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Regression models for interactions

• Statistical interaction most easily described in terms a of regression framework

• Suppose 𝑋1and 𝑋2 are two explanatory variables (factors) that may be associated 
with a response variable (outcome) Y.

• Regression models the main effects of 𝑋1and 𝑋2 on Y as:

Y= 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝜀,     ε ~𝑁(0, 𝜎2)

• Including interaction effect: the typical treatment of interactions in linear models is 
to consider the interaction as a product term of the main effect variables

Y= 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋1𝑋2+ 𝜀,     𝜀 ~𝑁(0, 𝜎2)



Model assumptions

• Quantitative models always rest on assumptions about the way the 
world works, and regression models are no exception. 

• There are four principal assumptions which justify the use of linear 
regression models for purposes of prediction: 

• linearity of the relationship between dependent and independent 
variables 

• independence of the errors (no serial correlation) 

• constant variance (homoscedasticity) of the errors 

• normality of the error distribution. 



Violation of assumptions

If any of these assumptions is violated (i.e., if there is nonlinearity, 
serial correlation, heteroscedasticity, and/or non-normality), then 

• the forecasts, 

• confidence intervals, 

• and insights 

yielded by a regression model may be (at best) inefficient or (at worst) 
seriously biased or misleading.



Model diagnostics

• Diagnostic methods can be graphical or numerical. 

• Graphical methods tend to be more versatile and informative. 

• It is virtually impossible to verify that a given model is exactly correct. 
The purpose of the diagnostics is more to check whether the model is 
not grossly wrong.

• Diagnostic plots
• Plot of residuals against fitted values. This plot can be used to detect lack of 

fit and to check the constant variance assumption on the errors.

• QQ plot of residuals to assess normality.

• Cook’s statistics: used for identifying influential observations. 



Generalized linear models

• Model

g 𝐸 𝑌 𝑋 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋1𝑋2

where g is a link function 

• The response (outcome) variable 𝑌 can be continuous, count, or 
categorical.

• The distribution of the response variable can be other than the 
Normal distribution.
• Continuous outcome and normally distributed → linear regression

• Binary outcome  → logistic regression

• Count outcome → Poisson regression

• Categorical outcome → Multinomial regression



Regression analysis in R

• The basic syntax for doing regression in R is 

lm(response ~ covariates) to fit linear models and 

glm(response ~ covariates) to fit generalized linear models.

• Special type of models you can fit using glm() are

linear regression   

logistic regression

Poisson regression



GLM fitting in R

• R – code

glm(formula, data=datafile, family=familytype(link=linkfunction))

• formula :  y ~ x1 + x2 + x1*x2    (in short  y ~ x1*x2)

• data:  data file containing the response and explanatory variables.

• family and default link function
binomial (link = "logit")

gaussian (link = "identity") 

poisson (link = "log")

• Regression analysis in R



Covariates/explanatory variables

In regression models

• Covariates can be continuous, count, binary or categorical.

• Coding is required for categorical variables.   





Categorical binary count/ordered

Genotypes coding schemes

aa



Statistical interactions coding schemes



AA=0 Aa=1 aa=2

BB=0 00 01 02

Bb=1 10 11 12

bb=2 20 21 22

SNP2 (X2)

SNP1 
(X1)

Genotype combinations of two SNPs



cell X1 X2 X1*X2

00 0 0 0

01 0 1 0

02 0 2 0

10 1 0 0

11 1 1 1

12 1 2 2

20 2 0 0

21 2 1 2

22 2 2 4

Additive Coding

Main effects and interactions



Main effects and interactions

cell X11 X12 X21 X22
X11*X2

1
X11*X2

2
X12*X2

1
X12*X2

2

00 0 0 0 0 0 0 0 0

01 0 0 1 0 0 0 0 0

02 0 0 0 1 0 0 0 0

10 1 0 0 0 0 0 0 0

11 1 0 1 0 1 0 0 0

12 1 0 0 1 0 1 0 0

20 0 1 0 0 0 0 0 0

21 0 1 1 0 0 0 1 0

22 0 1 0 1 0 0 0 1

Co-dominant coding

X1 X2 X1*X2



Logistic regression



Factors (SNPs) from dominant or recessive models



Factors (SNPs) from co-dominant model



GLM for interactions

Install packages: 

install.packages(c("broom","MASS"), dep=TRUE)

source("http://www.bioconductor.org/biocLite.R")

biocLite(c("Biobase"))

Load packages

library(Biobase)
library(broom)
library(MASS)



library(MatrixEQTL) 
data(GE)
data(geneloc )

data(SNP)
data(snpsloc)

GE <- data.matrix(GE)
SNP <- data.matrix(SNP)

gex1 <- GE[6,-1] 
snp1 <- SNP[4,-1]
snp3 <- SNP[5,-1] 

Linear model in genetics



#Linear model to see the effect of SNP by SNP interaction on eQTL

glm_exp <- glm(gex1~ snp1*snp3, family=gaussian)
Summary(glm_exp)

