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Basic	commands	
•  q() 	 	 	To	quit	R	environment	
•  x	=	5	 	 	Assignment	operator	
•  y	<-	5 	 	Assignment	operator	
•  ls() 	 	 	To	list	objects	in	R	environment	
•  ?ls() 	 	 	To	check	how	to	use	a	func/on	
•  getwd() 	 	To	get	a	working	directory	
•  setwd("New/Directory") 		

	 	 	To	set	a	new	working	directory	
•  save(x,y,file="mydata.RData") 		

	 	 	To	save	objects	as	the	R	data	file	
•  save.image(file="alldata.RData") 		

	 	 	To	save	all	objects	as	the	R	data	file	
•  load("mydata.RData") 		

	 	 	 	To	load	the	R	data	file	to	the	working	space	
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Arithme/c	operators	
•  5+7	 	 	Addi/on 		
•  8-3		 	 	Subtrac/on	
•  5*2	 	 	Mul/plica/on	
•  9/2		 	 	Division	
•  (8+3)*4	 	Parentheses	
•  2^4	 	 	Power	
•  exp(4)		 	Exponen/al	func/on	
•  log(8) 	 	Natural	Logarithm	
•  log10(8) 	Logarithm	in	base	10	
•  pi 	 	 	Pi	number	
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Logical	operators	
The	values	can	be	T,	TRUE,	F,	FALSE	
•  5<6 	 	 	 	less	than	
•  5<=6	 	 	 	less	than	or	equal	to	
•  5>6 	 	 	 	greater	than	
•  5>=6	 	 	 	greater	than	or	equal	to	
•  5==6	 	 	 	exactly	equal	to	
•  5!=6 	 	 	 	not	equal	to	
•  !a 	 	 	 	NOT	a	
•  a|b 	 	 	 	a	OR	b	
•  a&b 	 	 	 	a	AND	b	
•  xor(a,b) 	 	 	a	XOR	b	
•  isTRUE(a)	 	 	test	if	X	is	TRUE	
	
Expression	statement	
•  if	(a	==	5	&&	b	>	5)		
•  if	(a	==	5	||	b	>	5)	
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Basic	data	types	
class()	-	to	check	class	of	object	
	
•  Logical 	TRUE,	T,	FALSE,	F 		

class(TRUE)
•  Numeric 	2.4,	10,	200 	 	 		

class(6.5)
•  Integer 	1L,	0L,	-7L 	 	 	 		

class(-8L)
•  Complex 	6	+	3i 	 	 	 	 	 		

class(6 + 3i)
•  Character	'hello',	"I",	"like",	'R'	

class('hello')
•  Factor	

a = as.factor(1)
a = as.factor('hello')
class(a)
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Vector	
To	create	vectors	
•  a = c(1,2,0,6.6,-2.5) 
•  b = c("a","b","c") 
•  c = c(F,T,TRUE,FALSE) 

Vectors	and	operators	
•  a + 5
•  a * 2
•  c & TRUE
•  c | FALSE
•  1:5 Vector of 1 to 5
•  c(a,1:5) Concatenate 2 vectors
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Matrix	
To	create	matrices	
matrix(vector,	nrow=r,	ncol=c,	byrow=FALSE)	
•  a = matrix(1:12, nrow=3, byrow=F)
•  b = matrix(1:12, nrow=3, byrow=T)
•  c = matrix(runif(12,min=0,max=1), nrow=3, byrow=T)
•  d = matrix(sample(c(TRUE,FALSE),12,replace=TRUE), 

nrow=3, byrow=T)

Matrices	and	operators	
•  a + 5
•  a + b
•  t(b) Transpose of matrix
•  a * b Element-wise multiplication
•  a %*% t(b) Matrix multiplication
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Matrix	(2)	
To	access	elements	of	matrix	
•  a[1,1]
•  a[,1]
•  a[1,]
•  a[,2:3]
	
To	name	row	and	columns	
•  colnames(a) = c("a","b","c","d")
•  rownames(a) = c("1","2","3")
	
To	combine	2	matrices	
•  cbind(a,b)Combine by column
•  rbind(a,b)Combine by row
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Data	frame	
“data.frame”	is	the	collec/ons	of	variables	which	share	many	of	the	
proper/es	of	matrices	and	of	lists	

