacturing lot
o Genotype at single site
o Genotype over shortest period of time possible
o Avoid day effects, e.g., by using same technician over time

o Re-genotype bad samples

(Ziegler and Van Steen, Brazil 2010)
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Choosing SNPs for GWAs: summary

e Costs may play a role, but a balance is needed between costs and chip
performance as well as coverage (e.g., exonic regions only?)

e Old array technologies versus Next Generation Sequencing efforts to
include rare variants into the game

Monogenic
Linkage

2 "‘ : - @ M
e % onozygote
SRRl © e [Penetrance |

Heterozygote

Polygenic
GWAS

lllumina 610S Quad Beadchip
Ragoussis 2009 Annu Rev Genomics Hum Genet —>

Frequency of disease-causing variants in the population |

(Gut 2012)
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2.b Subject Level

Which study subjects to select?

Details

Advantages

Disacvartages

Statistical analysis method

Cross-sectional

Cohort

Case-contrel

Extrerne walues

Case-parent friads

Case-parent.
grandparent septets
(Gereral pedigmes

Case-onky

[HA- pooling

Gerotype and phenctype (e, note dis ease status
ar quantitatiee trait value) 2 random sample from
populaticn

Geratype subsection of population and fallos
diseaze indderce for specified time percd
Gerotype specified number of affected (caze] ard
unaffected [control)indriduals. Cases usually
obtained from family practitioners or disease
registies contrels cbtaired frem randemn
population sample or coneenience sample
Genatype indiidvalswith edreme (high orlow)
walues of a quantitatiee trait, asestablished from
initial cross-sectional or cohort sample

Genatype affected individuals plus their parerts
(affected ndividuals determined from initial
cross-sectional, cobort or disease. cutcome
barsed sarmple)

Genatype affected individuals plus their parerts
and grandparents

Genatype random sample or disease-outoo me
barsed sarmple of families from general population.
Phenctype for disease trait or quantitatice trait
Genatype only affected ndividuals, obtained

from iritial oross-sectional, cohot, or discase-
outcome based sample

Appliestowaniety of abowe designg. but genctyping
iz of pock cf ampater: between baa and 100
indreiduals, ratherthan onan individual basis

Inexpensiee. Providesestimate of
disease prevalence

Provides estimarte of diszase
nodencs

He reed far follow- up.
Provides estimates of ecposure
effects

Genotype only most informative
ndividuals hence save on
genctyping costs

Robust to population stratification
Can estimate maternal and
mprinting effects

Robust to population stratification
Can estimate maternal and
mprinting effects
Higher pow erwith large families.
Sarnple may already exist frorm
inkage studies

Mot powerful design for
detection of interaction effects

Potentialy inexpen sive compared
with indisidual genotyping (but
technology still under
development]

Few affected individuals if
diszase rare

Ecpensive to falkes-up.
|zmseswith drop-cat
Requires careful selection of
controls
Fotenitial for confounding
[eg. population stratification)

Mo estirate of true genetic
effiect sres

Less powerful than case.-
control design

Grandparents rareky aeailable

Expensive to genobype.
Karyy missing ndividuals

Can only estimate interaction
effects. Very sensitive bo
population stratification
Hard to estimate different
experimental scunes of
wariane

Lagistic regression, i tests of
assodation o inear regression

Surviwal analysis metheds

Lagistic regression,
¥’ stz of association

Lirzar regression, non-parametric,
ar permutation approaches

Trarsmission/ disequiibriurm test,
corditional logistic egression or
log-linear models

Log- linear madels

Pedigres disequilibriumn test,

family. based assocation test, quantitative
transmission/disequilibivm test

Lagistic regressian, x testsof

assodation

Estimation of components of vanance

Table 2: Study deslgnsfor genetic assoclation studles

(Cordell and Clayton 2005)
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Which study subjects to select?

e Cohort studies

o Assumption |: Participants under study representative for population of
interest

o Assumption II: Phenotypes ascertained similarly in subjects with and without
the relevant genetic variants

o Advantage I: Incident cases, free of survival bias

o Advantage Il: If prevalent cases available, too, comparison of incident and
prevalent cases possible

o Advantage lll: Availability of intermediate phenotypes (quantitative traits)
with distribution as in population

o Advantage IV: Direct measure of risk

o Advantage V: Fewer bias than case-control studies

o Disadvantage I: Long follow-up required

(Ziegler and Van Steen, 2010)
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Which study subjects to select?

e Cohort studies (continued)
o Disadvantage Il: Large sample size required
o Disadvantage lll: Expensive
o Disadvantage IV: Poorly suited for studying rare diseases
o Disadvantage VII: Unbalanced distribution of cases and controls
o Disadvantage V: Consent for GWA genotyping often required
o Disadvantage VI: Consent for data sharing often required

o Disadvantage VIII: DNA quality

(Ziegler and Van Steen, 2010)
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Which study subjects to select?

e Family-based association studies

o Assumption I: Families representative for population of interest

o Assumption Il: Same genetic background in both parents

o Advantage |: Controls immune to population stratification, i.e., no spurious
associations, i.e., no association without linkage

o Advantage |IlI: Checks for Mendelian inheritance possible, i.e., fewer
genotyping errors

o Advantage lll: Parental phenotyping not required

o Advantage IV: Simple logistics for diseases in children

o Advantage V: Allows investigation of imprinting

o Disadvantage |: Cost inefficient

o Disadvantage Il: Lower power when compared with case-control studies

o Disadvantage lll: Sensitive to genotyping errors

(Ziegler and Van Steen, 2010)
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Which study subjects to select?

e Case-control studies

o Assumption |: Cases and controls drawn from same population
o Assumption Il: Cases representative for all cases in population
o Assumption Ill: All data collected similarly in cases and controls
o Advantage |: Simple

o Advantage Ill: Cheap

o Advantage lll: Large number of cases and controls available

o Advantage IV: Optimal for studying rare diseases

o Disadvantage |: Prone to population stratification

o Disadvantage Il: Prone to batch effects

o Disadvantage Ill: Prone to other biases

o Disadvantage IV: Cases usually prevalent { fatal, short episodes, mild cases ...

o Disadvantage V: Overestimation of risk for common disease

(Ziegler and Van Steen, 2010)
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Which study subjects to select?

