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1 Capita selecta in GWAs

(slide Doug Brutlag 2010)
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Definition (recap)

e A genome-wide association study is an approach that involves rapidly
scanning markers across the complete sets of DNA, or genomes, of many
people to find genetic variations associated with a particular trait.

e A trait can be defined as a coded phenotype, a particular characteristic such
as hair color, BMI, disease, gene expression intensity level, ...
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Genome-wide association studies in practice

The genome-wide association study is typically (but not solely!!!) based on a
case-control design in which single-nucleotide polymorphisms (SNPs) across
the human genome are genotyped ... (Panel A: small fragment)

A

m Chromosome 9 @

— Personl

— Person2

— Person3




GBIO0002

Genome-wide association studies in practice

B SNP1 SNP2

Initial discovery study Eantrols e Initial discovery study Controls

c
s P=1x10-12 P=1x10-3

Common Variant

homozygote f Heterozygote homozygote

e Panel B, the strength of association between each SNP and disease is
calculated on the basis of the prevalence of each SNP in cases and
controls. In this example, SNPs 1 and 2 on chromosome 9 are associated
with disease, with P values of 10712 and 1078, respectively

(Manolio 2010)
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Genome-wide association studies in practice

Position on chromosome 9

Chromosome 16 18 20 22

e The plot in Panel C shows the P values for all genotyped SNPs that have
survived a quality-control screen (each chromosome, a different color).

e The results implicate a locus on chromosome 9, marked by SNPs 1 and 2,
which are adjacent to each other (graph at right), and other neighboring
SNPs. (Manolio 2010)



GBIO0002

Detailed flow of a genome-wide association study

Laboratory

Low level analysis

High level analysis

Selection of DNA chip

Biological question Sampling = |
DNA preparation | Chip hybridization J—b- Chip scan :

Image analysis > Normalization —»  Genotype calling HStandard quality control
IrRepIication fVaIidationw—b Impact on population W

Statistical analysis J—b

.

A

L.
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Imputation
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Statistical analysis

A

—p Replication / Validation

—p{ Impact on population ‘

Data mining ]—p

Replication / Validation

-

-

—-

Impact on population

(Ziegler 2009)
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Standard file format for GWA studies

Standard data format: tped = transposed ped format file

FamID PID FID MID SEX AFF SNP1; SNP1, SNP2, SNP2,

1 0 O 1 1 A A G T

ped file

ol AW N
RlRkrlRrlR| -
Oo|lo| 0|0 | O
OO0 OO | O
RlRrlRrlRP| -
NININRP | -
OO0 >
OO OO O
—Hlo|-Hlo | -
—|4d|4leo o

Chr SNP name Genetic distance Chromosomal position

1 SNP1 0 123456 map file

1 SNP2 0 123654
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Standard file format for GWA studies (continued)

Gen. dist. Pos

PID1 PID2 PID3 PID4 PID5 PID6

123456 A A A C C C A C C C C C

Chr SNP
1 SNP1 O
1 SNP2 O

123654 G T G T G G T T G T T T

tfam file: First 6 columns of standard ped file

FamIiD PID FID MID SEX AFF

tped file

tfam file

1 1 0 O 1 1
2 1 0 O 1 1
3 1 0 O 1 1
4 1 0 O 1 2
5 1 0 O 1 2
6 1 0 O 1 2
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Why is quality control (QC) important?

BEFORE QC - true signals are lost in false positive signals
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Ger MI FS |, Affymetrix 500k array set, SNPs on chip: 493,840

(Ziegler and Van Steen 2010)
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Why is quality control important?

AFTER QC - skyline of Manhattan (= name of plot: Manhattan plot):

-log(P]

12 13 14 18 16 17 19 21

chromosome

Ger MI FS |, Affymetrix 500k array set, SNPs on chip: 493,840
SNPs passing standard quality control: 270,701

(Ziegler and Van Steen 2010)
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The Travemiinde criteria

Filter criterion

Standard value for filter

Sample level Call fraction > 97%
Cryptic relatedness Study specific
Ethnic origin Study specific; visual inspection of
principal components
Heterozygosity Mean £ 3 std.dev. over all samples
Heterozygosity by gender Mean £ 3 std.dev. within gender group
SNP level MAF >1%
MiF < 2% in any study group, e.g., in both

MiF by gender
HWE

cases and controls
< 2% in any gender
p < 10

(Ziegler 2009)
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The Travemiinde criteria

Filter criterion Standard value for filter
SNP level Difference between control groups p > 10" in trend test

Gender differences among controls p>10"in trend test
X-Chr SNPs Missingness by gender No standards available

Proportion of male heterozygote calls No standards available

Absolute difference in call fractions for No standards available
males and females

Gender-specific heterozygosity No standard value available

(Ziegler 2009)
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The role of regression analysis

e Galton used the following equation to explain the phenomenon that sons of
tall fathers tend to be tall but not as tall as their fathers while sons of short
fathers tend to be short but not as short as their fathers:

yv— v (x— x)

SD, | SD,

This effect is called the regression effect.

e We canillustrate this effect with some data on scores from a course
- When we scale each variable to have mean 0 and SD 1 so that we are
not distracted by the relative difficulty of each exam and the total
number of points possible.
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The use of regression analysis

e regression line goes through (0,0)

(Faraway 2002)
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The use of regression analysis

e Regression analysis is used for explaining or modeling the relationship
between a single variable Y, called the response, output or dependent
variable, and one or more predictor, input, independent or explanatory
variables, Xj, ..., Xp.

e When p=1 it is called simple regression but when p > 1 it is called multiple
regression (not recommended as term: multivariate regression).

e When there is more than one Y, then it is called multivariate (simple or
multiple) regression

e Regression analyses have several possible objectives including

- Prediction of future observations.

- Assessment of the effect of, or relationship between, explanatory
variables on the response.

- A general description of data structure
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The linear regression model

— :,5’_3’0 - :31)(1 + ...+ Iﬁka —+ €

@ y: response variable.

@ Xi,...,Xk. regressor variables, independent variables.
@ 0Jo.31,..., k. regression coefficients.
@ e: model error.

» Uncorrelated: cov(ej,¢j) = 0,7 # J.
» Mean zero, Same variance: var(¢;) = 02. (homoscedasticity)
» Normally distributed.
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Linear vs non-linear

Linear Models Examples:

y = B0+ Bix + Bax? + €
y = :30 —+ 51 X1 + .,82 X> + :312)(1 Xo> + €
y = 3o+ B1logxy + Bolog xo + €

. , 1 | 1
|Ogy — :_30 + :31 () — .,.32 () + €
X1 X2

Nonlinear Models Examples:

y = Bo+ Bix{t + Baxy? + €
,.30
1 + e;’31X1 + €

y:
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Regression inference

Yy =[0+ 01x1+ ...+ BiXk + €

@ Least square estimation of the regression coefficients.
b= (X"TX)"1XTy.

e Variance estimation for o2: s2

s<.
o Coefficient of Determination. RZ.

o Partial F test or t-test for Hy : 3; = 0.
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Coefficient of determination = squared correlation coefficient

e The value r? (also denoted as R?) is a fraction between 0.0 and 1.0, and has
no units. An r? value of 0.0 means that knowing X does not help you predict
Y. Most generally: 1 — FUV (Fraction of Unexplained Variation)

e There is no linear relationship between X and Y, and the best-fit line is a
horizontal line going through the mean of all Y values. When

e r2 equals 1.0, all points lie exactly on a straight line with no scatter. Knowing
X lets you predict Y perfectly.

r’=0.0
[ 1 [ ] ) .l --H
. l. ] '.ﬁ-- [ ]

r=0.5

r=1.0
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General linear test approach

e The full model:
Y= fo+ p1X1+ [2Xp + ¢

e Fit the model by f.i. the method of least squares (this leads to estimations b
for the beta parameters in the model)

e |t will also lead to the error sums of squares (SSE): the sum of the squared
deviations of each observation Y around its estimated expected value

e The error sums of squares of the full model SSE(F):

DIV —bo— by = bXo]? = ) (V=)
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General linear test approach

e Next we consider a null hypothesis Hp of interest:
HO: ﬂl — O
Hl: Bl * O

e The model when HO holds is called the reduced or restricted model. When
1 = 0, then the regression model reduces to
Y=[0+ P X, + ¢
e Again we can fit this model with f.i. the least squares method and obtain an
error sums of squares, now for the reduced model: SSE(R)

e Question: which error sums of squares will be smaller? SSE(F) or SSE(R)
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General linear test approach

e The logic now is to compare both SSEs. The actual test statistic is a
function of SSE(R)-SSE(F):

oo _ SSE(R) = SSE(F)  SSE(F)
T k- dfr dfy

which follows an F distribution when Hg holds

e The decision rule (for a given alpha level of significance) is:
If F* < F(1 —a; dfg — dfr,dfr), you cannot reject Ho
If F* > F(1 —a; dfg — dfr,dfr), conclude H;
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Recall: alpha levels

Incorrectly accepting the Corractly rejecting the null hypothesis
null hypothesis (Power)

M

I
ul =80 Type Il error (B) u2 =130
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(Partial) tests in GWAs

e Example 1:
Y = ,80"‘ ,315NP-I- &E
_Ho:ﬁl — O
_Hl:ﬁl * O

— dfy = n — 2 (this links to df in variance estimation)
— dfg = n — 1 (this links to df in variance estimation)

e Example 2 (see more about this later):
Y = ﬁo"‘ B1X1+ szcl‘l‘ﬁgPCz‘l‘ &E

—HO:,B1=0
_Hl:ﬁl :/:O
—dfF:n—4

—de:n—3
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Distributional relationships: F, t, chi-squared

Zi,lay o Zy id N(01) = X2 =22+ 725+ ...+ 72 ~ 2.
Specifically, if = 1, Z? ~ \%. The density function of chixsquare distribution
will not be pursued here. We only note that: Chi-square is a\class of distribu-
tion indexed by its degree of freedom. like the t-distribution. I fact, chi-square

has a relation with . We will show this later.
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Distributional relationships: F, t, chi-squared

It Xy,.... X, iid N(pu,0?%), then Z; = (X; —p)/o ~ N(0,1),j=1,...,n. We

know, from a previous context, t.ha,t. U Z JZ ~ Y2, or equivalently,

S — p)?