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 13.16905   0.25747  51.148 2.05e-15 ***
snp1        -0.02138    0.25266  -0.085   0.9340    
snp3        -0.59188    0.25411  -2.329  0.0381 *  
snp1:snp3    0.18448    0.20219   0.912   0.3795    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



#Model Diagnostics

plot(glm_exp)



Load data files

#SNP data

snp_data <- read.table("epistasis_snps_example.txt")

head(snp_data)

dim(snp_data)

#RNA-seq data

rnaseq <- read.table("epistasis_rnaseq_example.txt")

dim(rnaseq)



Logistic regression for epistasis detection

We use example SNP data from a case-control genome-wide association 
study (snp_data)

Response variable: disease (case=1 and control=0)

Use logistic regression model

#Additive model 

glm_add = glm(pheno ~  rs7909677*rs4880781, data=snp_data, 
family="binomial")

summary(glm_add)



Output
Call:

glm(formula = pheno ~ rs7909677 * rs4880781, family = "binomial",   data = snp_data)

Deviance Residuals: 

Min      1Q  Median      3Q     Max  

-1.456  -1.162  -1.073   1.193   1.381  

Coefficients:

Estimate     Std. Error  z value  Pr(>|z|)

(Intercept)         -0.03583    0.08467  -0.423     0.672

rs7909677           -0.21534    0.24706  -0.872    0.383

rs4880781            0.09236    0.11202   0.824    0.410

rs7909677:rs4880781  0.35071    0.38164   0.919    0.358

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1361.3  on 981  degrees of freedom

Residual deviance: 1358.9  on 978  degrees of freedom

(18 observations deleted due to missingness)

AIC: 1366.9

Number of Fisher Scoring iterations: 3



The “broom” package takes the messy output of built-in functions  in R, such as lm  and glm, and turns them 
into tidy data frames

library(broom)

tidy(glm_add)

term   estimate  std.error statistic                  p.value
1       (Intercept) -0.03582730     0.08467467 -0.4231171 0.6722098
2           rs7909677 -0.21534232      0.24706118 -0.8716154 0.3834182
3          rs4880781  0.09235736 0.11202029  0.8244700 0.4096726
4 rs7909677:rs4880781 0.35070975 0.38163776  0.9189598 0.3581166

In this data, we have no evidence of additive interaction effect between SNPs rs7909677 and rs4880781 on 
the disease.



Confidence interval estimates

# 95% confidence interval

confint.default(glm_add)

2.5 %    97.5 %

(Intercept)          -0.2017866 0.1301320

rs7909677           -0.6995733 0.2688887

rs4880781           -0.1271984 0.3119131

rs7909677:rs4880781 -0.3972865 1.0987060



pheno <- snp_data$pheno

population <- snp_data$population

snp <- snp_data[,3:102]

colnames(snp) <- paste("snp",1:100, sep="")



# Dominant model
#Coding (AA=0, Aa=1, aa=1)

snp_dom <- (snp == 2 | snp==1)*1
snp_dom <- data.frame(snp_dom)

#two-way table
table(snp_dom$snp1,snp_dom$snp2)

0           1
0       527     349
1        70         36

glm_dom <- glm(pheno ~  snp1*snp2, data=snp_dom, family="binomial")
tidy(glm_dom)

term    estimate std.error statistic  p.value
1      (Intercept) -0.04175179 0.08714035 -0.4791327 0.6318442
2        snp1 -0.30452442 0.25780135 -1.1812367 0.2375087
3        snp2 0.12776467 0.13811577 0.9250549 0.3549374
4   snp1:snp2  0.55498377 0.43843040  1.2658423 0.2055695



# Recessive model
# Coding (AA=0, Aa=0, aa=1)
snp_rec <- (snp == 2)*1
snp_rec <- data.frame(snp_rec)

table(snp_rec$snp1,snp_rec$snp2)

0       1
0   927  54
1      1     0

glm_rec <- glm(pheno ~  snp1*snp2, data=snp_rec, family="binomial")
tidy(glm_rec)

term     estimate    std.error statistic   p.value
1 (Intercept) -0.006472515   0.06568896 -0.09853276 0.9215093
2        snp1 12.572535519     324.74370272  0.03871526 0.9691174
3        snp2  0.006472515  0.27998056  0.02311773 0.9815564

No interaction term is fitted.



#Co-dominant model

snp6 <- factor(snp$snp6)       # take snp6 in place of snp1
table(snp6)
snp2 <- factor(snp$snp2)
table(snp2)
table(snp6,snp2)

glm_co <- glm(pheno ~  snp6*snp2, family="binomial")
tidy(glm_co)
summary(glm_co)

term    estimate std.error statistic   p.value
1 (Intercept)  0.16034265 0.2837516  0.56508110 0.5720186
2       snp61 -0.26413944 0.3088198 -0.85531888 0.3923746
3       snp62 -0.26875195 0.3082172 -0.87195636 0.3832322
4       snp21  0.14981227 0.4879365  0.30703231 0.7588188
5       snp22 -0.16034265 1.0394782 -0.15425302 0.8774102
6 snp61:snp21  0.03154276 0.5329082  0.05918985 0.9528009
7 snp62:snp21  0.09674737 0.5250364  0.18426793 0.8538033
8 snp61:snp22 -0.17769321 1.1304302 -0.15719078 0.8750945
9 snp62:snp22 0.55643401 1.1139233  0.49952633 0.6174086