Aim Selection scheme

Increased effect size Extreme sampling: Severely affected cases vs. extremely

normal controls

Genes causing early Affected, early onset vs. normal, elderly

onset

Genes with large / Cases with positive family history vs. controls with
moderate effect size negative family history

Specific GXE interaction Affected vs. normal subjects with heavy environmental

exposure

Longevity genes Elderly survivors serve as cases vs. young serve as controls

Control for covariates Affected with favorable covariates vs. normal with
with strong effect unfavorable covariate

Morton & Collins 1998 Proc Natl Acad Sci USA 95:11389
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Which study subjects to select?

Rare versus common diseases (Lange and Laird 2006)

a Rare disease (prevalence 0.1%) b Common disease (prevalence 14%)
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3 GWA:s in detail: prior analyses

Is there a standard file format for GWA studies?

Standard data format: tped = transposed ped format file

FamID PID FID MID SEX AFF SNP1,; SNP1, SNP2;, SNP2,

1 0 O 1 1 A A G T

ped file

N R|W I N|=

1 1
1 1
1 1
1 1
1 1

SNP name Genetic distance Chromosomal position

1 SNP1 0 123456 map file

1 SNP2 0 123654




GBIO0009

Is there a standard file format for GWA studies?

Gen. dist. Pos

PID1 PID2 PID3 PID4 PID5 PID6

123456 A A A C C C A C C C C C

Chr SNP
1 SNP1 O
1 SNP2 O

123654 G T G T G G T T G T T T

tfam file: First 6 columns of standard ped file

FamIiD PID FID MID SEX AFF

1

0

0

1

1

tped file

tfam file

Gl |l W N
RlIER| R R -

ol OO O

|| o]0 )| O

1
1
1
1
1

NN NP
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3.a Quality control

Why is quality control important?

BEFORE (false positives !!!1):
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chromosome

10

1
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Ger MI FS |, Affymetrix 500k array set, SNPs on chip: 493,840

(Ziegler and Van Steen 2010)
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Why is quality control important?

AFTER:

-loa(P)

1 2 3 4 5 6 7 ] 9 10 11 12 13 14 18 16 17 19 2

chromosome

Ger MI FS |, Affymetrix 500k array set, SNPs on chip: 493,840

SNPs passing standard quality control: 270,701
(Ziegler and Van Steen 2010)
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What is the standard quality control?

e Quality control on different levels:
o Subject or sample level
o SNP level
o X-chromosomal SNP level
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What are standard filters on the sample level?

e Call fraction as high as possible

e Cryptic relatedness: if identity by state (IBS) too high, subjects
closely related

e Ethnic origin (principal component, multidimensional scaling, non-
metric multidimensional scaling): homogeneous study populations
required

e No excess or deficiency of heterozygosity (contamination of DNA,
hybridization failure)

(Ziegler and Van Steen 2010)
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What are standard filters on the SNP level?

e Minor allele frequency (MAF)
o Genotype calling algorithms perform poorly for SNPs with low MAF
o Power low for detecting associations to SNPs with low MAF,
e Missing frequency (MiF)
o Also termed 1 minus SNP call rate
o Indicator for cluster separation
o Investigate MiF separately in cases and in controls because of differential
missingness
e Hardy-Weinberg equilibrium (HWE)
o SNPs excluded if substantially more or fewer subjects heterozygous at a SNP

than expected (excess heterozygosity or heterozygote deficiency)

(Ziegler and Van Steen 2010)
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What is Hardy-Weinberg Equilibrium (HWE)?
Consider diallelic SNP with alleles A; and A,

e Genotype frequencies
P(A1A)) = pu, P(A1A2) = pr2, P(A2Az) = pa
o Allele frequencies P(A|) = p = py1 + %plg , P(A2) =q =py+35p

D =
S
[

the population is said to be in HWE at the SNP

(Ziegler and Van Steen 2010)
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What are the assumptions of HWE?

e Random mating

e No selection or migration

¢ No mutation

e No population stratification
¢ Infinite population size
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One of the signs of deviations from HWE?

Increased HOM (e.g., in case of population stratification; Wahlund effect)
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How can HWE be measured?

A simple calculator to determine whether observed genotype
frequencies are consistent with Hardy-Weinberg equilibrium

Genotypes Observed # Expected #

Homozygote reference: 68 67,2

Heterozygote: 3 6,7

Homozygote variant: 1 0,2
APut your values here”

Var allele freq: 0,05

X?=  4.634376581

X2 test P value = 0,031338 with 1 degree of freedom.

1. If P < 0.05 - not consistent with HWE.

2. Not accurate if <5 individuals in any genotype group.

Michael H. Court (2005-2008)
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How can HWE be measured?

e The x2 approximation can be poor when there are low genotype counts, in
which case it is better to use a Fisher exact test.

e Discard loci that, for example, deviate from HWE among controls at
significance level a = 1073 or 1074. But be flexible!

e The open-source data-analysis software R includes the “SNPassoc” package
that implements an exact SNP test of Hardy-Weinberg Equilibrium for you
(http://www.sph.umich.edu/csg/abecasis/Exact/snp_hwe.r)

2 (O - E)?
=), %

Expectations computed under the null of HWE

Nr of degrees of freedom is 1 (p+qg=1)
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How can extreme HWD be visualized?

e A useful tool for interpreting the results of HWE and other tests on many
SNPs is the log quantile—quantile (QQ) p-value plot:
- the negative logarithm of the j-th smallest p-value is plotted against
—log (i / (L + 1)), where L is the number of SNPs.
- The 0.45 (or 45%) quantile is the point at which 45% percent of the data
fall below and 55% fall above that value.

e A 45-degree reference line is also plotted as visualization tool:
- If the two sets come from a population with the same distribution, the
points should fall approximately along this reference line.
- The greater the departure from this reference line, the greater the
evidence for the conclusion that the two data sets have come from
populations with different distributions.
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How can extreme HWD be visualized?

-log,, (observed P value)

-log,, (expected P value)

(Balding 2006)
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Legend (previous slide)

Plots of power (solid lines) and coverage (dotted line) for increasing sample sizes of cases
and controls (x-axis).