0_2 ~ Xp

Z{ e

if 1 is known, or otherwise (if g is unknown) g needs to be estimated (by X.
say,) such that

i /

¥ X = X)7

N2
2 ~ /\-n.—1°
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Distributional relationships: F, t, chi-squared

If Xi.....X, iid N(u,0?), then

X —pu
7/

~ N(0,1).

When o is unknown.

2

1. where 0—-
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Note that

Combining (3) and (4) gives

or, in general,

SHISHE
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Distributional relationships: F, t, chi-squared

2
F,, = "‘g/ " (Sir R. A. Fisher).
| \3/0
. Z
L’ \3/}'/’

;_,...-'
— o -
""-\-\_\_\_H_\_\_\-

f— |

= T~
) =
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Implication to example 1:

Y=ﬁ0+ ,BlSNP-I-E

-Hy: 51 =0
-Hi:p; #0
— dfy = n — 2 (this links to df in variance estimation)
— dfg = n — 1 (this links to df in variance estimation)

It can be shown that for testing f; = O versus 8; # 0
— 2
_ SSE(R)=SSE(F) . SSE(F) _ _b} _ ()

_ F*
dfr—dfF afr s%(bq)

Note: the t-test is more flexible since it can be used for one-sided alternatives
whereas the F-test cannot.
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Regression analysis in R

e The basic syntax for doing regression in R is Im(Y~model) to fit linear
models

e The R function glm() can be used to fit generalized linear models (i.e., when
the response is not normally distributed).

e Linear regression [and logistic regression]: special type of regression
models you can fit using Im() [and gIm()] respectively.
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Model assumptions for linear regression

e There are 4 principal assumptions which justify the use of linear regression
models for purposes of prediction:
- linearity of the relationship between dependent and independent
variables
- independence of the errors (no serial correlation)
- homoscedasticity (constant variance) of the errors
= versus time (when time matters)
= versus the predictions (or versus any independent variable)
- normality of the error distribution. (http://www.duke.edu/~rnau/testing.htm)

e To check model assumptions: go to quick-R and regression diagnostics
(http://www.statmethods.net/stats/rdiagnostics.html)
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Use of 1m() in genetics

For a continuous ocutcome,
lm(outcome ~ genetic.predictor, [...] )

estimates the association between outcome and predictor

Model Description predictor Common name

Number of minor alleles (g==‘Aa’) + 2*(g==‘aa’) Additive
Or as.numeric(g)

Presence of minor allele (g==‘Aa’) | (g==‘aa’) Dominant
Homozygous for minor allele ==‘aa’
Distinct effects factor(g) 2 parameter,

for hetero/homozygous or "2 df"”
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One SNP: different encodings imply different genetic models

Coding scheme for statistical modeling/testing

Indiv. X1 X1 X2 X1 X1 X1
genotype
Additive Genotype Dominant |Recessive |Advantage
coding coding coding (for | coding (for | Heterozygous
(general mode |a) a)
of inheritance)
AA 0 0 0 10 0 0
Aa 1 1 0 1 0 1
aa 2 0 1 1 1 0
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Use of 1m() in genetics

Some data; cholesterol levels plotted by genotype (single SNP)

g
=]
L=} a o
o
Y 0% ° P
ﬂn% B ﬂ"n
[n] o ® o
S o =) [a] a
3 o e &‘3‘
9 D 3 g
;Z GD%ED ° %ﬂﬂﬂf o ©
o
5 = ®° D;—"ﬂm o O
ﬂﬂgﬂg& ﬂﬂ .
o8 shca "o
Dod:ﬂcp
% oo
o o
a ©
|

aa
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Use of 1Im() in genetics

Additive model (the most commonly used)

cholesteral

aa
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Use of 1m() in genetics

Dominant model (best fit to this data)

- o o e e o o S E E E E EE  m m am m

cholesteral

aa
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Use of 1m() in genetics

Recessive model (least stable for rare aa)

cholesteral

______________________________

b Aa as
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Use of 1Im() in genetics

2 parameter model (robust but can be overkill)

cholesteral

BRI NN UC N B N BN R A W R T T
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Logistic regression (dichotomous traits; cases and controls)

In linear regression one equates

E[Y] = Bo + 1 X1

In logistic regression one equates

E[Y] = P(Y =1)=f(Bo+ B1X;1)

@ y is binary: logistic regression.

1
PIY = 1) = 1 ot o)

@ y is measured on an ordinal scale: ordinal logistic regression.
@ y is measured on non-ordered scale: multinomial logistic regression.

@ y is counts: Poisson or Negative Binomial regression.
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Logistic regression (dichotomous traits; cases and controls)
ElY] = P(Y =1) = f(Bo + B1X1)
fTHEYD = fY(PY =1) = (Bo+ B1X1)

fHELY]) = logit(P(Y = 1)) == log(

l

(L Pr=D ) _ .
Og(l— P(Y=1)>_ Bo + b1 X;

Log(Odds|X1--1) =By + 11
— Log(Odds|X1-=0) =

P(v=1)
1— P(Y=1))

Log(OR) = 34
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Logistic regression (formal formulation)
Variables:

m [et Y be a binary response variable
Y; = 1 1f the trait 1s present in observation (person, unit, etc...) i

Y; = 0 1f the trait 1s NOT present in observation 7

m X= (X, Xy, ..., Xjp) be a set of explanatory variables which can be discrete, continuous, or a combination. x; 1s the
observed value of the explanatory variables for observation i. In this section of the notes, we focus on a single
variable X.

Model:

exp(Bo + B1zi)

m;, = P?"(E = 1|X3 = ZEE') =
1+ exp(Bo + B1:)
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Assumptions:

m The data Y1, 15, ..., 1, are independently distributed, 1.e., cases are independent.

m Distribution of Y; 1s Bin(n;, m;), 1.e., binary logistic regression model assumes binomial distribution of the response.
The dependent variable does NOT need to be normally distributed, but it typically assumes a distribution from an
exponential family (e.g. binomial, Poisson, multinomial, normal....)

m Does NOT assume a linear relationship between the dependent variable and the independent variables, but it does
assume linear relationship between the logit of the response and the explanatory variables; logit(n) = By + PX.

m Independent (explanatory) variables can be even the power terms or some other nonlinear transformations of the
original independent variables.

m The homogeneity of variance does NOT need to be satisfied. In fact, it 1s not even possible in many cases given the
model structure.

m Errors need to be independent but NOT normally distributed.

m [t uses maximum likelihood estimation (MLE) rather than ordinary least squares (OLS) to estimate the parameters,
and thus relies on large-sample approximations.

B Goodness-of-fit measures rely on sufficiently large samples, where a heuristic rule 1s that not more than 20% of the
expected cells counts are less than 5.

(https://onlinecourses.science.psu.edu/stat504)
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Parameter Estimation:
The maximum likelihood estimator (MLE) for (B, B1) is obtained by finding (3,, 8;) that maximizes:

o LY N exp{y;(Bo + 1)}
Libo. 1) _zl:ll m (1 m ) = 31:[1 1+ exp(Bo + Biz:)

In general, there are no closed-form solutions, so the ML estimates are obtained by using iterative algorithms such as
Newton-Raphson (NR), or Iteratively re-weighted least squares (IRWLS). In Agresti (2013), see section 4.6.1 for
GLMs, and for logistic regression, see sections 5.5.4-5.5.5.

(https://onlinecourses.science.psu.edu/stat504)
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Logistic regression test approach

e Example 1:
- HO: 181 — O
- Hl: ﬁl * O

Large-sample “Wald test”:
2

TS.iX2 =

RR.:XZ > 42

obs —

P-val:P(y°>X2,))
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The Wald statistic

In the univariate case, the Wald statistic is

(6 — 6p)?

~

var(f)

which is compared against a chi-squared distribution.