To	create	data.frame	
•  x = c("Kris", "Jack", "Steve", NA)
•  y = c(50,20,60,40)
•  z = c(FALSE,TRUE,TRUE,FALSE)
•  df = data.frame(x,y,z)
•  colnames(df) <- c("name","paid","registered") 

	

Useful	func/ons	
•  df$name
•  is.na(df$name) Check all elements if they are NA?
•  anyNA(df$name) Is there any NA?
•  df$paid * 1.21
•  dim(df) Check dimension
•  df[which(df$name=="Kris"),] Get specific row	
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Data	frame	(2)	

To	name	row	and	columns	
•  colnames(df) = c("1","2","3”)
•  rownames(df) = c("a","b","c","d")
	
To	combine	2	matrices	
•  cbind(df,df) Combine by column
•  rbind(df,df) Combine by row
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List	

A	collec/on	of	objects	which	can	be	in	different	
length	
•  m = list(car=c("Toyota","Honda","Nissan"),
age=c(23,67),single=TRUE)

	
To	access	objects	
•  m$car
•  m$age
•  m[[1]]
•  m[[2]]
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Conversion	func/ons	

•  as.matrix(df)
•  as.data.frame(a)
•  as.list(1:5)
•  as.integer(1:5)
•  as.logical(c(0,1,1,0))
•  as.factor(1:5)
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Concatena/on	func/ons	
	
•  c() To combine vectors
•  list() To combine lists
•  cbind() To combine matrices and data frames by column
•  rbind() To combine matrices and data frames by row
•  paste("Hello","my","name","is","Kris")

To combine strings
•  paste0("Hello","my","name","is","Kris")

To combine strings without space
	
Trick	to	display	text	on	screen	
•  str = paste("Hello","my","name","is","Kris","\n")
•  cat(str) To display text
•  print(str) To display all values as they are
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Control	Flow	

•  if(condi/on)	...	
•  if(condi/on)	...		else		...	

•  for(variable	in	sequence)	...	
•  while(condi/on)	...	

•  break	 	To	stop	itera/on	
•  next 	 	To	skip	to	next	itera/on	
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IF	
Examples:	

age = 10
if (age > 18){

cat("Old\n")
}else{

cat("Young\n")
}

age = 20
if ((age>18) && (age<25)){

cat("Teenager\n")
}else{

cat("Other type\n")
}
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FOR	

Examples:	
	
for (i in 1:10){
cat(paste(i,"\n"))

}

name = 
c("Hello","my","name","is","Kris")
for (i in name)
cat(paste0(i," "))
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WHILE	
Examples:	
	
i = 0
while (i<5){

print(i)
i = i+1

}

i = 0
while (i<10){

if (i>5) next
print(i)
i = i+1

}
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Import	delimited	text	file	
•  The	formased	text	files	can	be	imported	to	R	by	these	func/ons:	

–  Read.table()	
–  read.csv(),	read.csv2()		
–  read.delim(),	read.delim2()	

•  Important	parameters:	
–  file	:	the	name	of	input	file	
–  header	:	to	indicate	whether	the	first	line	contains	the	names	of	the	variables	

or	not	
–  sep	=	the	separator	character	

	
•  Try	to	import	orange.csv	

	Download	from	the	course	website:		
	 	hsp://www.montefiore.ulg.ac.be/~chaichoompu	

•  Example:	
mydata=read.table(file="orange.csv",sep=",",header=TRUE)
head(mydata)
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Export	as	delimited	text	file	
•  You	can	use	these	func/ons	to	export	to	file	

–  write.table(x,	file	=	"")	
–  write.csv()	

•  Important	parameters:	
–  file	:	the	name	of	input	file	
–  row.names	:	to	indicate	whether	row	names	will	be	exported	or	not	
–  col.names	:	to	indicate	whether	column	names	will	be	exported	or	not	
–  sep:	the	separator	character	
–  quote:	to	indicate	whether	text	will	be	quoted	(“hello”)	

•  Example:	
write.table(mydata,file="newfile.csv",quote=T,sep="\t",
row.name=T,col.name=T)
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Text	display	
To	display	text	on	screen	
•  print(x, ...)
•  cat(...)

Concatenate	variables	
•  paste (...)
•  paste0(...)
	