From left to right plots are given for increasing effect sizes (relative risk per allele). Both power
and coverage range from 0 to 1 and are given on the y-axis. Results are for single-marker test
of association and for simulations where the risk allele frequency of the causal allele is >0.05.
The top row shows power for case-control studies simulated in a Caucasian population based
on the CEU HapMap panel. The bottom row relates to case-control studies simulated from the
YRI HapMap panel.

doi:10.1371/journal.pgen.1000477.g002
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RAF from 0% to 10%
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RAF from 10% to 50%
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Legend (previous 2 slides)
Power for Common versus Rare alleles.

Plots of power (solid lines) and coverage (dotted line) for increasing sample sizes of cases and
controls (x-axis). From left to right plots are given for increasing effect sizes (relative risk per
allele). Both power and coverage range from 0 to 1 and are given on the y-axis. Results are for
single-marker test of association. The top two rows show the power for rare risk alleles
(RAF<0.1) and the bottom two rows show the power for common risk alleles (RAF>0.1). Rows 1
and 3 show power for case-control studies simulated in a Caucasian population based on the
CEU HapMap panel. Rows 2 and 4 relate to case-control studies simulated from the YRI
HapMap panel.

doi:10.1371/journal.pgen.1000477.g003
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What are the Travemiinde criteria?

Filter criterion

Standard value for filter

Sample level Call fraction > 97%
Cryptic relatedness Study specific
Ethnic origin Study specific; visual inspection of
principal components
Heterozygosity Mean £ 3 std.dev. over all samples
Heterozygosity by gender Mean £ 3 std.dev. within gender group
SNP level MAF >1%
MiF < 2% in any study group, e.g., in both

MiF by gender
HWE

cases and controls
< 2% in any gender
p < 10

(Ziegler 2009)
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What are the Travemiinde criteria?

Filter criterion Standard value for filter
SNP level Difference between control groups p > 10" in trend test

Gender differences among controls p>10"*in trend test
X-Chr SNPs Missingness by gender No standards available

Proportion of male heterozygote calls No standards available

Absolute difference in call fractions for No standards available
males and females

Gender-specific heterozygosity No standard value available

(Ziegler 2009)
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3.b Linkage disequilibrium and SNP tagging

Mapping the relationships among SNPs (Christensen and Murray 2007)

Chromosome

Exon

SNP 1 SNPZ SNP3 NP4 SNPS SNPG SN*P7 SN‘PS
5
5 8

| 8lock 1 l Block 2
3t

6 7




GBIO0009

Relationships among SNPs induce multiple signals

COXNIA COXNIE
4 - pliced E5Ty
o o e
— 0o 0
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..\ ‘,‘v - o A / '/_ . ". ',:" /.« ) , ‘ g ¥ \ \‘. “\ ;

(Samani et al 2007))

® These plots can be generated using the free software “Haploview”, but
also in R!
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Distances among cities

Provi- New Phila- Balti-
dence York delphia more

Boston

Providence -
New York -

Philadelphia 320 237 -
Baltimore 430 325 --
Washington 450 358 --

Distances among cities
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Distances among SNPs

e Linkage Disequilibrium (LD) is a measure of co-segregation of alleles in a
population: Two alleles at different loci that occur together on the same
chromosome (or gamete) more often than would be predicted by random
chance.

e Hence, in general, LD is taken to be a measure of allelic association.

® |t gives the rational for performing genetic association studies

IndiecE 000 e > [Disease ]
association _e=""" phenotype
-
-
’ Direct Direct
| association association
- : —Haplotype

Typed marker locus Unobserved causal locus
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Distances among SNPs

e The measure D is defined as the difference between the observed and
expected (under the null hypothesis of independence) proportion of
haplotypes bearing specific alleles at two loci: pas- paps

A |a
B | pas|pas
b | pab | Pab

- D’ (Lewontin’s D prime) is the absolute ratio of D compared with its
maximum value.
- D’ =1:complete LD
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Distances among SNPs

e The most popular measure of allelic association in GWA contexts is r? (the

square correlation coefficient between the two loci under study).
e When r’=1, knowing the genotypes of alleles of one SNP is directly

predictive of genotype of another SNP
e r’relates to D in the following way:

D2
R? =
P(A)P(a)P(B)P(b)

e Sample size must be increased by a factor of 1/r? to detect an unmeasured
variant, compared with the sample size for testing the variant itself.
(Jorgenson and Witte 2006)
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How far does linkage disequilibrium extend?

1,00

D' » :
.
0,40 ¥ . .
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E
* K3
4
* *
0,20 + ¢ o ! ¢
+ { ¢ * e 4
. . * .
+ 2% L ]
0.00 et s * 3
0 20 40 60 80 100 120 140 160

Distance (Kb)
(Hecker et al 2003)

e LD is usually a function of distance between the two loci. This is mainly
because recombination acts to break down LD in successive generations
(Hill, 1966).


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=retrieve&db=pubmed&list_uids=5980116&dopt=Abstract
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How to interpret LD data?

® The patterns of LD observed in natural populations are the result of a
complex interplay between genetic factors and the population's
demographic history (Pritchard, 2001).

e \When a mutation first occurs it is e Thus, it decreases at every
in complete LD with the nearest generation of random mating
marker (D' = 1.0). Given enough unless some process is opposing to
time and as a function of the the approach to linkage
distance between the mutation ‘equilibrium’.
and the marker, LD tends to decay |
and in complete equilibrium ﬂl HH P ﬂ[ M'
reached D' = 0 value. e A o S M S

—_—_
+

—_—

(———


http://www.journals.uchicago.edu/AJHG/journal/issues/v69n1/012882/012882.html
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How can one tag SNP serve as proxy for many? (adapted from Manolio 2010)

mm— T c— L o

SNP1 SNP2 SNP5 SNP6 SNP8
L ! ! !
A C G T T
G T G T c
A C G i T
A C c A T

I® I®
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IO 10
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How can one tag SNP serve as proxy for many? (adapted from Manolio 2010)

m— ™ cm— —
SNP8
| !

