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Regression models for interactions

* Statistical interaction most easily described in terms a of regression framework

e Suppose X;and X, are two explanatory variables (factors) that may be associated
with a response variable (outcome) Y.

e Regression models the main effects of X;and X, on Y as:
Y= By + B X, + B:X,+5, £~N(0,02)

* Including interaction effect: the typical treatment of interactions in linear models is
to consider the interaction as a product term of the main effect variables

Y= Bo + B1X1 + LoX, + B3 XX+, €~N(0,0%)



Model assumptions

* Quantitative models always rest on assumptions about the way the
world works, and regression models are no exception.

* There are four principal assumptions which justify the use of linear
regression models for purposes of prediction:

* linearity of the relationship between dependent and independent
variables

* independence of the errors (no serial correlation)
* constant variance (homoscedasticity) of the errors
* normality of the error distribution.



Violation of assumptions

If any of these assumptions is violated (i.e., if there is nonlinearity,
serial correlation, heteroscedasticity, and/or non-normality), then

* the forecasts,
e confidence intervals,
* and insights

vielded by a regression model may be (at best) inefficient or (at worst)
seriously biased or misleading.



Model diagnostics

» Diagnostic methods can be graphical or numerical.
» Graphical methods tend to be more versatile and informative.

e Itis virtually impossible to verify that a given model is exactly correct.
The purpose of the diagnostics is more to check whether the model is

not grossly wrong.

* Diagnostic plots
* Plot of residuals against fitted values. This plot can be used to detect lack of
fit and to check the constant variance assumption on the errors.
* QQ plot of residuals to assess normality.
e Cook’s statistics: used for identifying influential observations.



Generalized linear models

* Model

8(E(Y|X)) = Bo + p1X1 + B2 X, + B3X1X;
where g is a link function

* The response (outcome) variable Y can be continuous, count, or
categorical.

* The distribution of the response variable can be other than the
Normal distribution.
e Continuous outcome and normally distributed — linear regression
* Binary outcome - logistic regression
* Count outcome — Poisson regression
e Categorical outcome — Multinomial regression



Regression analysis in R

* The basic syntax for doing regression in R is
Im(response ~ covariates) to fit linear models and
glm(response ~ covariates) to fit generalized linear models.

 Special type of models you can fit using glm() are
linear regression
logistic regression
Poisson regression



GLM fitting in R

* R—code

glm(formula, data=datafile, family=familytype(link=linkfunction))
e formula: y~x1+x2+x1*x2 (inshort y~x1*x2)

* data: data file containing the response and explanatory variables.

e family and default link function
binomial (link = "logit")
gaussian (link = "identity")
poisson  (link ="log")



Covariates/explanatory variables

In regression models
» Covariates can be continuous, count, binary or categorical.

* Coding is required for categorical variables.
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request) to facilitate the implementation of such models (and can be easily modified to implement others). It is
stressed that, regardless of the method choice, the biological meaning of the model being tested is critical for correct
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Genotypes coding schemes

Genotypes® Genetic models?
Genotypic | Overdominant | Dominant  Recessive | Additive
e 0 0 0 0 0
Aa 1 1 1 0 1
Aa dld 2
‘Az wild type allele at locusA; a: variant allele at locusA; 'E

Categorical

count/ordered




Statistical interactions coding schemes

Combined Models of statistical interaction’

genotypes’ | Gen-Gen | Over-Over | Dom-Dom | Rec-Rec Add-Add
AA/BB 0 0 0 0 0
AA/Bb 1 0 0 0 0
AA/bb 2 0 0 0 0
Aa/BB 3 0 0 0 0
Aa/Bb 4 1 1 0 1
Aa/bb 5 0 1 0 2
aa/BB 6 0 0 0 0
aa/Bb 7 0 1 0 2
aa/bb 8 0 1 1 4

*A, B: wild type alleles at loci A and B, respectively; a, b: variant alleles at loci
A and B, respectively; "Each column represents a variable coding system that is
equivalent to including an interaction term in a regression analysis having both
SNPs in the specified genetic models; Gen-Gen: Genotypic-Genotypic; Over-
Over: Overdominant-Overdominant, Dom-Dom: Dominant-Dominant; Rec-Rec:
Recessive-Recessive; Add-Add: Additive-Additive; Of these, only the Add-
Add model is actually quantitative (the numbers in the other models represent

categories).

Table 2: Statistically-intuitive models of SNP-SNP interactions.