Example:	
•  dd <- 28
•  mm <- "October"
•  yy <- 2016
•  cat(paste0(dd,mm,yy))
•  cat(paste(dd,mm,yy,sep="-"))
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Plots	
•  Use	plot()	to	create	a	simple	XY	plot	
–  plot(rnorm(10))	

•  In	the	compu/ng	servers,	we	need	to	save	plots	as	files	
and	transfer	to	a	local	computer	to	view	
–  pdf(file="./xyplot.pdf")	è	create	a	pdf	file	in	the	current	
working	directory	

–  plot(rnorm(10))	
–  points(rnorm(2),col="red")	è	add	2	red	dots	to	the	plot	
–  dev.off()	è	close	the	graphical	session,	all	graphical	
func/ons	called	before	dev.off()	will	be	saved	to	pdf	file	

•  R	also	supports	the	other	types	of	graphical	files	
–  Check:	jpeg(),	/ff(),	png(),	bmp()	
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Plovng	for	mul/ple	data	series		
Single	line:	

age=mydata$age[which(mydata$Tree==1)]
cir=mydata$circumference[which(mydata$Tree==1)]
plot(age,cir,type="o",xlab="Age",ylab="Circumference",
col=1)
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Plovng	for	mul/ple	data	series	(2)		
Add	more	lines:	

trees=sort(unique(mydata$Tree))
subtrees=trees[-1]
for (item in subtrees){
  age=mydata$age[which(mydata$Tree==item)]
  cir=mydata$circumference[which(mydata$Tree==item)]
  lines(age,cir,col=item,type="o")
}
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Mul/ple	plots	
par(mfrow=c(2,2))
plot(rnorm(10),col="red")
plot(rnorm(10),col="green")
plot(rnorm(10),col="blue")
plot(rnorm(10),col="pink")
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Wri/ng	your	own	func/on	
To	define	func/on:	
f1 <- function(param1, param2, ... ){

print(param1)
return(param2)

}

Nested	Func/on:	
f2 <- function(p2,...){
   f1 <- function(p1,...){

var1 <- log10(p1)
     return(var1)
   }

var2 <- f1(p2)
return(var2)

}
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Popula/on	stra/fica/on	
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Popula/on	stra/fica/on	

Popula/on	stra/fica/on	is	the	presence	of	a	
systema/c	difference	in	allele	frequencies	
between	subpopula/ons	in	a	popula/on	
possibly	due	to	different	ancestry,	especially	in	
the	context	of	associa/on	studies.	Popula/on	
stra/fica/on	is	also	referred	as	popula/on	
structure,	in	this	context.	
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Human	Diversity	
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How	to	group	people?	

Countries	 Languages	

Physical	appearances:	Hair	colors,	Eye	colors,	Skin	colors	
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Single	Nucleo/de	Polymorphisms	
(SNPs)	

•  What	are	they?	
•  How	can	we	detect?	
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SNP	encoding	
•  Addi/ve	Encoding	

•  Try	to	load	these	files	in	to	R	working	space	
–  simSNP_rep1_data_numMark_rowInd_colVar.txt	
–  simSNP_rep1_individuals_with_header.txt	

•  How	many	individuals?	
•  How	many	SNPs?	
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Principal	Component	Analysis	(PCA)	

Principal	component	analysis	(PCA)	is	a	
sta/s/cal	procedure	that	uses	an	orthogonal	
transforma/on	to	convert	a	set	of	observa/ons	
of	possibly	correlated	variables	into	a	set	of	
values	of	linearly	uncorrelated	variables	called	
principal	components	(PCs).		
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PCA	in	R	

•  prcomp(x,	retx	=	TRUE,	center	=	TRUE,	scale.	=	FALSE,	
tol	=	NULL,	...)	