Alternatively, the difference can be compared to a normal distribution. In this
case the test statistic is

0 — o
se(f)

where se(f)is the standard error of the maximum likelihood estimate (MLE). A

reasonable estimate of the standard error for the MLE can be given by
1

VI(MLE) \yhere I.is the Fisher information of the parameter.


https://en.wikipedia.org/wiki/Statistic
https://en.wikipedia.org/wiki/Chi-squared_distribution
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Standard_error_%28statistics%29
https://en.wikipedia.org/wiki/Fisher_information
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Link between Wald and test of independence

e The chi-square test of independence is appropriate when the following
conditions are met:

- The sampling method is simple random sampling.

- The variables under study are each categorical.

- If sample data are displayed in a contingency table, the expected
frequency count for each cell of the table is at least 5.

e There are four steps involved: (1) state the hypotheses, (2) formulate an
analysis plan, (3) analyze sample data, and (4) interpret results.


http://stattrek.com/Help/Glossary.aspx?Target=Simple%20random%20sampling
http://stattrek.com/Help/Glossary.aspx?Target=Categorical%20variable
http://stattrek.com/Help/Glossary.aspx?Target=Contingency%20table
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State the Hypotheses

e Suppose that Variable A has r levels, and Variable B has ¢ levels. The null
hypothesis states that knowing the level of Variable A does not help you
predict the level of Variable B. That is, the variables are independent.

Ho: Variable A and Variable B are independent.
Ha: Variable A and Variable B are not independent.

e The alternative hypothesis is that knowing the level of Variable A can help
you predict the level of Variable B.

Note: Support for the alternative hypothesis suggests that the variables are
related; but the relationship is not necessarily causal, in the sense that one
variable "causes" the other.



http://stattrek.com/Help/Glossary.aspx?Target=Null%20hypothesis
http://stattrek.com/Help/Glossary.aspx?Target=Null%20hypothesis
http://stattrek.com/Help/Glossary.aspx?Target=Alternative%20hypothesis
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Formulate an Analysis Plan

e The analysis plan describes how to use sample data to accept or reject the
null hypothesis. The plan specifies the following elements:

— Significance level. Often, researchers choose significance levels equal to
0.01, 0.05, or 0.10; but any value between 0 and 1 can be used.

— Test method. Use the chi-square test for independence to determine
whether there is a significant relationship between two categorical
variables.

e Using sample data, find the degrees of freedom, expected frequencies, test
statistic, and the P-value associated with the test statistic.


http://stattrek.com/Help/Glossary.aspx?Target=Significance%20level
http://stattrek.com/Help/Glossary.aspx?Target=Chi-square%20test%20for%20independence
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. Degrees of freedom. The degrees of freedom (DF) is equal to:

DF=(r-1)*(c-1)

where r is the number of levels for one categorical variable, and c is the

number of levels for the other categorical variable.

AA

Aa

dd

Cases

Controls

For example: r=2 (for a dichotomous Y) ; c=3 (for a SNP)

Sum of entries =
cases+controls



http://stattrek.com/Help/Glossary.aspx?Target=Degrees%20of%20freedom
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. Expected frequencies. The expected frequency counts are computed
separately for each level of one categorical variable at each level of the
other categorical variable. Compute r * c expected frequencies, according
to the following formula.

where E; . is the expected frequency count for level r of Variable A and
level ¢ of Variable B, n, is the total number of observations at level r of
Variable A, ncis the total number of observations at level ¢ of Variable B,
and n is the total sample size.

Erc=(nr*neg)/n

AA Aa aa
Cases E11 E1r Eis
Controls E>q ) E)s
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. Test statistic. The test statistic is a chi-square random variable (X?)
defined by the following equation.

X2 =2 [ (Or,c - Er,c)z/ Er,c ]

where O is the observed frequency count at level r of Variable A and
level ¢ of Variable B, and E; ¢ is the expected frequency count at level r of
Variable A and level ¢ of Variable B.

. P-value. The P-value is the probability of observing a sample statistic as
extreme as the test statistic, which can be proven to follow a chi-square
distribution with degrees of freedom as derived before. The null
hypothesis is rejected when the P-value is less than the pre-stated
significance level (e.g., 0.05 or 0.05/(nr of SNPs to test)).

(see http://stattrek.com/chi-square-test for a general example)
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Confounding: population stratification
What is spurious association?

e Spurious association refers to false positive association results due to not
having accounted for population substructure as a confounding factor in
the analysis

Case Control

00006...0000

Population
2

0000
Q0 OO0
Q000
0000
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What is spurious association?

e Typically, there are two characteristics present:
- A difference in proportion of individual from two (or more)
subpopulation in case and controls
- Subpopulations have different allele frequencies at the locus.

Population 1 Cases Population 2

Y

A

Y

_—
-

Controls

Genotype .aa .Aa .AA
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What are typical methods to deal with population stratification?

e Methods to deal with spurious associations generated by population
structure generally require a number (at least >100) of widely spaced null
SNPs that have been genotyped in cases and controls in addition to the
candidate SNPs.

e These methods large group into:

— Principal components

— Structured association methods: “First look for structure (population
clusters) and second perform an association analysis conditional on the
cluster allocation”

— Genomic control methods: “First analyze and second downplay
association test results for over optimism”
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Principal components

\ }
\ Y } \ / V

Individuals x SNPs Y Components x SNPS
LOADINGS
Individuals x
components
SCORES

e Principal components analysis (PCA) is one of a family of techniques for taking
high-dimensional data, and using the dependencies between the variables to
represent it in a more tractable, lower-dimensional form, without losing too
much information.
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PCA in a nutshell

Notation

» X is a vector of p random variables

» « is a vector of p constants

! v — P .
> akx - Zj:l Ctijj

Procedural description

» Find linear function of X, a:’lx with maximum variance.

» Next find another linear function of x, ax, uncorrelated with
Q'jX maximum variance.

» |terate.

Goal

It is hoped, in general, that most of the variation in x will be
accounted for by m PC's where m << p.
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Assumption and More Notation

» 2 is the known covariance matrix for the random variable x

» Foreshadowing : X will be replaced with S, the sample
covariance matrix, when X is unknown.

Shortcut to solution

» For k=1,2,...,p the k™ PC is given by z, = a/,x where o,
is an eigenvector of X corresponding to its k™ largest
eigenvalue .

> If oy is chosen to have unit length (i.e. ap oy = 1) then

Var(zy) = A\g
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Derivation of PCA

First Step

» Find o, x that maximizes Var(a) x) = o) Xy
» Without constraint we could pick a very big a.

» Choose normalization constraint, namely a‘;(ak =1 (unit
length vector).

Constrained maximization - method of Lagrange multipliers

» To maximize o Xy, subject to aj ax = 1 we use the
technique of Lagrange multipliers. We maximize the function

o, Xay — Najar —1)

w.r.t. to ay by differentiating w.r.t. to ay.
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Constrained maximization - method of Lagrange multipliers

» This results in

d
Ja. (dZak = M(ajay —1)) = 0
Zak—/\kak = 0
):ak = )\kak

» This should be recognizable as an eigenvector equation where
o is an eigenvector of 2 ,f and A, is the associated
eigenvalue.

» Which eigenvector should we choose?
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Constrained maximization - method of Lagrange multipliers

» If we recognize that the quantity to be maximized
a'}(Zak = ai()\kak = Aka;(ak = A\

then we should choose A\, to be as big as possible. So, calling

A1 the largest eigenvector of X and «; the corresponding
eigenvector then the solution to

Zal - /\10{1

is the 1°* principal component of Xx.

> In general ay will be the k*" PC of x and Var(a/x) = \,
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Principal components from Gaussian variates

2nd PC Projectior

1st PC Projectior

Figure: PCA Projected Gaussian PDF
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Principal components in population genetics (variates are SNPs !)

e In European data, the first 2 principal components “nicely” reflect
continuous axes of variation due to shared ancestry

Y-axis: PC2 (6% of variance); X-axis: PC1 (26% of variance)
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Principal components in population genetics

e Example 2:
Y= o+ p1Xy+ B2PCy + f3PCr + €
-Hy: 51 =0
-Hi:p; #0
-dff =n-—4

—de=n—3
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Genomic control

¢ In Genomic Control (GC), a 1-df association test statistic is computed at
each of the null SNPs, and a parameter A is calculated as the empirical
median divided by its expectation under the chi-squared 1-df distribution.

e Then the association test is applied at the candidate SNPs, and if A > 1 the
test statistics are divided by A.

o Under Hj of no association p-values uniformly distributed
o In case of population stratification: inflation of test statistics
median(x7, X3, ..., x7) median(xi, x3, ..., X7)
median(L(x%)) B 0.456
2 2 /1y
© Xae =X / A

o N=
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> median(rchisq(10,1))

[1] 0.9641272

> median(rchisq(100,1))

[1] 0.5001173

> median(rchisq(1000,1))
[1] 0.4206546

> median(rchisq(10000,1))
[1] 0.4686072

> median(rchisq(100000,1))
[1] 0.455271

> median(rchisq(1000000,1))

[1] 0.4548966
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2 When variants become rare