Genotype combinations of two SNPs

SNP2 (X2)
SNP1 BB=0 00 01 02
(X1) Bb=1 10 11 12

bb=2 20 21 22



Main effects and interactions

Additive Coding . X1 X2 X1*X2
00 0 0 0
01 0 1 0
02 0 2 0
10 1 0 0
11 1 1 1
12 1 2 >
20 2 0 0
21 2 1 >
22 2 2 4



Main effects and interactions _ _
Co-dominant coding

X1 X2 X1*X2
X11*X2 X11*X2 X12*X2 X12*X2
cell X11 X12 X21 X22 1 2 1 2
00 0 0 0 0 0 0 0 0
01 0 0 1 0 0 0 0 0
02 0 0 0 1 0 0 0 0
10 1 0 0 0 0 0 0 0
11 1 0 1 0 1 0 0 0
12 1 0 0 1 0 1 0 0
20 0 1 0 0 0 0 0 0
21 0 1 1 0 0 0 1 0

22 0 1 0 1 0 0 0 1



Logistic regression

o Logistic regression models their effect on the log odds of disease as:

P ‘ ‘ P ‘ ‘
| = 3 (3 | = i 5,
Ogl—p Do + P1Xx1 Ogl_p Po + [P2X2
Marginal effect of factor 1 Marginal effect of factor 2
p | P
log e Bo + Fi1x1 + [Baxo log e Bo + Bix1 + Baxo + [B12X1X2

Main effects of factors 1 and 2 Main effects and interaction term



Factors (SNPs) from dominant or recessive models

@ Expected trait values (log odds of disease) take the form:
Factor 2
Factor1 | 1 0
1 ,"30 -+ ;‘31 — ‘1'32 + ,"f12 ‘,"30 + .‘Bl
0 Bo + B2 3o

o [0, 31, 32, [B12 are regression coefficients (numbers) that can be
estimated from real data

e Having factor 1 adds /3; to your trait value
e Having factor 2 adds (3 to your trait value
e Having both factors adds an additional 312 to your trait value
= Implies that the overall effect of two variables is greater (or less)

than the ‘sum of the parts’



Factors (SNPs) from co-dominant model

modelling log odds in terms of:

e A baseline effect (/)
e Main effects of locus G (3¢, (¢,)
e Main effects of locus H (3H,, 3H,)
@ 4 interaction terms
Locus H
Locus G | 2 1 0
2 Bo+B6,+BH,+522  Po+PBe+BH, 321  Bo+Le,
1 Bo+B¢ +B8H,+512  Bo+B¢ +BH,+511  Bo+PBg
0 Bo+ 13 H B0+ 3 Hy 3o

o Corresponds in statistical analysis packages to coding xq, x» (0,1,2)
as a 'factor”




GLM for interactions

Install packages:
install.packages(c("broom","MASS"), dep=TRUE)

source("http://www.bioconductor.org/biocLite.R")
biocLite(c("Biobase"))

Load packages
library(Biobase)

library(broom)
library(MASS)



Linear model in genetics

library(MatrixEQTL)
data(GE)
data(geneloc)

data(SNP)
data(snpsloc)

GE <- data.matrix(GE)
SNP <- data.matrix(SNP)

gex1 <- GE[6,-1]
snpl <- SNP[4,-1]
snp3 <- SNP[5,-1]



#Linear model to see the effect of SNP by SNP interaction on eQTL

glm_exp <- glm(gex1~ snpl*snp3, family=gaussian)
Summary(glm_exp)

Coefficients:

Estimate Std. Error t value
(Intercept) 13.16905 0.25747 51.148
snpl -0.02138 0.25266 -0.085
snp3 -0.59188 0.25411 -2.329
snpl:snp3 0.18448 0.20219 0.912

Signif. codes: 0 “***” 0.001 **" 0.01 *’0.0570.1°"1

Pr(>]|t])
2.05e-15 ***
0.9340
0.0381 *
0.3795



#Model Diagnostics

plot(glm_exp)
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Load data files

#SNP data

snp_data <- read.table("epistasis_snps_example.txt")
head(snp_data)

dim(snp_data)

#RNA-seq data
rnaseq <- read.table("epistasis_rnaseq_example.txt")
dim(rnaseq)



Logistic regression for epistasis detection

We use example SNP data from a case-control genome-wide association
study (snp_data)

Response variable: disease (case=1 and control=0)

Use logistic regression model

#Additive model

glm_add = glm(pheno ~ rs7909677*rs4880781, data=snp_data,
family="binomial")

summary(glm_add)



Output
Call:
glm(formula = pheno ~ rs7909677 * rs4880781, family = "binomial", data = snp_data)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.456 -1.162 -1.073 1.193 1.381