# Likelihood ratio test can be used to test the significance of all 4 interaction terms.

# Fit a model without the interaction term

glm_main <- glm(pheno ~  snp6 + snp2, family="binomial")

# Fit a model with interaction terms

glm_co <- glm(pheno ~  snp6*snp2, family="binomial")

# Test
anova(glm_main, glm_co, test= "Chisq")

Analysis of Deviance Table
Model 1: pheno ~ snp6 + snp2
Model 2: pheno ~ snp6 * snp2

Resid.     Df Resid.      Dev Df Deviance      Pr(>Chi)
1       976       1356.4                     
2       972       1354.8            4                   1.5823         0.812

In this data there is no evidence in support of the effect of interactions.



# Adjusting for covariates

glm_co <- glm(pheno ~  snp6*snp2 + population, family="binomial")
tidy(glm_co)

term    estimate std.error statistic   p.value
1        (Intercept)  0.20734475 0.2848411 0.7279314 0.4666556
2              snp61 -0.16234391 0.3120051 -0.5203246 0.6028374
3              snp62 -0.13083625 0.3135911 -0.4172193 0.6765180
4              snp21 0.32320573 0.4941460  0.6540693 0.5130671
5              snp22  0.12645665 1.0458202  0.1209162 0.9037574
6  populationJPT+CHB -0.33380141 0.1324656 -2.5199095 0.0117385*
7        snp61:snp21 -0.07517806 0.5360393 -0.1402473 0.8884646
8        snp62:snp21 -0.09948315 0.5322356 -0.1869156 0.8517268
9 snp61:snp22 -0.35385130 1.1331641 -0.3122684 0.7548366
10 snp62:snp22  0.21760515 1.1225014  0.1938574 0.8462876

* Significant at 0.05 level



RNA-seq data analysis using GLM

• This is an example of count data analysis using a Poisson regression

• Data  obtained from the paper Evaluating gene expression in C57BL/6J and DBA/2J 
mouse striatum using RNA-Seq and microarrays (Bottomly et al., 2011) . It is a 
comparative RNA-seq analysis of different mouse strains.

• Using RNA-Seq, an average of 22 million short sequencing reads were generated per 
sample for 21 samples (10 B6 and 11 D2),

• These reads were aligned to the mouse reference genome, allowing 16,183 Ensembl
genes to be queried in striatum for both strains. 

• A subset of the data is used here

rnaseq <- read.table("epistasis_rnaseq_example.txt")



# Poisson regression to determine the effect of SNP-SNP interaction on RNA-seq after 
adjusting for the difference in strain.

glm_pois = glm(ENSMUSG00000000001 ~ SNP2*SNP5 + strain, data=rnaseq, 
family="poisson")
tidy(glm_pois)

term   estimate  std.error statistic      p.value
1  (Intercept) 4.7125607 0.07812460  60.321087   0.000000e+00*
2         SNP2  0.9350636 0.05079155  18.409824 1.095777e-75*
3         SNP5  0.7147750 0.04015972  17.798307 7.283733e-71*
4 strainDBA/2J  0.1588196 0.02015197   7.881093 3.245300e-15*
5 SNP2:SNP5 -0.4269630 0.02837443 -15.047456 3.587680e-51**

*significant at 0.05 without correction for multiple testing
*Bonferroni’s correction: number of pair-wise SNPs tests for the example data (number of 
snps=10 and considering only one gene ENSMUSG00000000001)  10*9/2=45
Adjusted level of significance= 0.05/45 = 0.0011



Screening epistasis
• So far we have considered how to test for interaction between 

two SNPs

• We deal with 500000 to 1 million SNPs across the genome

• One way to search for interactions is to perform an exhaustive 
search, considering all pairwise combinations

• Computationally possible, but time-consuming and 
dramatically increases multiple testing burden

• We may need to use filtering approach where only consider a 
subset of loci chosen based on biological or statistical 
considerations



Class Exercises

1. Using the GE and SNP data from the R-package MatrixEQTL, 
determine the interaction effect of Snp_04 and Snp_05 on Gene_09. 
Check the assumptions related to your model.

2. Use the snp data matrix created (see slide 28) from the SNP_data
a.  assess the interaction effect between snp9 (rs17159711) and 

snp12 (rs2275677) on the disease given by the variable   
“pheno” based on the co-dominant genetic model. 

b. repeat the analysis in (a) by adjusting for the covariate 
“population”



Mapping SNPs to Genes

Mapping SNPs to the corresponding genes allows to have a better
understanding and interpretation of the SNPs and their
interactions.

Use UCSC Genome browser: Open link
https://genome.ucsc.edu

Go to Tools → Variant Annotation Integrator
Mapping the selected SNPs using UCSC genome browser:
rs4880781 −→ ZMYND11 gene
rs10903439 −→ ADARB2 gene

https://genome.ucsc.edu/