Impact

... on tests for association between trait and SNP

e Fill in the table below and perform a chi-squared test for independence

between rows and columns

AA

Aa

dd

Cases

Controls

Sum of entries =
cases+controls

e How many observations do you expect to have two copies of a rare allele?
Example: MAF for a = 0.001 = expected aa frequency is 0.001 x 0.001 or 1

out of 1 million
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¢ In a chi-squared test of independence setting:
When MAF <<< 0.05 then some cells above will be
sparse and large-sample statistics (classic chi-squared tests of

independence) will no longer be valid. This is the case when there are less
than 5 observations in a cell

® In a regression framework:
The minimum number of observations per independent variable should be
10, using a guideline provided by Hosmer and Lemeshow, authors of

Applied Logistic Regression, one of the main resources for Logistic
Regression
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Remediation: rationale for burden tests

e Alpha level of 0.05, corrected by number of bp in the genome= 1.6*10!!
e One needs VERY LARGE samples sizes in order to be able to reach that level,
even if you find “the variant”.
e So what to do in this situation?
e Do not test a single variant at a time, but pool variants: specification of a
so-called “region of interest” (ROI)
e A region can be anything really:
- Gene
— Locus
— Intra-genic area
— Functional set
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Key features of burden tests

e Collapse many variants into single risk score
e Several flavors exist:
— In general they all combine rare variants into a genetic score

Example: Combine minor allele counts into a single risk score (dominant
genetic model)

— Weighted or unweighted versions (f.i., to prioritize certain variant
types, based on predictions about damaging effect)
e When high linkage disequilibrium (LD) [allelic non-independence] exists in
the “region”, combined counts may be artificially elevated
e Assume all rare variants in a set are causal and associated with a trait in the
same direction

— Counter-examples exist for different directionality (e.g. autoimmune
GWA:Ss)

— Violations of this assumption leads to power loss
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REVIEW

Rare-Variant Association Analysis:
Study Designs and Statistical Tests

Seunggeung Lee,! Gongcalo R. Abecasis,! Michael Boehnke,! and Xihong Lin2*

Despite the extensive discovery of trait- and disease-associated common variants, much of the genetic contribution to complex traits
remains unexplained. Rare variants can explain additional disease risk or trait variability. An increasing number of studies are underway
toidentify trait- and disease-associated rare variants. In this review, we provide an overview of statistical issues in rare-variant association
studies with a focus on study designs and statistical tests. We present the design and analysis pipeline of rare-variant studies and review
cost-effective sequencing designs and genotyping platforms. We compare various gene- or region-based association tests, including
burden tests, variance-component tests, and combined omnibus tests, in terms of their assumptions and performance. Also discussed
are the related topics of meta-analysis, population-stratification adjustment, genotype imputation, follow-up studies, and heritability
due to rare variants. We provide guidelines for analysis and discuss some of the challenges inherent in these studies and future research
directions.

(Lee et al. 2014)
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Other tests

e Variance-component tests (e.g., SKAT)
— These test the variance of genetic effects
e Combined tests
— Variance tests outperform burden tests if many variants are non-causal
— Burden tests outperform variance tests if many variants are causal
— Therefore, a test that combines both in different scenarios is useful.
— SKAT-0 is such a test: Q = (1-p)Qskat + PQsuRDEN
= Can include covariates
= Optimal p? Try several ... (multiple testing)
e EC tests
— These tests exponentially combine single variant score tests

(Lee et al. 2014)
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Methods to Detect Disease-Associated
Variation and Test Hypotheses About
Complex Disease
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DNA sequence analyses

Motivation: classic GWAs are not sufficient to resolve “human genetic
variation” ...

Published Genome-Wide Associations through 12/2013
Published GWA at p<s5X10°8 for 17 trait categories

Digestive system disease
ardiovascular disease

gﬁ '%il‘:!! A5HS

® Other disease
@ Other trait

NHGRI GWA Catalog
T www.genome.gov/GWAStudies
pa Sonome Rereren  \www.ebi.ac.uk/fgpt/gwas/ EMBL-EBI i .
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Sequencing projects

e In January 2008, when sequencing techniques became more advanced,
more accurate, and less expensive, the 1000 Human Genome Project was
launched.

The main scope of this consortium is to sequence, ~1000 anonymous participants of
different nationalities and concurrently compare these sequences to each other in
order to better understand human genetic variation.

e Shortly after the 1000 Human Genome Project, the 1000 Plant Genome
Project (http://www.onekp.com) was launched, aiming to sequence and
define the transcriptome of ~1000 plant species from different populations
around the world.

Notably, out of the 370,000 green plants that are known today, only ~125,000
species have recorded gene entries in GenBank and many others still remain
unclassified.
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e While the 1000 Plant Genome Project was focused on comparing different
plant species around the world, within the 1001 Genomes Project, 1000
whole genomes of A. Thaliana plants across different places of the planet
were sequenced.

e Similar to other consortiums, the 10,000 Genome Project aims to create a
collection of tissue and DNA specimens for 10,000 vertebrate species
specifically designated for whole-genome sequencing.

Vertebrates have a series of nerves along the back which need support and
protection. That need brings us to the backbones and notochords. Notochords were

the first "backbones" serving as support structures.

e The goal of the 1000 Fungal Genome Project (http://1000.fungalgenomes.org) is
to explore all areas of fungal biology.
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¢ In human genetics, metagenome sequencing is becoming increasingly

important, which lead to the Human Microbiome Project
(http://www.hmpdacc.org/)

— Metagenome sequencing is defined as an approach for the study of
microbial populations in a sample representing a community by
analysing the nucleotide sequence content.

— The HMP plans to sequence 3000 genomes from both cultured and
uncultured bacteria, plus several viral and small eukaryotic microbes
isolated from human body sites.

— This, in conjunction with reference genomes sequenced by HMP
Demonstration Projects and other members of the International
Human Microbiome Consortium (IHMC), will supplement the available
selection of non-HMP funded human-associated reference genomes.


http://www.human-microbiome.org/
http://www.human-microbiome.org/
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Metagenomics: the next hype

e Within the human body, it is estimated that there are 10x as many
microbial cells as human cells.
e Our microbial partners carry out a number of metabolic reactions that are

not encoded in the human genome and are necessary for human health (=
human genome = human genes + microbial genes).

e The majority of microbial species present in the human body have never
been isolated, cultured or sequenced, typically due to the inability to

reproduce necessary growth conditions in the lab (2 study microbial
communities — metagenomics)

e In order to assign metagenomic sequence to taxonomic and functional
groupings, and to differentiate the novel from the previously described, it is
necessary to have a large pool of described genomes from the same
environment (reference genomes).



GBIO0002

Why Reference Sequences?

v

SEQUENCE ALIGN METAGENOMIC MAP TAXONOMY
WGS AND REFERENCE & FUNCTIONAL
GENOME SEQUENCE ANNOTATION

(http://www.hmpdacc.org/)
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We have seen reference genomes
before ... (the so-called “builds”)

jC,enome Reference Consortium

Human Overview Human Genome Issues

“ Report an Issue Contact Us Curators Only

Human Assembly Data

Human Genome Overview

Information about the continuing improvement of the human genome
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o Region conlaining alternale loci

® Region containing lix palches

@ Region containing novel palches

Ideogram of the latest human assembly, GRCh38.p9

The GRC is werking hard to previde the best possible reference assembly for human. We do this
by both generating multiple representations (alternate loci) for regions that are teo complex to be
represented by a single path. Additionally, we are releasing regional fixes known as patches. This
allows users who are interested in a specific locus to get an improved representation without
affecting users who need chromosome coordinate stability.

Download data:
* GRCh38.p9 (latest minor release) FTP
* GRCh38 (latest major release) FTP
* Genomic regions under review FTP
* Current Tiling Path Files (TPFs)

Transitioning to GRCh38? Try the NCBI Remapping Service, which uses the same assembly-
assembly alignments used by the GRC.

Next assembly update
The next assembly update (GRCh38.p10) will be a minor (patch) release in winter 2016.

(https://www.ncbi.nlm.nih.gov/grc/human)

New haplotype Nov 08, 2016
representations in the

LRC_KIR region on

chromosome 19q13.4

Are you familiar with Oct 24, 2016

CYP2D6 and its importance
in drug metabolism?
see all

Resolved Human Issues

HG-2218 Oct 12, 2016

Evidence from Mliseq data for
RP11-323F 10, and RP11 WGS confirms

the current assembly of AC017047 .4 as
HG-2416 Oct 12, 2016

This pathway has been uploaded to the
Chr. 1 ALT_REF_LOCI_2 TPF.

see all
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Which reference sequence?

Practical problems genomic reference sequence

* for a human, a genomic reference sequence does not contain any useful information (a coding DNA reference sequence does)

® a gene can be very large (over 2.0 Mb) - this makes nucleotide numbering based on a genomic reference sequence rather impractical (e.g. g.1567234 1567235insTG).
Furthermore, genomic reference sequences based on GenBank NT_ files become increasingly long (e.g. the CFTR gene in NT_007933.15, >77 Mb) and consequently loose
their informativity. Downloading such large files is, even with good internet connections, time consuming and working with these files is rather difficult.