•  princomp(formula,	data	=	NULL,	subset,	na.ac/on,	...)	
•  eigen(x,	symmetric,	only.values	=	FALSE,	EISPACK	=	
FALSE)	

•  svd(x,	nu	=	min(n,	p),	nv	=	min(n,	p),	LINPACK	=	FALSE)	

library(rARPACK)	
•  svds(A,	k,	nu	=	k,	nv	=	k,	opts	=	list(),	...)	
•  eigs(A,	k,	which	=	"LM",	sigma	=	NULL,	opts	=	list(),	...)	
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PCA	for	GWAS	

Principal components analysis corrects for stratification
in genome-wide association studies
Alkes L Price1,2, Nick J Patterson2, Robert M Plenge2,3, Michael E Weinblatt3, Nancy A Shadick3 &
David Reich1,2

Population stratification—allele frequency differences between cases and controls due to systematic ancestry differences—can
cause spurious associations in disease studies. We describe a method that enables explicit detection and correction of population
stratification on a genome-wide scale. Our method uses principal components analysis to explicitly model ancestry differences
between cases and controls. The resulting correction is specific to a candidate marker’s variation in frequency across ancestral
populations, minimizing spurious associations while maximizing power to detect true associations. Our simple, efficient approach
can easily be applied to disease studies with hundreds of thousands of markers.

Population stratification—allele frequency differences between cases
and controls due to systematic ancestry differences—can cause spur-
ious associations in disease studies1–8. Because the effects of stratifica-
tion vary in proportion to the number of samples9, stratification will
be an increasing problem in the large-scale association studies of the
future, which will analyze thousands of samples in an effort to detect
common genetic variants of weak effect.

The two prevailing methods for dealing with stratification are
genomic control and structured association9–14. Although genomic
control and structured association have proven useful in a variety of
contexts, they have limitations. Genomic control corrects for stratifi-
cation by adjusting association statistics at each marker by a uniform
overall inflation factor. However, some markers differ in their allele
frequencies across ancestral populations more than others. Thus, the
uniform adjustment applied by genomic control may be insufficient at
markers having unusually strong differentiation across ancestral
populations and may be superfluous at markers devoid of such
differentiation, leading to a loss in power. Structured association
uses a program such as STRUCTURE15 to assign the samples to
discrete subpopulation clusters and then aggregates evidence of
association within each cluster. If fractional membership in more
than one cluster is allowed, the method cannot currently be applied to
genome-wide association studies because of its intensive computa-
tional cost on large data sets. Furthermore, assignments of individuals
to clusters are highly sensitive to the number of clusters, which is not
well defined14,16.

We propose a method to detect and correct for population
stratification that addresses these limitations. Our method, EIGEN-
STRAT, consists of three steps (Fig. 1). First, we apply principal
components analysis17 to genotype data to infer continuous axes of

genetic variation. Intuitively, the axes of variation reduce the data to a
small number of dimensions, describing as much variability as
possible; they are defined as the top eigenvectors of a covariance
matrix between samples (see Methods). In data sets with ancestry
differences between samples, axes of variation often have a geographic
interpretation: for example, an axis describing a northwest-southeast
cline in Europe would have values that gradually range from positive
for samples from northwest Europe, to near zero in central Europe, to
negative in southeast Europe. Second, we continuously adjust
genotypes and phenotypes by amounts attributable to ancestry
along each axis, via computing residuals of linear regressions;
intuitively, this creates a virtual set of matched cases and controls.
Third, we compute association statistics using ancestry-adjusted
genotypes and phenotypes.

The EIGENSTRAT method has arisen out of our systematic
exploration of the use of principal components analysis in a more
general population genetic context. Principal components analysis was
originally applied to genetic data to infer worldwide axes of human
genetic variation from the allele frequencies of various popula-
tions18,19. We have further developed this approach in a parallel
paper (N.J.P., A.L.P. and D.R., unpublished data), focusing instead
on individual genotype data and placing the method on a firm
statistical footing by rigorously assigning statistical significance to
each axis of variation20–22. EIGENSTRAT applies this toolkit to analyze
population structure in the context of disease studies.

Correcting for stratification using continuous axes of variation has
several advantages. Continuous axes provide the most useful descrip-
tion of within-continent genetic variation, according to recent stu-
dies23. Because our continuous axes are constructed to be orthogonal,
results are insensitive to the number of axes inferred, as we verify

Received 23 March; accepted 21 June; published online 23 July 2006; doi:10.1038/ng1847
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PCA	for	GWAS	(Price,	2006)	
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difficulty inferring a perfectly accurate axis of variation when M o
20,000, leading to incomplete stratification correction. Thus, the
number of SNPs needed is larger than we had determined in
simulation for FST ¼ 0.01 (Supplementary Table 2). We hypothesized
that because European Americans are an admixed population, the
effective FST might be smaller than 0.01. Indeed, the level of popula-
tion structure is similar to what would be observed in the case of two
discrete subpopulations with FST ¼ 0.004 (Supplementary Note
online). Given these results, it is not surprising that EIGENSTRAT
fails to correct for stratification in the data set from ref. 6 of 368
European Americans typed at 178 markers (Supplementary Note).