Coefficients:

Estimate  Std. Error z value Pr(>|z|)
(Intercept) -0.03583 0.08467 -0.423 0.672
rs7909677 -0.21534 0.24706 -0.872 0.383
rs4880781 0.09236 0.11202 0.824 0.410
rs7909677:rs4880781 0.35071 0.38164 0.919 0.358

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 1361.3 on 981 degrees of freedom

Residual deviance: 1358.9 on 978 degrees of freedom
(18 observations deleted due to missingness)

AIC: 1366.9

Number of Fisher Scoring iterations: 3



The “broom” package takes the messy output of built-in functions in R, such as Im and glm, and turns them
into tidy data frames

library(broom)

tidy(glm_add)

term estimate std.error statistic p.value
1 (Intercept) -0.03582730 0.08467467 -0.4231171 0.6722098
2 rs7909677 -0.21534232 0.24706118 -0.8716154 0.3834182
3 rs4880781 0.09235736  0.11202029 0.8244700 0.4096726
4 rs7909677:rs4880781 0.35070975 0.38163776 0.9189598 0.3581166

In this data, we have no evidence of additive interaction effect between SNPs rs7909677 and rs4880781 on
the disease.



Confidence interval estimates

# 95% confidence interval

confint.default(glm_add)

(Intercept)
rs7909677
rs4880781
rs7909677:rs4880781

2.5%
-0.2017866
-0.6995733
-0.1271984
-0.3972865

97.5%
0.1301320
0.2688887
0.3119131
1.0987060



pheno <- snp_dataSpheno
population <- snp_dataSpopulation
snp <- snp_data[,3:102]

colnames(snp) <- paste("snp",1:100, sep="")



# Dominant model
#Coding (AA=0, Aa=1, aa=1)

snp_dom <- (snp ==2 | snp==1)*1
snp_dom <- data.frame(snp_dom)

#two-way table

table(snp_domSsnp1,snp_domSsnp?2)

0 1
0 527 349
1 70 36

glm_dom <- gim(pheno ~ snpl1*snp2, data=snp_dom, family="binomial")

tidy(glm_dom)

term estimate

1 (Intercept)
2 snpl
3 snp2

4 snpl:snp2

-0.04175179
-0.30452442
0.12776467

0.55498377

std.error
0.08714035
0.25780135
0.13811577
0.43843040

statistic
-0.4791327
-1.1812367
0.9250549
1.2658423

p.value
0.6318442
0.2375087
0.3549374
0.2055695



# Recessive model

# Coding (AA=0, Aa=0, aa=1)
snp_rec <- (snp == 2)*1
snp_rec <- data.frame(snp_rec)

table(snp_recSsnpl,snp_recSsnp2)

0 1
0 927 54
1 1 O

glm_rec <- glm(pheno ~ snpl*snp2, data=snp_rec, family="binomial")
tidy(glm_rec)

term estimate std.error statistic
1 (Intercept) -0.006472515 0.06568896 -0.09853276
2 snpl 12.572535519 324.74370272 0.03871526
3 snp2 0.006472515 0.27998056 0.02311773

No interaction term is fitted.

p.value

0.9215093
0.9691174
0.9815564



#Co-dominant model

snpb6 <- factor(snpSsnp6)

table(snp6)

snp2 <- factor(snpSsnp2)

table(snp2)

table(snp6,snp2)

glm_co <- glm(pheno ™~ snp6*snp2, family="binomial")

tidy(glm_co)

summary(glm_co)

term
1 (Intercept)
2 snp61l
3 snp62
4 snp21
5 snp22
6 snp6l:snp21
7 snp62:snp21
8 snpbl:snp22
9 snp62:snp22

estimate
0.16034265
-0.26413944
-0.26875195
0.14981227
-0.16034265
0.03154276
0.09674737
-0.17769321
0.55643401

# take snp6 in place of snpl

std.error

0.2837516
0.3088198
0.3082172
0.4879365
1.0394782
0.5329082
0.5250364
1.1304302
1.1139233

statistic
0.56508110
-0.85531888
-0.87195636
0.30703231
-0.15425302
0.05918985
0.18426793
-0.15719078
0.49952633

p.value

0.5720186
0.3923746
0.3832322
0.7588188
0.8774102
0.9528009
0.8538033
0.8750945
0.6174086



# Likelihood ratio test can be used to test the significance of all 4 interaction terms.
# Fit a model without the interaction term
glm_main <- glm(pheno ~ snp6 + snp2, family="binomial")
# Fit a model with interaction terms
glm_co <- glm(pheno ~ snp6*snp2, family="binomial")

# Test
anova(glm_main, glm_co, test="Chisq")

Analysis of Deviance Table
Model 1: pheno ~ snp6 + snp2
Model 2: pheno ~ snp6 * snp2
Resid. DfResid. Dev Df Deviance  Pr(>Chi)
1 976 1356.4
2 972 1354.8 4 1.5823 0.812

In this data there is no evidence in support of the effect of interactions.