* when a genomic reference sequence is taken from a complete genome sequence, e.g. a bacterium or the human X-chromosome, the transcriptional orientation of the gene of
interest may be on the minus (-) strand. This makes the description of sequence variants rather complicated, especially when the consequences on RNA and/or protein level
need to be described; nucleotides on DNA and RNA level are complementary and numbering goes in different directions - a confusing situation that should be prevented.

* when different genes (partly) overlap, using the same or the minus (-) DNA strand, which reference sequence should one use to describe the variant and to which gene should
the change be assigned ? (see Recomimendations).

* when the gene sequence is incomplete (especially when large introns are present) - a genomic sequence can not be used.

* genes may contain very large introns with many intronic (fength) variants present in the population - it is thus very difficult to give THE genomic reference sequence (see
Genomiic sequience changes regularly).

Practical problems coding DNA reference sequence

o the exact transcriptional start site (cap-site) of a gene has often not been determined and/or its assignment is debated - the first nucleotide can thus not be assigned with
certainty. The same might be true for the translation initiation site (ATG-codon).

* a gene may have several transcripts, using different promoters / 5'-first exons, alternatively spliced internal exons, different 3'-terminal exons and polyA-addition sites - one
complete coding DNA reference sequence can thus not be generated (see Alternatively spliced exons - niicleotide numbering),

¢ the different transcripts may encode different proteins (isoforms) with, when different promoters are used, different N-terminal sequences and even using different reading
frames in one or more exons. One complete protein reference sequence can thus not be assigned.

¢ when different genes (partly) overlap, using the same or the minus (-) DNA strand, which reference sequence should one use to describe the variant and to which gene should
the change be assigned ? (see Recomimendations).

(http://www.hgvs.org/mutnomen/refseq.html#standard)
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How is DNA sequencing used by scientists?

A. In recent years, DNA sequencing technology has advanced many areas of
science. For example, the field of functional genomics is concerned with

— figuring out what certain DNA sequences do, as well as

— which pieces of DNA code for proteins and

— which have important regulatory functions.
B. An invaluable first step in making these determinations is learning the
nucleotide sequences of the DNA segments under study.
C. Another area of science that relies heavily on DNA sequencing is
comparative genomics, in which researchers compare the genetic material of
different organisms in order to learn about their evolutionary history and
degree of relatedness.
D. Complex disease analysis
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A. Sequence annotation

(see practicals)

oe, ate, o Search:

Biocond UCtor Install Developers About

OPEN SOURCE SOFTWARE FOR BIOINFORMATICS

Home » Bioconductor 3.2 » Annotation Packages » org.Hs.eg.db

Documentation »

Org . H S . eg - d b Bioconductor

= Package vignettes and manuals.
= Workflows for learning and use.

platforms [all | downloads |top 5% [ posts [10 /1 /3 [ 2 = Course and conference material.
= Videos.

= Community resources and tutorials.

] ) R / CRAN packages and documentation
Genome wide annotation for Human

Bioconductor version: Release (3.2)
Genome wide annotation for Human, primarily based on mapping using Entrez Gene identifiers.

Author: Marc Carlson

Support »
Maintainer: Bioconductor Package Maintainer <maintainer at bioconductor.org>
] _ Please read the posting guide. Post
Citation (from within R, enter citation("org.Hs.eg.db")): questions about Bioconductar to one of

. . the following locations:
Carlson M. org.Hs.eg.db: Genome wide annotation for Human. R package version 3.2.3. 9

= Support site - for questions about
. Bioconductor packages
Installation = Bioc-devel mailing list - for package

devel
To install this packaae, start R and enter: evelopers
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B. Counting letters or words

e One of the most fundamental properties of a genome sequence is its GC
content, the fraction of the sequence that consists of Gs and Cs, ie. the
%(G+C).

e The GC content can be calculated as the percentage of the bases in the
genome that are Gs or Cs. That is, GC content = (number of Gs + number of
Cs)*100/(genome length). For example, if the genome is 100 bp, and 20
bases are Gs and 21 bases are Cs, then the GC content is (20 + 21)*100/100
= 41%.

Cell Reports cel

PRESS

Open

ACCESS

Differential GC Content between Exons
and Introns Establishes Distinct Strategies
of Splice-Site Recognition

Maayan Amit,’* Maya Donyo,-* Dror Hollander,’-* Amir Goren,’* Eddo Kim,'! Sahar Gelfman,! Galit Lev-Maor,’
David Burstein,2 Schraga Schwartz,3 Benny Postolsky,! Tal Pupko,? and Gil Ast!-*
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e The CpG sites or CG sites are regions of DNA where a cytosine nucleotide
occurs next to a guanine nucleotide in the linear sequence of bases along its
length. "CpG" is shorthand for "—C—phosphate—G—", that is, cytosine
and guanine separated by only one phosphate. The "CpG" notation is used
to distinguish this linear sequence from the CG base-pairing of cytosine and
guanine. (https://en.wikipedia.org/wiki/CpG_site)

CATTC  CCTTCTOTCC  AGGTGE TEGEGEA
GGTETTTTGCT  GGTTCTGTAAGAATAGGCCAGG
CAGCTTCO GEATG  CTCATCCCCTCT G
GETTC  CTCCCAC C T GG GTT
CoOCCTG  AGATGTTTTC A GACAATGATTC
CACTCT G CCTCCCATGTTGATCCCAGCTCCT
CTG GG TCAGGACCCCTGGGCOC  CCC
CTCCACTCAGTCAATCTTTITGTCCC TATAAGG
GATTAT GOGTAGCTGEGEGEGE  GCTGATTC A
AATGCCCTTGGEGEGEGETCACE GGAGGGAACTC
GGCTC GCOTTTGGCCAGCC CACCCCTGGT
TEGAGC GCC  AGGGCCACCAGGGEGE  CT
ATGTTCCTGCAGCCCCC  CAGCAGCCCCACTCC
C  GCTCACCCTA  ATTGGCTGGC CCC AG
CTCTGTGCTGTGATTGGTCACAGCC TGTC T
GG C GGG GATA  AGGTGA CA
GAGGCCCAGCT GGG GTGTCC e
ACTG GG GAGTTT AGGGC AAG
GGGCAGTGTGA GCAG  GTCCTGGGAGG  C
c T GAGCAGCTCOC TCOTC  CA
GG TCAC GOoGE TG COCTGGOOS
TCC  CACT CACTCCTGTS ©  CCCAC
CCCACCTCCCACZCT  ATG  GTGC  GGECTGC
TG TGATGGGGCTG GAG G CCCTG G
CT G GC  CTGCT CTGAGGTG T
GTGCC GCOCCC CoCs L
GOTCOTGTTGACS  GTC  CC T GTCTGC
Al GOTEAGGTAAGG G GGGECTGGOE
GTTGG O GT GEGTTGEGEAGGEE
GGEC o CTTS GEGAGGAG GO GGOCGE
GGTS GG GGEETCTGAGGGGA

CTCTTAGTTTITEGGTGCATTTATOTGETOTTOCAAM
CTAGATTGAAAGCTCTGAAAAMAMAAMATTATCTTGT
GTTTCTATCTGTTGAGC TCATAGTAGGTATCCAGGA
AGTAGTAGGGTTGACTGCATTGATTTGGGACTACAC
TGEGAGTTTTCTT  CCATCTOCCTTTAGTTTTCCT
TTTTTTCTTTCTTITCTTTTCT T T ITITTCT I TIOT I ]
TTGAGATGT  TCTTGCTCAGTCCCCCAGGLTGEA
GTECAGTGGETE ATCTTGGCTCACTGTAGCCTOC
ACCTCCCAGGTTCAAGCAATTCTACTGCCTTAGCCT
CC AGTAGCTGGGATTACAAGCACC  CCACCAT
TOCTGGOTAATTTTTTITTTTTGTATTT TTAGTTGAGA
CAGGGTTTCACCATGTTGGTGATGCTGGTCTCAGA
CTOCTGEGEGECCTAG ATCCCCCTGUCTCAGCCT
COCAGAGTGTTAGGATTACAGGCATGAGCCACTGT
ACC  GCCTCTCTCCAGTTTCCAGTTGGRAATCCAA
GEGAAGTAAGTTTAAGATAAAGTTA  ATTTTGAAAT
CTTTGGATTCAGAAGAATTTGTCACCTTTAACACCT
AGAGTTGAA  TTCATACCTGGAGAGCCTTAACATT
AAGCCCTAGCCAGCCTCCAGCAAGTGGACATTGGT
CAGGTTTGGCAGGATT  TCOCOCTGAAGTGGACT
GAGAGCCACACCCTGGOCTGTCACCATACCCATCG
COTATCCTTAGTGAAGCAARMACTCCTTTGTTCCCTT
CTCCTTCTCOTAGTGACAGGAAATATTGTEATCCTA
AAGAATGAAMATAGCTTGTCACCT  TGGCCTCAG
GCCTCTTGACTTCAGE  GTTCTGTTTAATCAAGT
GACATCTTCS  AGECTCCCTGAATGTGGCAGATG
AAAGAGACTAGTTCAACCCTGACCTGAG GG GAMAG
COTTTGTGAAGGGTCAGGAG



https://en.wikipedia.org/wiki/DNA
https://en.wikipedia.org/wiki/Cytosine
https://en.wikipedia.org/wiki/Nucleotide
https://en.wikipedia.org/wiki/Guanine
https://en.wikipedia.org/wiki/DNA_sequence
https://en.wikipedia.org/wiki/Base_pair
https://en.wikipedia.org/wiki/Phosphate
https://en.wikipedia.org/wiki/Base_pair
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C. Comparing multiple sequences (evolutionary history)

e After collection of a set of related sequences, how can we compare them as
a set?