DISCUSSION
We have described a new method to detect and correct for population
stratification that explicitly models ancestry differences between cases
and controls along continuous axes of variation. Practical issues such
as linkage disequilibrium between markers and extending to quanti-
tative traits are discussed in the Supplementary Note. The EIGEN-
STRAT method outperforms prevailing methods on simulated
and real data sets and can easily be applied to disease studies
with hundreds of thousands of markers. The method should be
particularly valuable in disease studies involving European Americans,
as genetic risk has already been reported to vary across Europe for
numerous diseases32–36.

Although EIGENSTRAT is a robust and powerful method for
correcting for stratification, it is not a panacea, and researchers should
adhere to the principles of careful experimental design, matching the
ancestry and laboratory treatment of cases and controls to the fullest
extent possible. If violation of these principles leads to a strong bias
between cases and controls, EIGENSTRAT is likely to detect the bias;
however, a loss in power will inevitably result, because any putative
disease association will resemble an unusually strong instance of the
bias. Though our focus here has been on ancestry effects, a recent
study has suggested that differences in laboratory treatment among
samples is a pervasive issue that will often outweigh the effects of
population stratification37. These effects are so common that it is not
surprising if assay artifacts are detected by our methods, especially in a
large study where our sensitivity is high. Indeed, in the European
American data set described here, the top two axes of variation
describe ancestry effects, but subtle evidence of differences in labora-
tory treatment among samples is detected in the third axis (Supple-
mentary Note). EIGENSTRAT’s ability to explicitly address such
subtle effects is an encouraging prospect.

METHODS
Simulated disease studies. Following ref. 24, simulated data for populations 1
and 2 with a specified value of FST were generated using the Balding-Nichols
model25. For each SNP, an ancestral population allele frequency p was drawn
from the uniform distribution on [0.1,0.9]. The allele frequencies for popula-
tions 1 and 2 were each drawn from a beta distribution with parameters
p(1 – FST)/FST and (1 – p)(1 – FST)/FST. This distribution has mean p and
variance FST p(1 – p). It follows that the quantity FST agrees with its usual
measure of genetic distance between two populations26,38. The risk model
with a relative risk of R for the causal allele was implemented as follows:
for individuals from population l with population allele frequency pl,
control individuals were assigned genotype 0, 1 or 2 with probabilities
(1 – pl)

2, 2pl(1 – pl), or pl
2, respectively, and case individuals were assigned

genotype 0, 1 or 2 with relative probabilities (1 – pl)
2, 2Rpl(1 – pl), or R2pl

2,
respectively, each scaled by (1 – pl)

2 + 2Rpl(1 – pl) + R2pl
2.

Simulated disease studies in an admixed population. Case/control status for
individuals with ancestry proportions a from population 1 and (1 – a) from

population 2 were simulated using disease risk proportional to ra, based on
ancestry risk r . To insure an average value of 0.5 across possible values of a, the
probability of disease was set to 0.5 log(r) ra/(r – 1). The risk model with a
relative risk of R for the causal allele was implemented as above, replacing pl
with ap1 + (1 – a)p2, the allele frequency conditional on an individual’s ancestry
proportion a.

Inference of axes of variation. Let gij be a matrix of genotypes for SNP i
and individual j, where i ¼ 1 to M and j ¼ 1 to N. We subtract the row mean
mi ¼ (Sj gij)/N from each entry in row i to obtain a matrix with row sums equal
to 0; missing entries are excluded from the computation of mi and are
subsequently set to 0. We then normalize row i by dividing each entry byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pið1 # piÞ

p
, where pi is a posterior estimate of the unobserved underlying

allele frequency of SNP i defined by pi ¼ (1 + Sjgij)/(2 + 2N), with missing
entries excluded from the computation. We denote the resulting matrix X. We
compute an N % N covariance matrix C of individuals, where Cjj́ is defined to
be the covariance of column j and column j́ of X. We define the kth axis of
variation to be the kth eigenvector of C (that is, the eigenvector with kth largest
eigenvalue). Thus, the ancestry ajk of individual j along the kth axis of variation
equals coordinate j of the kth eigenvector. We note that eigenvectors are
orthonormal by definition; thus, Sj ajk ¼ 0, Sj ajk

2 ¼ 1 and Sj ajk ajḱ ¼ 0 for
distinct axes k and ḱ. In particular, the ancestry values ajk can be either positive
or negative and should not be interpreted as percentages. Each axis is invariant
to multiplying by a factor of –1, which does not change its interpretation.