# Adjusting for covariates

glm_co <- glm(pheno ~ snp6*snp2 + population, family="binomial")

tidy(glm_co)

term
1 (Intercept)

2 snp61l

3 snp62

4 snp21

5 snp22

6 populationJPT+CHB
7 snp6l:snp21

8 snp62:snp21

9 snp6l:snp22

10 snp62:snp22

* Significant at 0.05 level

estimate
0.20734475
-0.16234391
-0.13083625
0.32320573
0.12645665
-0.33380141
-0.07517806

-0.09948315

-0.35385130
0.21760515

std.error

0.2848411
0.3120051
0.3135911
0.4941460
1.0458202
0.1324656
0.5360393
0.5322356
1.1331641
1.1225014

statistic
0.7279314
-0.5203246
-0.4172193
0.6540693
0.1209162
-2.5199095
-0.1402473
-0.1869156
-0.3122684
0.1938574

p.value
0.4666556
0.6028374
0.6765180
0.5130671
0.9037574
0.0117385*
0.8884646
0.8517268
0.7548366
0.8462876



RNA-seq data analysis using GLM

* This is an example of count data analysis using a Poisson regression

Data obtained from the paper Evaluating gene expression in C57BL/6J and DBA/2)
mouse striatum using RNA-Seq and microarrays (Bottomly et al., 2011) . It is a
comparative RNA-seq analysis of different mouse strains.

* Using RNA-Seq, an average of 22 million short sequencing reads were generated per
sample for 21 samples (10 B6 and 11 D2),

* These reads were aligned to the mouse reference genome, allowing 16,183 Ensembl
genes to be queried in striatum for both strains.

A subset of the data is used here

rnaseq <- read.table("epistasis_rnaseq_example.txt")



# Poisson regression to determine the effect of SNP-SNP interaction on RNA-seq

after adjusting for the difference in strain.

glm_pois = glm(edata_qc[,1] ~ SNP2*SNP5 + strain, data=rnaseq, family="poisson")

tidy(glm_pois)

term estimate std.error
1 (Intercept) 4.7125607 0.07812460
2 SNP2 0.9350636 0.05079155
3 SNP5 0.7147750 0.04015972
4 strainDBA/2) 0.1588196 0.02015197
5 SNP2:SNP5 -0.4269630 0.02837443

statistic
60.321087
18.409824
17.798307
7.881093
-15.047456

*significant at 0.05 without correction for multiple testing
*Bonferroni’s correction: number of pair-wise tests 16183*16184/2=1.3e+8
Adjusted level of significance= 0.05/1.3e+8 = 3.8e-10

p.value
0.000000e+00*
1.095777e-75*
7.283733e-71%*
3.245300e-15*
3.587680e-51**



Screening epistasis

 So far we have considered how to test for interaction between
two SNPs

* We deal with 500000 to 1 million SNPs across the genome

* One way to search for interactions is to perform an exhaustive
search, considering all pairwise combinations

 Computationally possible, but time-consuming and
dramatically increases multiple testing burden

* We may need to use filtering approach where only consider a
subset of loci chosen based on biological or statistical
considerations



Class Exercises

1. Using the GE and SNP data from the R-package MatrixEQTL,
determine the interaction effect of Snp_04 and Snp_05 on Gene_09.

Check the assumptions related to your model.

2. Use the snp data matrix created (see slide 29) from the SNP_data
a. assess the interaction effect between snp9 (rs17159711) and
snpl2 (rs2275677) on the disease given by the variable
“pheno” based on the co-dominant genetic model.

b. repeat the analysis in (a) by adjusting for the covariate
“population”



Mapping SNPs to Genes

Mapping SNPs to the corresponding genes allows to have a better
understanding and interpretation of the SNPs and their
interactions.

Use UCSC Genome browser: Open link
https://genome.ucsc.edu

Go to Tools - Variant Annotation Integrator

Mapping the selected SNPs using UCSC genome browser:
rs4880781 -—— ZMYND11 gene

rs10903439 -—- ADARB2 gene