CAGATCGCTG - ATGAATCGCATCTGTAAGCAT
CGGATTGCTGCATGGATCGCATCTGTAAGCAC

CAGATCGCTGC-ATGAATCGCATCTGTAAGCAT
CAGATCGCTGC -ATGAATCCCATCAGTACGCAT

CGGATTGCTGCATGGATCCCATCAGTACGCAT
CGGATTGCTGCATGGATCCCATCAGTACGCAC
%
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Where is the true causal variant? One of our proxy’s? ...
A
67400000
Hypothetical protein, IL12RB2: interleukin 12
NM_001013674 receptor, beta-2
L o i L |
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(Duerr et al 2006)
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3.c Confounding
What is spurious association?

e Spurious association refers to false positive association results due to not
having accounted for population substructure as a confounding factor in
the analysis

Case Control

0000...0000

Population
2

0000
Q0 OO0
Q000

0000
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What is spurious association?

e Typically, there are two characteristics present:
- A difference in proportion of individual from two (or more)
subpopulation in case and controls
- Subpopulations have different allele frequencies at the locus.

Population 1 Cases Population 2

Y

A

Y

_—
-

Controls

Genotype .aa .Aa .AA
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What are typical methods to deal with population stratification?

e Methods to deal with spurious associations generated by population
structure generally require a number (at least >100) of widely spaced null
SNPs that have been genotyped in cases and controls in addition to the
candidate SNPs.

e These methods large group into:

o Genomic control methods
o Structured association methdos
o Principal component-based methods
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What is genomic control?

e In Genomic Control (GC), a 1-df association test statistic is computed at
each of the null SNPs, and a parameter A is calculated as the empirical
median divided by its expectation under the chi-squared 1-df distribution.

e Then the association test is applied at the candidate SNPs, and if A > 1 the
test statistics are divided by A.

o Under Hj of no association p-values uniformly distributed

o In case of population stratification: inflation of test statistics

- median(x7, X3, - - -, X7 ) N median(xi, x3, . . - X7 )
median(L(x%)) 0.456

o Xee = X°/ A
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What is genomic control?

e The motivation for GC is that, as we expect few if any of the null SNPs to be
associated with the phenotype, a value of A > 1 is likely to be due to the
effect of population stratification, and dividing by A cancels this effect for
the candidate SNPs.

e GC performs well under many scenarios, but can be conservative in
extreme settings (and anti-conservative if insufficient null SNPs are used).

e There is an analogous procedure for a general (2 df) test; The method can
also be applied to other testing approaches.
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What is a structured association method?

e Structured association (SA) approaches are based on the idea of attributing
the genomes of study individuals to hypothetical subpopulations, and
testing for association that is conditional on this subpopulation allocation.

e Several clustering algorithms exist to estimate the number of
subpopulations.

e These approaches (such as Bayesian clustering approaches) are
computationally demanding, and because the notion of subpopulation is a
theoretical construct that only imperfectly reflects reality, the question of
the correct number of subpopulations can never be fully resolved....
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What is principal components analysis?

e When many null markers are available, principal components analysis
provides a fast and effective way to diagnose population structure.
e Principal components are linear combinations of the original “variables”

(here SNPs) that optimized in such a way that as much of the variation in
the data is retained.
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e In European data, the first 2 principal components “nicely”

and E-W axes !

reflect the N-S
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|”

e Does the same hold on a “globa

(world) level?
2D projection using top-30 PCA-correlated SNPs

0.15 T T : :
<~  AFR
© EUR
0.1 o AS| |.
AME
0.05 .
0 ¥, 1
-0.05 -
-0.1 ' !
-0.1 0.05 01 0.15

(Paschau 2007)
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4 GWA:s in detail: testing for associations

e Using the SNPs and subjects that passed QC, investigators generally use
logistic regression with case-control status as the dependent variable and a
single SNP as the predictor.

e Some investigators include covariates in the logistic regression model like
age, sex, or indicators of ancestry.

e The SNPis coded as 0, 1, or 2 (i.e., the number of copies of one of the two
alleles) for an additive test with one degree of freedom.

e In some instances, alternative genetic models are used (e.g., recessive or
dominant) but most studies use a 1 degree of freedom additive test as the
primary statistical test.

e This analysis is repeated for each SNP for a million or more statistical tests...
(Corvin et al. 2010)
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Can screening for 1000nds of SNPs be performed automatically in R?

e GenAbel is designed for the efficient storage and handling of GWAS data
with fast analysis tools for quality control, association with binary and
qguantitative traits, as well as tools for visualizing results.

e pbatR provides a GUI to the powerful PBAT software which performs family
and population based family and population based studies. The software has

been implemented to take advantage of parallel processing, which vastly reduces the
computational time required for GWAS.

e SNPassoc provides another package for carrying out GWAS analysis. It
offers descriptive statistics of the data (including patterns of missing data!)
and tests for Hardy-Weinberg equilibrium. Single-point analyses with binary
or quantitative traits are implemented via generalized linear models, and
multiple SNPs can be analyzed for haplotypic associations or epistasis.


http://cran.r-project.org/web/packages/GenAbel/index.html
http://cran.r-project.org/web/packages/pbatR/index.html
http://cran.r-project.org/web/packages/SNPassoc/index.html
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Is there one tool that fits it all? NO

Genetic Analysis Software

Last Update: March 16, 2012

Computer software on the Dllowing topics are includad here: genatic linkage analysis for human padigree data, QTL analysis for animal/plant braading data, genstic marker ordering, genatic associstion analysis, haplotyps construction, padigres drawing, and population genatics. This list is oférad here a3 3 service to the gens mapping community. The
inclusion of a program should not b2 intarpratad as an endorsement to that program fom us.

In the last £w years, new tachnology produces new types of genstic data, and the scops of genetic analyses change dramatically. It is no longer obvious whather a program should b2 includad or excludad Fom this list. Topics such as i ing (NGS), gens ion, genomics ion, etc. can all ba relevant to 3 genatic study, yet b2
spacializad topics by themssives. Though programs on variance calling Fom NSG can b in, thoss can saquence alignment might ba out; programs on 2QTL can bs in, thoss on difSrential sxprassion might be out.

This page was creatad by Dr. Wentian Li, when he was at Columbia University (1995-1906). It was later movad to Rocke®ller University (1096-2002), and now takes its new home at North Shore LIJ Research Institute (2002-now). More than 240 programs have been listad by Dacember 2004, mora than 350 programs by August 2005, closa to 400
programs by Dacember 2006, closs to 480 programs by November 2008, and 520 programs by August 2010. A version of the sssrchabla datsbase was davelopsd by Zhilisng Hu of lows State University, and a racent round of updating was assistad by Wei JIANG of Harbin Madical School.