The above procedure is motivated by the decomposition X¼ USVT, where U
is an M % N matrix whose kth column contains coordinates of each SNP along
the kth principal component, S is a diagonal matrix of singular values and V is
an N % N matrix whose kth column contains ancestries ajk of each individual j
along the kth principal component. It follows that XTX ¼ VS2VT; thus, the
columns of V are the eigenvectors of the matrix XTX. The matrix XTX is
equivalent up to a constant to the covariance matrix C, and the matrix S2 of
squared singular values is equivalent up to a constant to the diagonal matrix of
eigenvalues of C.

Computation of Armitage trend v2 statistic. As discussed in ref. 10, the
Armitage trend w2 statistic29 is more appropriate than a w2 statistic obtained
from a 2 % 2 allelic or 2 % 3 genotypic w2 table. The Armitage trend w2 statistic
is equal to N times the squared correlation between genotype (0, 1 or 2) and
phenotype (0 or 1), where N is the number of samples. Though we believe that
(N – 1) times the squared correlation is a more appropriate statistic, we used
the original definition of Armitage in all of our calculations.

Computation of genome-wide v2 inflation factor for genomic control. As
described in ref. 10, a robust genome-wide inflation factor l is computed as
the median w2 statistic divided by 0.456, the predicted median w2 if there
is no inflation.

Adjustment of genotypes and phenotypes using axes of variation. Let gij be
the genotype of individual j (gij ¼ 0, 1 or 2) at SNP i, and let aj be the ancestry
of individual j along a given axis of variation. We define gij, adjusted ¼ gij – giaj,
where gi ¼ Sjajgij/Sjaj

2 is a regression coefficient for ancestry predicting
genotype across individuals j with valid genotypes at SNP i. (If there are no
missing genotypes at SNP i, then Sjaj

2 ¼ 1 by definition, and thus gi ¼ Sjajgij.)
A similar adjustment is performed for each axis of variation. The adjustment of
phenotype pj is analogous. We note that the procedure we have described is
equivalent to using the axes of variation as covariates in a multilinear
regression, but is simpler because the axes of variation are orthogonal,
and thus the adjustments can be performed independently for each
axis of variation.

Computation of v2 statistic using ancestry-adjusted genotypes and pheno-
types. Our w2 statistic is equal to (N – K – 1) times the squared correlation
between ancestry-adjusted genotype and ancestry-adjusted phenotype, where N
is the number of samples and K is the number of axes of variation used to
adjust for ancestry. This is a generalization of the Armitage trend w2 statistic29

for discrete genotypes and phenotypes (see above). The idea is to test for
correlation between two vectors which have been projected into a space of
reduced dimension, namely the space orthogonal to the K axes of variation.
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snpStats	–	Bioconductor	Package	
•  hsp://www.bioconductor.org/packages/release/bioc/html/

snpStats.html	
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PCA vignette

Principal components analysis with snpStats

David Clayton

May 3, 2016

Principal components analysis has been widely used in population genetics in order to
study population structure in genetically heterogeneous populations. More recently, it has
been proposed as a method for dealing with the problem of confounding by population
structure in genome-wide association studies.

The maths

Usually, principal components analysis is carried out by calculating the eigenvalues and
eigenvectors of the correlation matrix. With N cases and P variables, if we write X for
the N ⇥ P matrix which has been standardised so that columns have zero mean and unit
standard deviation, we find the eigenvalues and eigenvectors of the P ⇥ P matrix XT.X
(which is N or (N � 1) times the correlation matrix depending on which denominator was
used when calculating standard deviations). The first eigenvector gives the loadings of each
variable in the first principal component, the second eigenvector gives the loadings in the
second component, and so on. Writing the first C component loadings as columns of the
P ⇥C matrix B, the N⇥C matrix of subjects’ principal component scores, S, is obtained by
applying the factor loadings to the original data matrix, i.e. S = X.B. The sum of squares
and products matrix, ST.S = D, is diagonal with elements equal to the first C eigenvalues of
the XT.X matrix, so that the variances of the principal components can obtained by dividing
the eigenvalues by N or (N � 1).