e How should we line up the sequences so that the most similar portions are
together?

e What do we do with sequences of different length?
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e Are sequences alike?
— Heterologs. {Heterologs differ in both origin and activity.}
— Homologs. {Homologs have common origins but may or may not have
common activity.}
= Genes that share an arbitrary threshold level of similarity
determined by alignment of matching bases are termed
homologous.
= Homology is a qualitative term that describes a relationship
between genes and is based upon the quantitative similarity.
= Similarity is a quantitative term that defines the degree of
sequence match between two compared sequences.
= Homology implies that the compared sequences diverged in
evolution from a common origin.
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— Analogs. {Analogs have common activity but not common origin.}
= Genes or proteins that display the same activity but lack sufficient

similarity to imply common origin are said to have analogous
activity.
= The implication is that analogous proteins followed evolutionary
pathways from different origins to converge upon the same
activity.
= Analogs have homologous activity but heterologous origins.
— Paralogs. {Paralogs are homologs produced by gene duplication.}

/—\ Organism A
On |
Oa \/

Gene duplication event — |

-
&
Organism B Organism C |

1
e
ot

) Paralogs
Orthologs
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D. Genomic variation for complex diseases

S|ENPIAIPU| JO JaquinN

Number of different SNPs
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Genomic variation for complex diseases

e High throughput in numbers of individuals and variants matters

— Only identical twins have the same DNA sequences

— 2 x 1077 bases in the human genome are variable

— Average differences between two humans: 0.1% of their genome
shared

— Difference between human and chimpanzee is about 1% .... DNA-wise!
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Genomic variation for complex diseases - continued

e Sequencing (DNA, RNA, ...) has already aided complex disease research by
allowing scientists to catalogue certain genetic variations between
individuals that may influence their susceptibility to different conditions or
by identifying similar “patterns” between subgroups of patients (i.e.,
molecular reclassification of patients = obtaining an accurate trait def).

The TCGA Pan-Cancer project assembled
data from thousands of patients with
primary tumors occurring in different sites
> , of the body, covering 12 tumor types. The
idea of the TCGA PanCancer project was to

integrate data set for comparing and
contrasting multiple tumor types ...
(Weinstein et al. 2013)
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Genomic variation for complex diseases - continued

e In general, there are 3 common scenarios for human geneticists using NGS
data to understand complex diseases:
— Identification of causitive genes in Mendelian disorders (germline
mutations)
— Identification of candidate genes in complex diseases for further

functional studies (complex diseases are governed by multiple genes that are

possibly interacting with each other and/or with environment)

- ldentification of constitutional mutations as well as driver and
passenger genes in cancer (somatic mutations) (Pabinger et al 2013)

A germline mutation is one that was passed on to offspring because the egg or sperm

cell was mutated.
A somatic mutation is a mutation of the somatic cells (all cells except sex cells) that

cannot be passed on to offspring.



GBIO0002

Whether A, B, Cor D is the aim ...

the starting point
of any sequencing project
is the development of an appropriate study design,
which should start
with a well-defined question
(biological / medical / research/ ...)
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The application determines the analysis (software) tool

Suppose: You have been given a 5 KB piece of DNA sequence ...
What to do next? ...

e GeneScan: find any exons in the DNA sequence and generate a predicted
protein sequence

e ScanProsite: scan the protein sequence for domains/motifs/patterns found
in the prosite database [Motifs are structural characteristics and domains are

functional regions]

e BLASTP: run a BLASTP search against the Swissprot database find some of
the best matches (hits) and copy each protein sequence into a word doc for
the alignment

e MultAlin: conduct protein sequence alignments from the BLASTP search
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The application determines the software tool

e The rule of thumb in the genomics community is that every dollar spent on
sequencing hardware must be matched by a comparable investment in
informatics (www.the-scientist.com/2011/3/1/60/1)

e There is a constant stream of new software

— What is its quality?
— How to install it?
— How to get it working?


http://www.the-scientist.com/2011/3/1/60/1
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Common workflow for whole-exome and whole genome sequencing

Lab

Library Preparation, Exome Capturing, ...

[ Whole-Exome-Seq ] * Whole-Genome-Seq

NGS Platform

lllumina, SOLID, 454, ...

¥

Quality Assessment

Trimming, Filtering, ...

Y

Read Alignment O Prioritization / Filtering
Reference Genome =
= Y
Q Lab
E Validation

(Pabinger et al. 2013)
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R code for DNA seq analysis problems (at home)

e R scripts illustrating relevant R packages for sequence pattern recognition
and sequence-based analytics (see also practical session), includes:

- DNA sequence statistics: http://a-little-book-of-r-for-
bioinformatics.readthedocs.org/en/latest/src/chapterl.html

- Quering sequence data bases: http://a-little-book-of-r-for-
bioinformatics.readthedocs.org/en/latest/src/chapter3.html

- Computational gene finding: http://a-little-book-of-r-for-
bioinformatics.readthedocs.org/en/latest/src/chapter7.html



http://a-little-book-of-r-for-bioinformatics.readthedocs.org/en/latest/src/chapter1.html
http://a-little-book-of-r-for-bioinformatics.readthedocs.org/en/latest/src/chapter1.html
http://a-little-book-of-r-for-bioinformatics.readthedocs.org/en/latest/src/chapter3.html
http://a-little-book-of-r-for-bioinformatics.readthedocs.org/en/latest/src/chapter3.html
http://a-little-book-of-r-for-bioinformatics.readthedocs.org/en/latest/src/chapter7.html
http://a-little-book-of-r-for-bioinformatics.readthedocs.org/en/latest/src/chapter7.html
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Introduction to investigating frequencies of occurrences of words

e Words are short strings of letters drawn from an alphabet

e |n the case of DNA, the set of lettersis A, C, T, G

e A word of length k is called a k-word or k-tuple

e Differences in word frequencies help to differentiate between different
DNA sequence sources or regions

e Examples: 1-tuple: individual nucleotide; 2-tuple: dinucleotide; 3-tuple:
codon

e The distributions of the nucleotides over the DNA sequences have been
studied for many years = hidden correlations in the sequences
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Biological words of length 1 — base composition

e There are constraints on base composition imposed by the genetic code

e The distribution of individual bases within a DNA molecule is not ordinarily
uniform

- There may be an excess of G over C on the leading strands

- This can be described by the “GC skew”, characterized by:
" (#G - #C) / (#G + #C)
" #=nr of

- What is the implication for AT skew on the lagging strand?
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Biological words of length 1 — base composition

e GC or AT skew sign changes link to where DNA replication starts or finishes.

e Originally this asymmetric nucleotide composition was explained as
different mechanism used in DNA replication between leading strand and
lagging strand

e But recent research (2013) shows there is much more to it:

Research

GC skew at the 5’ and 3’ ends of human genes links
R-loop formation to epigenetic regulation
and transcription termination

Paul A. Ginno,'-3*# Yoong Wearn Lim,"3 Paul L. Lott,? lan Korf,'2
and Frédéric Chédin'%>

iDepartment of Molecular and Cellular Biology, 2Genome Center, University of California, Davis, California 95616, USA

Strand asymmetry in the distribution of guanines and cytosines, measured by GC skew, predisposes DNA sequences
toward R-loop formation upon transcription. Previous work revealed that GC skew and R-loop formation associate with
a core set of unmethylated CpG island (CGI) promoters in the human genome. Here, we show that GC skew can dis-
tinguish four classes of promoters, including three types of CGI promoters, each associated with unique epigenetic and
gene ontology signatures. In particular, we identify a strong and a weak class of CGI promoters and show that these loci
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Biological words of length 1 - base composition

e DNA biosynthesis proceeds in the strand template becomes
5'- to 3'-direction. This makes it available. The resulting short
impossible for DNA polymerases strands are called Okazaki
to synthesize both strands fragments (after their discoverers,
simultaneously. A portion of the Reiji and Tsuneko Okazaki).
double helix must first unwind,
and this is mediated by helicase — >
enzymes. |

e The leading strand is synthesized | Otazal oament

continuously but the opposite
strand is copied in short bursts of
about 1000 bases, as the lagging
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Probability distributions

Probability is the science of uncertainty

1. Rules = data: given the rules, describe the likelihoods of various
events occurring

2. Probability is about prediction — looking forwards

3. Probability is mathematics
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Statistics is the science of data

1.