! (Linksge and Mapping Software Repository), and http://genemics. com softwars index htm may contsin archived copy of some programs.

Mmmmpnmgesmmwnmmk Ru:mmlmmkp&gmmmm]mkml Ifa R package is not submittad to CRAN, I will kaep its original name. Here is another partial list of statistical genatics R packages summarizad by CRAN
more R packages can be Hund in: hitp:/ 2c.uly X mavo.adu' research /schaid lab/'soffware.cfim, htto:/woice woic. pitt. edn WPICCompGen 'sofftware. htm, http://www-zens cims.cam. ac.ulclavton 'sofiware/, smong other places.

Soms earlier softwara can b2 downloadad fom EBL

Ifyou have new prozrams to add or any updatd information, pleass send 3 message to webadmA@nslij-zenstics.orz

what's new | link to other sources | obsolete programs
page 1 (A-F) mge 2(G-L) ! page 3 (M-P) | page 4 (Q-Z)
wx¥lz

(http://linkage.rockefeller.edu/soft/)
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4.a Single SNP (http://hihg.med.miami.edu)

e Assuming a case-control design, the simplest method is to use a
contingency table to test associations.

e This example illustrates an association of a binary trait and binary exposure.

Contingency (or 2 x 2) Table

Cases Controls Total
Exposed a b a+b
Unexposed c d c+d
Total atc b+d a+b+c+d
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e The Odds Ratio (OR) is an approximation of the relative risk. Use is usually
with case-control and prevalent (or cross-sectional) data.

e The Odds Ratio compares the odds of exposure in cases to the odds of
exposure in controls.

e OR best estimates RR when the disease is rare (< 5%) under all exposure
levels.

Odds Ratio (OR)

Contingency (or 2 x 2) Table

Cases

Controls

Total

Exposed

a

b

a+h

Unexposed

c

d

c+d

Total

atc

b+d

at+b+c+d

OR = (alc) / (b/d)
= (a*d) / (b*c)
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e The relative risk or odds ratio can illustrate the strength of association
between a risk factor and a trait. However, those measures do not assess
whether the association is due to chance.

e Statistical tests such as the Chi-Square test can tell whether or not an
observation of association is statistically significant (in other words, unlikely
to be due to chance).

e Chi-square tests of association generally assess whether the observed
association has less than a 5% chance of being due to chance.

e A chi-square test for a 2x2 table is illustrated on the next slide.

e Because exposures may increase or decrease risk of disease, a two-sided
test of association is generally performed.

e |If a small sample size is being tested (for example, any cell in the 2x2 table
is less than 5), the chi-square test is not a valid test of association. In such a
case it is necessary to use an exact test, such as Fisher’s Exact Test.
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The chi-squared test of association

Chi-square test of association
(a+b+c+d)[|ad-bc| - .5(a+b+c+d)]2

(a+c)(b+d)(a+b)(c+d)
on 1 Degree of Freedom (df)

12 =

Test-based 95% confidence
interval (Cl) for OR:
95% Cl=exp [In OR £1.96 * (In OR/ %)]
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The chi-squared test of association

e Before, we have seen another formula for a chi-squared test:

(obs —exp)?
Xi=2 exp

- When?
— What was obs and what was exp?
— What is obs and what is exp now?
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Multiple testing

e A typical GWAS for one disease includes one logistic regression per SNP, or
500,000 or more statistical tests.

e These tests are not all independent as SNPs that are located close to one
another can be correlated due to linkage disequilibrium.

e Even so, with 10°-10° statistical tests, very small p-values by conventional
standards are expected by chance.

e P-values < 5x1078 (akin to a Bonferroni correction of the traditional 0.05
Type 1 error level for 1,000,000 statistical tests) (Pe’er et al., 2008) are
generally required for significance.

(Corvin et al. 2010)
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What is a multiple testing correction?

e Simultaneously test m null hypotheses, one for each SNP j
Hoi: no association between SNP j and the trait
e Every statistical test comes with an inherent false positive, or type |
error rate—which is equal to the threshold set for statistical
significance, generally 0.05.

e However, this is just the error rate for one test. When more than one
test is run, the overall type | error rate is much greater than 5%.
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What is a multiple testing correction?

e Suppose 100 statistical tests are run when (1) there are no real
effects and (2) these tests are independent, then the probability that
no false positives occur in 100 tests is 0.95'%° = 0.006. So the
probability that at least one false positive occurs is 1-0.006=0.994 or
99.4%

e There is not a single measure to quantify false positives (Hochberg et
al 1987): FEW (family-wise error); FDR (false discovery rate); ...
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What is a multiple testing correction?

e Several multiple testing corrections have been developed and
curtailed to a genome-wide association context, when deemed
necessary

e Bonferroni (highly conservative) [divide each single SNP-based p-
value by the nr of tests before comparing to the nominal sign level
0.05] vs

e permutation-based (highly computational demanding) [keep the LD
structure, but swap the trait labels among the subjects]

Note: To reduce the multiple testing burden one can exploit the LD structure
in the data (e.g., perform multilocus tests, or haplotype tests, or take a
limited number of tagging SNPs to be tested one at a time).
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A cautionary note about multiple testing

Experience suggests that findings
more significant than a threshold
of 5x1078 tend to replicate well
across studies.

However, unless power is
exceptional, it is generally
incorrect to always exclude a SNP
from consideration if does not
exceed this threshold.