Rules < data: given only the data, try to guess what the rules were.
That is, some probability model controlled what data came out, and
the best we can do is guess — or approximate — what that model was.
We might guess wrong, we might refine our guess as we obtain /
collect more data

Statistics is about looking backward

Statistics is an art. It uses mathematical methods but it is much more
than maths alone

Once we make our best statistical guess about what the probability
model is (what the rules are), based on looking backward, we can
then use that probability model to predict the future = the purpose
of statistics is to make inference about unknown quantities from
samples of data.
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Statistics is the science of data

e Probability distributions are a fundamental concept in statistics.

e Before computing an interval or test based on a distributional assumption,
we need to verify that the assumption is justified for the given data set.

e For this chapter, the distribution does not always need to be the best-fitting
distribution for the data, but an adequate enough model so that the
statistical technique vyields valid conclusions.

e Simulation studies: one way to obtain empirical evidence for a probability
model
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Assumptions

e Simple rules specifying a probability model:
- First base in sequence is either A, C, T or G with prob pa, pc, p1, pc
- Suppose the first r bases have been generated, while generating the
base at position r+1, no attention is paid to what has been generated
before.
e Then we can actually generate A, C, T or G with the probabilities above
e Notation for the output of a random string of n bases may be: L3, Ly, ..., L,
(Li = base inserted at position i of the sequence)
e Whatever we would like to do with such strings, we will need to introduce
the concept of a random variable
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Probability distributions

e Suppose the “machine” we are using produces an output X that takes
exactly 1 of the J possible valuesinaset y = {l, 15, ..., 1, }
- In the DNA sequence J=4 and y = {4,C, T,G }
- Lis a discrete random variables (since its values are uncertain)
- If pjis the prob that the value (realization of the random variable L) /;
occurs, then
" p, Py =2 0andp; + ...+ p; =1
e The probability distribution (probability mass function) of L is given by the
collection py, ..., p;
- P(L=lj) = pj, j=1, ..., ]
e The probability that an event S occurs (subset of y) is P(L € S) =
Zj:lj es (Pj)
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Probability distributions

e What is the probability distribution of the number of times a “given
pattern” occurs in a random DNA sequence Ly, ..., Ly?
- New sequence Xy, ..., Xn:
Xi=1 if Li=A and X;=0 else
- The number of times N that A appears is the sum
N=X1+...+Xn
- The prob distr of each of the Xi:
P(Xi=1) = P(Li=A)=pa
P(Xi=0) =P(Li=CorGorT)=1-pa

e What is a “typical” value of N?

- Depends on how the individual X; (for different i) are interrelated
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Independence

e Discrete random variables Xy, ..., X, are said to be independent if for any
subset of random variables and actual values, the joint distribution equals
the product of the component distributions

e According to our simple model, the L; are independent and hence

P(Li=l1,L2=ly, ...,La=ln)=P(L1=11) P(L2=l3) ...P(Ln=In)
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Expected values and variances

e Mean and variance are two important properties of real-valued random
variables and corresponding probability distributions.

e The “mean” of a discrete random variable X taking values x3, x, . . . (de-
noted EX (or E(X) or E[X]), where E stands for expectation, which is another
term for mean) is defined as:

E(X) =X; x; P(X = x;)

- E(Xi)=1 Xpa+0 X (1 —pa)
- If Y=c X, then E(Y) = c E(X)
- E(X1+... + X5) = E(X1) + ... + E(X0)
e Because X;are assumed to be independent and identically distributed (iid):
E(X1 +... + Xn) =n E(X1) =n pa
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Expected values and variances

e The idea is to use squared deviations of X from its center (expressed by the
mean). Expanding the square and using the linearity properties of the
mean, the Var(X) can also be written as:

Var(X) = E(X?) — [E(X)]?]

- If Y=c X then Var (Y) = c? Var (X)
- The variance of a sum of independent random variables is the sum of
the individual variances

e For the random variables X;:

Var (Xi) =[1* Xpa + 0% X' (1 = pa)] — Pz =pa(l—pa)
Var (N) = n Var (X1) =nps (1 — p,a)
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Expected values and variances

e The expected value of a random variable X gives a measure of its location.
Variance is another property of a probability distribution dealing with the
spread or variability of a random variable around its mean.

Var(X) = E ([X — E(X)]?)

- The positive square root of the variance of X is called its standard
deviation sd(X)
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The binomial distribution

e The binomial distribution is used when there are exactly two mutually
exclusive outcomes of a trial. These outcomes are appropriately labeled
"success" and "failure". The binomial distribution is used to obtain the
probability of observing x successes in a fixed number of trials, with the
probability of success on a single trial denoted by p. The binomial
distribution assumes that p is fixed for all trials.

e The formula for the binomial probability mass function is :

P(N =j) = (7]) p/(1-p)"7,j=01,..n

n
with the binomial coefficient (]) determined by

(n) _ n!
J/ T jtn =Y
and j!=j(j-1)(j-2)...3.2.1, 0!=1
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The binomial distribution

e The mean is np and the variance is np(1-p)
e The following is the plot of the binomial probability density function for
four values of p and n = 100.

0z Elncmial PDF (P=0.1, N=100) o1 Einomial PDF({P=025, N=100)
m m
B 0.5 B 0.075
= =
2 =y
= o4 5 048
g g
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S 1] | — g- ———
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Binomial PDF(P=0.50, N=104d) Binomial POF{P=0 .75, N=100)
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Simulating from probability distributions

e The idea is that we can study the properties of the distribution of N when
we can get our computer to output numbers N, ..., N, having the same
distribution as N

- We can use the sample mean to estimate the expected value E(N):

N= (N;+ ..+ N,)/n

- Similarly, we can use the sample variance to estimate the true variance
of N:

n—1

n
1 _
s = E (N; — N)?
=1

Why do we use (n-1) and not n in the denominator?
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Simulating from probability distributions

e What is needed to produce such a string of observations?

- Access to pseudo-random numbers: random variables that are
uniformly distributed on (0,1): any number between O and 1 is a
possible outcome and each is equally likely

e In practice, simulating an observation with the distribution of Xi:

- Take a uniform random number u

- SetX:1=1ifU <p = p, and 0 otherwise.

- Why does this work? ... P(X; =1)= P(U < pa) = pa

- Repeating this procedure n times results in a sequence Xy, ..., Xn from
which N can be computed by adding the X’s
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Simulating from probability distributions

e Simulate a sequence of bases Ly, ..., Ln:
- Divide the interval (0,1) in 4 intervals with endpoints
PaPa+Pc,Patpc el

- If the simulated u lies in the leftmost interval, L1=A

- If ulies in the second interval, L1=C; if in the third, L1=G and otherwise
L1=T

- Repeating this procedure n times with different values for U results in a
sequence Ly, ..., Ln

e Use the “sample” function in R:
pi <- ¢(0.25,0.75)
x<-c(1,0)
set.seed(2009)
sample(x,10,replace=TRUE,pi)
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Simulating from probability distributions

e By looking through a given nr of successes in 1000 trials
simulated sequence, we can count
the number of times a particular

500
|

pattern arises (for instance, the
base A)
e By repeatedly generating

400
|

Frequency
anog
l

200
|

sequences and analyzing each of

100
|

them, we can get a feel for

whether or not our particular o —L] —

l T T T T |
200 220 240 260 280 300

pattern of interest is unusual

Mumber of successes

x<- rbinom(2000,1000,0.25)

mean(x)

sd(x)"2

hist(x,xlab="Number of successes",main="")
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R documentation

Binomial {stats} R Documentation
The Binomial Distribution

Description

Density, distribution function, quantile function and random generation for the binomial distribution with parameters size and prob.
This is conventionally interpreted as the number of ‘successes’ in size trials.

Usage

dbinom(x, size, prob, log = FALSE)

pbinom (g, size, prob, lower.tail

gbinom(p, size, prob, lower.tail
rbinom(n, size, prob)

TRUE, log.p
TRUE, log.p

FALSE)
FALSE)

Arguments

p-o r q
vector of quantiles.

P

vector of probabilities.
n

number of observations. If 1ength (n) > 1, the length is taken to be the number required.
size

number of trials (zero or more).

(https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Binomial.html)

> rbinom(1,1000,0.25)
[1] 250


https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Binomial.html
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Simulating from probability distributions

e Using R code:

x<- rbinom(2000,1000,0.25)

mean(x)

sd(x)"2

hist(x,xlab="Number of successes",main="")

What is the number of observations (nr of “strings” generated)?
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Simulating from probability distributions

Number of observations = 2000

/ Number of trials = 1000

e Using R code:

x<- rbinom(2000,1000,0.25)
mean(x)

sd(x)"2
hist(x,xlab="Number of successes",main="")

What is the number of observations?
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Exercise

e Suppose we have a sequence of 1000bp and assume that every base occurs
with equal probability. How likely are we to observe at least 300 A’s in such
a sequence?
- Exact computation using a closed form of the relevant distribution
- Approximate via simulation
- Approximate using the Central Limit Theory
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Solution 1: Exact computation via closed form of relevant distribution

e The formula for the binomial probability mass function is :
" n / — 1 .
P(N:]):(])pj(l_p)n ],j=0,1,...,n

and therefore

1000

1000 . .

P(N = 300) = S (1/4)7 (1 — 1/4)1000-)
S oo

= 0.00019359032194965841
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P exactly 300 out of 1000
Method 1. exact binomial calculztion 0.00004566114740576488

Method 2. approximation viz normal  0.000038

Method 3. approximation via Poisson -
P: 300 or fewer out of 1000

Method 1. exact binomial calculation 0.9998520708293378

Method 2. approximation viz normal 0.999885

Method 3. approximation via Poisson -

F: 300 or more out of 1000
Method 1. exact binomial calculation 0.000193520321945965841

Method 2. approximation via normal  0.000153

Method 3. approximation via Poisson -

For hy IS testing

0 or more out of 1000

Two-Tail
0.0003025705168772097

One-Tail
Method 1. exact binomial calculation 0.0001935%032194965841

Method 2. approximation viz normal 0.000153 0.000306

approximation viz Poisson --—-- | ------

(http://faculty.vassar.edu/lowry/binomialX.html)
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Solution 2: Approximate via simulation

e Using R code and simulations from the theoretical distribution,
P(N = 300) can be estimated as 0.000196 via

x<- rbinom(1000000,1000,0.25)
sum(x>=300)/1000000

e Note that the probability P(N = 300) is estimated to be 0.0001479292 via

1-pbinom(300,size=1000,prob=0.25)
pbinom(300,size=1000,prob=0.25,lower.tail=FALSE)
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Solution 3: Approximate via Central Limit Theory

e The central limit theorem offers a 3@ way to compute probabilities of a
distribution

e It applies to sums or averages of iid random variables

e Assuming that Xy, ..., Xn are iid random variables with mean u and variance

a2, then we know that for the sample average

X, =X+ .+ X)),

n

— _ 2
E(X,,) =uand Var (X,)) = -

n

Xp— u _ Xn— U _
E(a/ﬁ>_0’var(a/ﬁ>_1

e Hence,
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Approximate via Central Limit Theory
e The central limit theorem states that if the sample size n is large enough,

P (a < Xna_” < b) ~ ¢(b) — ¢(a),

Jn
with ¢ (.) the standard normal distribution defined as

$(2) = P(Z <7) = j b (x)dx

Normal Curve

Standard Deviation

7N\

2

19.1%|[19.1%

15.0% 15.0%

0.1% 0.5%

T%
-3 =25 -2 15 4 -0.5 0 0.5
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Approximate via Central Limit Theory

e The central limit theorem in action using R code:

bin25<-rbinom(1000,25,0.25)

av.bin25 <- 25*0.25

stdev.bin25 <- sqrt(25*0.25*0.75)
bin25<-(bin25-av.bin25)/stdev.bin25
hist(bin25,xlim=c(-4,4),ylim=c(0.0,0.4),prob=TRUE,xlab="Sample size
25", main="")

x<-seq(-4,4,0.1)

lines(x,dnorm(x))
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Approximate via Central Limit Theory
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Approximate via Central Limit Theory
e Estimating the quantity P(N = 300) when N has a binomial distribution
with parameters n=1000 and p=0.25,
E(N) =nu = 1000 x 0.25 = 250,

1 3

sd(N) = vno= [1000 X —=X—- = 13.693
N 4”4

N —250 300 - 250)

13.693 ~ 13.693

P(N = 300) = p(

~ P(Z > 3.651501) = 0.0001303560

e R code:
pnorm(3.651501,lower.tail=FALSE)

How do the estimates of P(N = 300) compare?
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3 When effects become non-independent
Linkage disequilibrium (LD) between genetic markers

e Linkage Disequilibrium (LD) is a measure of co-segregation of alleles in a
population. Strictly speaking, it therefore refers to linkage + allelic
association

Two alleles at different loci that occur together
on the same chromosome (or gamete)

more often

than would be predicted by random chance.
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Mapping the “relationships” between SNPs (Christensen and Murray 2007)

Chromosome
SNP 1 SNPZ SNP3 NP4 SNPS SNPG SN+P 7 SN‘PS

5 |

\\\\ 77

Block 1
2 3t

4

(HaploView software)
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Independence between SNPs

e The measure D is defined as the difference between the observed and
expected (under the null hypothesis of independence) proportion of
“haplotypes” bearing specific alleles at two loci: pas- paps

A |a
B | pas| pas
b | pab | Pab

e Notice the link with a 2x2 table independence test ... (“observed minus
expected”)

e Instead of testing all SNPs, use LD-block information to test “independent”
SNPs or loci ... Then use the “dependency” structure again when
interpreting results
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Impact and interpretation

e LD is a very important concept for GWAs, since it gives the rational for
performing genetic association studies

Inaipect =~ 00 oo > Disease
association _e="" phenotype
T

Direct
association

Direct
association

- - —Haplotype

Typed marker locus Unobserved causal locus

e Other measures of association than D exist: Because of its interpretation,
the measure r? (coefficient of determination) is most often used for GWAs
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Biological vs statistical epistasis

Definition of epistasis
e Our ability to detect epistasis depends on what we mean by epistasis

“compositional epistasis”

e The original definition (driven by biology) refers to distortions of
Mendelian segregation ratios due to one gene masking the effects of
another; a variant or allele at one locus prevents the variant at
another locus from manifesting its effect (william Bateson 1861-1926).
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e Example of phenotypes (e.g. hair color) from different genotypes at 2

loci interacting epistatically under Bateson's (1909) definition

(compositional epistasis):

Genotype at gg gG GG
locus B/G
bb White Grey Grey
bB Black Grey Grey
BB Black Grey Grey

The effect at locus B is masked by that of locus G: locus G is epistatic to locus B.

(Cordell 2002)
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Definition of epistasis
e Our ability to detect epistasis depends on what we mean by epistasis

“statistical epistasis”

e A later definition of epistasis (driven by statistics) is expressed in
terms of deviations from a model of additive multiple effects.

e This might be on either a linear or logarithmic scale, which implies
different definitions (Ronald Fisher 1890-1962).
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Genetic interactions:

... when two or more DNA variations interact either directly to change
transcription or translation levels, or indirectly by way of their protein
product, to alter disease risk separate from their independent effects ...

Phenotype

& \\\ g
Proteins Q g™

Genes -H —I— —

Biological
epistasis

Genetical
epistasis

Individual

‘é* Aa* A *
o Sm Mim
— —— —— — 4= —— At
B0
A K 4K, K |2E
cm ®m %m |5
A [/ X"/ X Sa
— — ————  ——— — wno
* AV* A\cﬂ? A(A*
S Se
-+ — ety e e ———
Population

(Moore 2005)
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Why? Complementing insights from GWA studies

N

/ N
-

Edges represent small gene—gene
interactions between SNPs. Gray nodes
and edges have weaker interactions.
Circle nodes represent SNPs that do not
have a significant main effect. The
diamond nodes represent significant
main effect association. The size of the
node is proportional to the number of
connections.

(McKinney et al 2012)
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How? Random Forests?

Winham et al. BMC Bioinformatics 2012, 13:164
http//www.biomedcentral.com/1471-2105/13/164

BMC
Bioinformatics

RESEARCH ARTICLE Open Access

SNP interaction detection with Random Forests in
high-dimensional genetic data

Stacey J Winham'", Colin L Colby], Robert R Freimuth', Xin Wang], Mariza de Andrade’ Marianne Huebner'? and
Joanna M Biernacka'*"

Abstract

Background: |dentifying variants associated with complex human traits in high-dimensional data is a central goal
of genome-wide association studies. However, complicated etiologies such as gene-gene interactions are ignored
by the univariate analysis usually applied in these studies. Random Forests (RF) are a popular data-mining technique
that can accommodate a large number of predictor variables and allow for complex models with interactions. RF
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Be critical ...

The split-based structure of classification and regres-
sion trees can advantageously take interaction effects
into account. Let us consider the first two layers in a
tree and how this tree might look when there are
only two relevant binary predictor varables X; and
Xo, with additional irrelevant predictor variables
X3,...,X,. It the root node is split by predictor vari-
able Xj, the effect of X, may be different in the two

child nodes, hence taking the potential interaction
between X; and X, mto account. If Xj; and X5
have main effects only, one ideally expects X, to
be selected mn both child nodes with the same
effect on the response, yielding the idealized picture

yes
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Be critical ...

. Everything else—selection of different
predictor variables in the two child nodes, stopping
on one side but not on the other, same predictor
variable and same cutpoint on both sides but with
different effects—indicates a potential interaction
(Figures 2A, B and C as examples of these three
situations) [23]. The problem 1s that, due to
random variations in finite samples, it 1s extremely
rare that the tree selects the same predictor variable
with the same eftect on both sides, except perhaps in
the case of very large samples.




GBIO0002

Replication / validation

Random variation

F

Original
study

&

Sample

D”Qh Systematic variation

. Different

[

population

Replication

population

Sample

L )

Validation

(Igl et al. 2009)
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Guidelines for replication studies

e Replication studies should be of sufficient size to demonstrate the effect
e Replication studies should conducted in independent datasets

e Replication should involve the same phenotype

e Replication should be conducted in a similar population

e The same SNP should be tested

e The replicated signal should be in the same direction

e Joint analysis should lead to a lower p-value than the original report

o Well-designed negative studies are valuable

“Wishful thinking” for rare variant association or

large-scale interaction association studies?
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