Indeed, some SNPs that are
unimpressive in an initial study
(e.g., p=0.001) can eventually

replicate well and exceed the
critical threshold.

a
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03 HTMIAGT
02 N
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= schizophrenia/DRD3
0.05
0.04
003
0.02 o |ung cancer CYF206
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50 200 400 1,000 3,000 5,000

cumulatve odds ratio

‘ : |
g

own dementiaf APOE

total genetic information (subjects or alleles)

(http://genomesunzipped.org/author/
Jcbarrett)

e Replication is always essentiall.
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4.b Multiple SNPs
The use of regression analysis

e Regression-type problems were first considered in the 18th century
concerning navigation using astronomy.

e Legendre developed the method of least squares in 1805. Gauss claimed to
have developed the method a few years earlier and showed that the least
squares was the optimal solution when the errors are normally distributed
in 1809.

e The methodology was used almost exclusively in the physical sciences until
later in the 19th century. Francis Galton coined the term regression to
mediocrity in 1875 in reference to the simple regression equation in the
form
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The use of regression analysis

e Galton used this equation to explain the phenomenon that sons of tall
fathers tend to be tall but not as tall as their fathers while sons of short
fathers tend to be short but not as short as their fathers.

e This effect is called the regression effect.

e We canillustrate this effect with some data on scores from a course

- When we scale each variable to have mean 0 and SD 1 so that we are
not distracted by the relative difficulty of each exam and the total
number of points possible.

How does this simplify the regression equation?
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The use of regression analysis

midterm

(Faraway 2002)
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The use of regression analysis

e Regression analysis is used for explaining or modeling the relationship
between a single variable Y, called the response, output or dependent
variable, and one or more predictor, input, independent or explanatory
variables, Xi, ..., Xp.

e When p=1itis called simple regression but when p > 1 it is called multiple
regression or sometimes multivariate regression.

e When there is more than one Y, then it is called multivariate multiple
regression

e Regression analyses have several possible objectives including

- Prediction of future observations.

- Assessment of the effect of, or relationship between, explanatory
variables on the response.

- A general description of data structure
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The use of regression analysis

e The basic syntax for doing regression in R is Im(Y~model) to fit linear
models and glm() to fit generalized linear models.

e Linear regression and logistic regression are special type of models you can
fit using Im() and glm() respectively.

e General syntax rules in R model fitting are given on the next slide.
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Syntax

Model

Comments

Y~A

Y =0, P1A

Straight-line with an implicit y-
intercept

Y~-1+A

Y=p,A

Straight-line with no y-intercept:
that 1s, a fit forced through (0,0)

Y ~ A +1(A%2)

Y= Bot BrA + PrA°

Polynomial model: note that the
identity function I() allows terms
in the model to imnclude normal
mathematical symbols.

Y~A+B

Y= E’D_ BIA_ E’ZB

A first-order model 1n A and B
without interaction terms.

Y ~AB

Y= E’D_ BIAB

A model containing only first-order
inferactions between A and B.

Y ~ A*B

Y =P, 1A+ BB+ [3AB

A full first-order model with a term:
an equivalent codeis Y ~A+B +
A:B.

Y~(A+B+0)2

Y =P+ B1A T BB+ B3C
PB4AB + BsAC + PeAC

A model including all first-order

effects and interactions up to the 't

order. where n is given by ()" n.
An equivalent code in this case 1s
Y ~ A*B*C — A:B:C.
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The use of regression analysis

e Quantitative models always rest on assumptions about the way the world
works, and regression models are no exception.
e There are four principal assumptions which justify the use of linear
regression models for purposes of prediction:
- linearity of the relationship between dependent and independent
variables
- independence of the errors (no serial correlation)
- homoscedasticity (constant variance) of the errors
= versustime
= versus the predictions (or versus any independent variable)

- normality of the error distribution.
(http://www.duke.edu/~rnau/testing.htm)
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Linear regression analysis

e If any of these assumptions is violated (i.e., if there is nonlinearity, serial
correlation, heteroscedasticity, and/or non-normality), then the forecasts,
confidence intervals, and insights yielded by a regression model may be (at
best) inefficient or (at worst) seriously biased or misleading.

(at the end of this section | show some tips and tricks to fix violations
from any of these assumptions)
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Is linear regression the correct type of analysis for you?

e The value r? is a fraction between 0.0 and 1.0, and has no units. An r? value
of 0.0 means that knowing X does not help you predict Y.

e There is no linear relationship between X and Y, and the best-fit line is a
horizontal line going through the mean of all Y values. When

e r2 equals 1.0, all points lie exactly on a straight line with no scatter. Knowing
X lets you predict Y perfectly.

r’= 0.0

r=0.5

r=1.0
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Is linear regression the correct type of analysis for you?

Question

Discussion

Can the relationship between X and Y be In many experiments the relationship between X and Y is

graphed as a straight line?

curved, making linear regression inappropriate. Either
transform the data. or use a program (such as GraphPad
Prizsm) that can perform nenlinear curve fitting.

Is the scatter of data around the line
Gaussian (at least approximately)?

Linear regression analysis assumes that the scatter is
Gaussian.

Is the variability the same everywhere?

Linear regression assumes that scatter of points around the
best-fit line has the same standard deviation all along the
curve. The assumption is violated if the points with high or
low X values tend to be further from the best-fit line. The
assumption that the standard deviation is the same everywhere
is termed homoscedasticity.

Do you know the X values precisely?

The linear regression model assumes that X values are exactly
correct, and that experimental error or biological variability
only affects the Y values. This is rarely the case. butitis
sufficient to assume that any imprecision in measuring X is
very small compared to the variability in Y.

Are the data points independent?

Whether one point is above or below the line is a matter of
chance. and does not influence whether another point is above
or below the line.

Are the X and Y values intertwined?

If the value of X is used to calculate Y (or the value of Y is
used to calculate X) then linear regression calculations are
invalid. ~ ’ : ’ ’
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Example in genetics: continuous trait Y

Use of 1m() in genetics

Some data; cholesterol levels plotted by genotype (single SNP)
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Use of 1Im() in genetics

Additive model (the most commonly used)

cholesteral

aa
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Use of 1m() in genetics

Dominant model (best fit to this data)

- o o e e o o S E E E E EE  m m am m

cholesteral

aa
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Use of 1m() in genetics

Recessive model (least stable for rare aa)

cholesteral

______________________________

b Aa as
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Use of 1Im() in genetics

2 parameter model (robust but can be overkill)

cholesteral

e o o o o o o o o o o o e e e e e e e e e
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From linear to logistic regression: appropriately LINKING X to Y

e Logistic regression is a generalized linear model (GLM) procedure using the
same basic formula as linear regression, but instead of the continuous Y, it
is regressing for the probability of a categorical outcome. In simplest form,
this means that we're considering just one outcome variable and two states
of that variable- for instance either O or 1.

e The equation for the probability of Y=1 looks like this:

PlY=1)= :
( o ) o 1 _|_€—(b[)—|—z (5: X))

e Your independent variables Xj can be continuous or binary. The regression
coefficients b; can be exponentiated to give you the change in odds of Y per

changein X i.e.,
P(y=1)  P(Y=1)

P(Y=0) - 1-P(Y=1)

Odds =
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and
AOdds = eb
The latter Is called the odds ratio.

e In English, you can say that the odds of Y=1 increase by a factor of e” per
unit change in X..
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Example in genetics: binary trait Y

Use of glm() In genetics

Odds are a [gambling-friendly] measure of chance;

=
—

0.8

0.6

Prob of survival, 10yrs
0.4

0.z

0.0
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Other analytic methods

e Recursive Partitioning (CART; Breiman 1984, Foulkes 2005)

e Random Forests (Pavolov 1997)

e Combinatorial Partitioning (Nelson 2001)

e Multifactor-Dimensionality Reduction (Ritchie 2001) = interactions !
e Permutation-Based Procedures (Trimming/Weighting; Hoh 2000)

e Multivariate Adaptive Regression Splines (Friedman 1991)

e Boosting (Schapire 1990)

e Support Vector Machines (Vapnik 2000)

e Neural Networks (Friedman & Tukey 1974, Friedman & Stuetzle 1981)
e Bayesian Pathway Modeling (Conti 2003, Cortessis & Thomas 2004)

e Clique-Finding (Mushlin 2006)
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Appendix: Tips and tricks to deal with model violations in linear
regression (no exam material)

e Violations of linearity are extremely serious--if you fit a linear model to data

which are nonlinearly related, your predictions are likely to be seriously in
error, especially when you extrapolate beyond the range of the sample
data.

e How to detect:

- nonlinearity is usually most evident in a plot of the observed versus
predicted values or a plot of residuals versus predicted values, which
are a part of standard regression output. The points should be
symmetrically distributed around a diagonal line in the former plot or a
horizontal line in the latter plot. Look carefully for evidence of a
"bowed" pattern, indicating that the model makes systematic errors
whenever it is making unusually large or small predictions.
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e How to fix: consider

- applying a nonlinear transformation to the dependent and/or
independent variables--if you can think of a transformation that seems
appropriate. For example, if the data are strictly positive, a log
transformation may be feasible. Another possibility to consider is
adding another regressor which is a nonlinear function of one of the
other variables. For example, if you have regressed Y on X, and the
graph of residuals versus predicted suggests a parabolic curve, then it
may make sense to regress Y on both X and X*2 (i.e., X-squared). The
latter transformation is possible even when X and/or Y have negative
values, whereas logging may not be.
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e Violations of independence are also very serious in time series regression

models: serial correlation in the residuals means that there is room for
improvement in the model, and extreme serial correlation is often a
symptom of a badly mis-specified model, as we saw in the auto sales
example. Serial correlation is also sometimes a byproduct of a violation of
the linearity assumption--as in the case of a simple (i.e., straight) trend line
fitted to data which are growing exponentially over time.

e How to detect:

- The best test for residual autocorrelation is to look at an
autocorrelation plot of the residuals. (If this is not part of the standard
output for your regression procedure, you can save the RESIDUALS and
use another procedure to plot the autocorrelations.)
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- ldeally, most of the residual autocorrelations should fall within the 95%
confidence bands around zero, which are located at roughly plus-or-
minus 2-over-the-square-root-of-n, where n is the sample size.

- Thus, if the sample size is 50, the autocorrelations should be between
+/- 0.3. If the sample size is 100, they should be between +/- 0.2. Pay
especially close attention to significant correlations at the first couple
of lags and in the vicinity of the seasonal period, because these are
probably not due to mere chance and are also fixable.

e How to fix:

- Minor cases of positive serial correlation (say, lag-1 residual
autocorrelation in the range 0.2 to 0.4) indicate that there is some
room for fine-tuning in the model. Consider adding lags of the
dependent variable and/or lags of some of the independent variables.
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- Major cases of serial correlation usually indicate a fundamental
structural problem in the model. You may wish to reconsider the
transformations (if any) that have been applied to the dependent and
independent variables. It may help to stationarize all variables through
appropriate combinations of differencing, logging, and/or deflating.
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e Violations of homoscedasticity make it difficult to gauge the true standard
deviation of the forecast errors, usually resulting in confidence intervals

that are too wide or too narrow. In particular, if the variance of the errors is

increasing over time, confidence intervals for out-of-sample predictions will

tend to be unrealistically narrow. Heteroscedasticity may also have the

effect of giving too much weight to small subset of the data (namely the

subset where the error variance was largest) when estimating coefficients.
e How to detect:

- look at plots of residuals versus time and residuals versus predicted
value, and be alert for evidence of residuals that are getting larger (i.e.,
more spread-out) either as a function of time or as a function of the
predicted value. (To be really thorough, you might also want to plot
residuals versus some of the independent variables.)

e How to fix:
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In time series models, heteroscedasticity often arises due to the effects
of inflation and/or real compound growth, perhaps magnified by a
multiplicative seasonal pattern. Some combination of logging and/or
deflating will often stabilize the variance in this case. Stock market data
may show periods of increased or decreased volatility over time--this is
normal and is often modeled with so-called ARCH (auto-regressive
conditional heteroscedasticity) models in which the error variance is
fitted by an autoregressive model. Such models are beyond the scope
of this course--however, a simple fix would be to work with shorter
intervals of data in which volatility is more nearly constant.
Heteroscedasticity can also be a byproduct of a significant violation of
the linearity and/or independence assumptions, in which case it may
also be fixed as a byproduct of fixing those problems.
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e Violations of normality compromise the estimation of coefficients and the
calculation of confidence intervals. Sometimes the error distribution is

"skewed" by the presence of a few large outliers. Since parameter
estimation is based on the minimization of squared error, a few extreme
observations can exert a disproportionate influence on parameter
estimates. Calculation of confidence intervals and various signficance tests
for coefficients are all based on the assumptions of normally distributed
errors. If the error distribution is significantly non-normal, confidence
intervals may be too wide or too narrow.

e How to detect:

- the best test for normally distributed errors is a normal probability plot
of the residuals. This is a plot of the fractiles of error distribution versus
the fractiles of a normal distribution having the same mean and
variance. If the distribution is normal, the points on this plot should fall
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close to the diagonal line. A bow-shaped pattern of deviations from the
diagonal indicates that the residuals have excessive skewness (i.e., they
are not symmetrically distributed, with too many large errors in the
same direction). An S-shaped pattern of deviations indicates that the
residuals have excessive kurtosis--i.e., there are either two many or two
few large errors in both directions.

e How to fix:

violations of normality often arise either because (a) the distributions of
the dependent and/or independent variables are themselves
significantly non-normal, and/or (b) the linearity assumption is violated.
In such cases, a nonlinear transformation of variables might cure both
problems. In some cases, the problem with the residual distribution is
mainly due to one or two very large errors. Such values should be
scrutinized closely: are they genuine (i.e., not the result of data entry



GBIO0009

errors), are they explainable, are similar events likely to occur again in
the future, and how influential are they in your model-fitting results?
(The "influence measures" report is a guide to the relative influence of
extreme observations.) If they are merely errors or if they can be
explained as unique events not likely to be repeated, then you may
have cause to remove them. In some cases, however, it may be that the
extreme values in the data provide the most useful information about
values of some of the coefficients and/or provide the most realistic
guide to the magnitudes of forecast errors.
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4.c Replication NALUIE

OCNEeLICS Freely associating

Editorial: Once and Again—Issues Surrounding Mav 1999
Replication in Genetic Association Studies y

J. Hirschhorn PERSPECTIVE
The Future of Association Studies: Gene-Based Analysis and Replication

Benjamin M. Neale' and Pak C. Sham'? Am ./ Hum Genet July 2004

Replication Publication

Mark Patterson’

Statistical false positive or true disease
pathway?

John A Todd Nat Genet July 2006
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What does replication mean?

e Replicating the genotype-phenotype association is the “gold standard” for
“proving” an association is genuine
e Most loci underlying complex diseases will not be of large effect. It is
unlikely that a single study will unequivocally establish an association
without the need for replication = think about what this means when
targeting gene-gene or gene-environment interactions!!!
e SNPs most likely to replicate:
- Showing modest to strong statistical significance
- Having common minor allele frequency
- Exhibiting modest to strong genetic effect size
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Guidelines for replication studies

e Replication studies should be of sufficient size to demonstrate the effect
e Replication studies should conducted in independent datasets

e Replication should involve the same phenotype

e Replication should be conducted in a similar population

e The same SNP should be tested

e The replicated signal should be in the same direction

e Joint analysis should lead to a lower p-value than the original report

e Well-designed negative studies are valuable

=>» check the NHGRI Catalog of GWA studies
www.genome.gov/gwastudies/
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What does validation mean?

Random variation

.

Original
study

&

Sample

D“‘JD Systematic variation

. Different

e

population

Replication

population

Sample

¥

Validation

(Igl et al. 2009)
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5 GWAI Interpretation and Follow-Up

Strategies for using functional data to support causal variant and causal
gene identification

e (A) consider a locus at which GWA genes A and C. The causal variant turns
analysis (complemented by replication out to be the typed SNP with the
data—not shown) has revealed a highly strongest association; it exerts its effect
significant association mapping on disease through altering expression
between the coding regions of genes B of gene C;

and C. Directly typed SNPs are shown in
the filled symbols, imputed SNPs in

open symbols. Flanking recombination A .

hotspots (blue triangles) define an P . “

interval within which the variant causal . C L R

for that signal is most likely to reside. 00e’ 900 8@ as el "o & ,000,°%p ine° o
This interval contains the entire coding A A

sequence of gene B, and portions of
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e (B) clues to the identity of the causal B :
: ) Thesevariants have
gene are derived by expression QTL cis-regulatory effects on
studies in a tissue relevant to disease: gene C expression

not only is the expression of gene C

PR ——

associated with the same cluster of
variants which shows the disease
association; but there are also

directionally-consistent associations

between gene C transcript levels and

Gene C
<y

disease state;

Transcript levels of this
geneare associated with
disease




GBIO0009

e (C) clues to the identity of the causal C This variantmaps to a region of
gene are derived from analysis of high sequence conservation and
genome annotations: not only does therisk allele disrupts akey
transcription factor binding site
gene C code for a member of a pathway Ri3
previously implicated in the disease, but gl
the associated variants are predicted to o L .
have strong functional credibility; , LTI e 39...‘0 .
ogo. ocﬁ"ja.cﬂ#f % .'5000 % we® o
FHH——H HH — +
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e (D) clues to the identity of the causal gene are derived from deep exon resequencing of
genes A—C: three independent premature stop-codon mutations in gene C (predicted to
lead to generation of a truncated protein product with dominant-negative effects) are
found in subjects with severe, early-onset forms of the disease of interest.
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Deep resequencing reveals
threeindependent premature
stop mutationsin subjects
with early onsetdisease
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What are characteristics of the hit (all) SNPs? (Manolio 2010)

e Intergenic (**) [in between genes]

e Intronic (**) [in the intronic regions within a gene]

e Synonymous [silent]

e Missense [non-synonymous which involves creation of different amino acid]
e 5" UTR [5" untranslated region on mRNA strand]

e 3" UTR

**. most common!
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Are there criteria for assessing the functional significance of a variant?

s Strong Moderate Neutral Evidence
Criterion : :
Support Support Information  Against
Nucleotide Variant disrupts a known n;:zfsntss © cuht:?igz, _ funhcl:(’:i?)-nal
Sequence functional motif PIS P .
functional motif change
. Strong conservation Some conservation
Evolutionary - . No
! across species, across species or Not known i
Conservation . . : ! conservation
multigene family multigene family
Population Strong deviations from Some deviations No deviations
. ! from expected Not known from expected
Genetics expected frequencies ) .
frequencies frequencies
Experimental Consistent ewdt_ance in Some evidence No_data No functional
human target tissue available effect
Variant affects relevant . Variant does
. . Variant affects No data
Exposures metabolism in target . i not affect
i metabolism available !
tissue metabolism
Epidemiolo Consistent and Reports without No data No
P 9y reproducible reports replication available association
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“The more we find, the more we see, the more we come to learn.

The more that we explore, the more we shall return.”

Sir Tim Rice, Aida, 2000
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