This standard method is rarely feasible for genome-wide data since P is very large in-
deed and calculating the eigenvectors of XT.X becomes impossibly onerous. However, the
calculations can also be carried out by calculating the eigenvalues and eigenvectors of the
N ⇥ N matrix X.XT. The (non-zero) eigenvalues of this matrix are the same as those
of XT.X, and its eigenvectors are proportional to the principal component scores defined
above; writing the first C eigenvectors of X.XT as the columns of the N ⇥ C matrix, U ,
then U = S.D�1/2. Since for many purposes we are not too concerned about the scaling
of the principal components, it will often be acceptable to use the eigenvectors, U , in place
of the more conventionally scaled principal components. However some attention should be
paid to the corresponding eigenvalues since, as noted above, these are proportional to the

1
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This standard method is rarely feasible for genome-wide data since P is very large in-
deed and calculating the eigenvectors of XT.X becomes impossibly onerous. However, the
calculations can also be carried out by calculating the eigenvalues and eigenvectors of the
N ⇥ N matrix X.XT. The (non-zero) eigenvalues of this matrix are the same as those
of XT.X, and its eigenvectors are proportional to the principal component scores defined
above; writing the first C eigenvectors of X.XT as the columns of the N ⇥ C matrix, U ,
then U = S.D�1/2. Since for many purposes we are not too concerned about the scaling
of the principal components, it will often be acceptable to use the eigenvectors, U , in place
of the more conventionally scaled principal components. However some attention should be
paid to the corresponding eigenvalues since, as noted above, these are proportional to the

1
variances of the conventional principle components. The factor loadings may be calculated
by B = XT.U.D�1/2.

Using this method of calculation, it is only (!) necessary to find the eigenvalues and
eigenvectors of an N ⇥ N matrix. Current microarray-based genotyping studies are such
that N is typically a few thousands while P may be in excess of one million.

An example

In this exercise, we shall calculate principal component loadings in controls alone and then
apply these loading to the whole data. This is more complicated than the simpler procedure of
calculating principal components in the entire dataset but avoids component loadings which
unduly reflect case/control di↵erences; using such components to correct for population
structure would seriously reduce the power to detect association since one would, to some
extent, be “correcting” for case/control di↵erences1. We will also “thin” the data by taking
only every tenth SNP. We do this mainly to reduce computation time but thinning is often
employed to minimize the impact of linkage disequilibrium (LD), to reduce the risk that the
larger components may simply reflect unusually long stretches of LD rather than population
structure. Of course, this would require a more sophisticated approach to thinning than that
used in this demonstration.

In a more sophisticated approach, one might use the output of snp.imputation to elim-
inate all but one of a groups of SNPs in strong LD for thinning.

We shall use the data introduced in the main vignette. We shall first load the data and
extract the controls.

> require(snpStats)

> data(for.exercise)

> controls <- rownames(subject.support)[subject.support$cc==0]

> use <- seq(1, ncol(snps.10), 10)

> ctl.10 <- snps.10[controls,use]

The next step is to standardize the data to zero mean and unit standard deviation and to
calculate the X.XT matrix. These operations are carried out using the function xxt.

> xxmat <- xxt(ctl.10, correct.for.missing=FALSE)

The argument correct.for.missing=FALSE selects a very simple missing data treatment,
i.e. replacing missing values by their mean. This is quite adequate when the proportion of
missing data is low. The default method is more sophisticated but introduces complications
later so we will keep it simple.

When performing a genome-wide analysis, it will usually be the case that all the data
cannot be stored in a single SnpMatrix object. Usually they will be organized with one

1An alternative approach is to standardise the X matrix so that each column has zero mean in both cases
and controls. This can be achieved by using the strata argument in the call to xxt. Here, however, we have
used controls only since this reduces the size of the matrix for the eigenvalue and vector calculations.

2
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Clearly the first component has captured the di↵erence between the populations. Equally
clearly, the second principal component has not.

The next step in the calculation is to obtain the SNP loadings in the components. This
requires calculation of B = XT.S.D�1/2. Here we calculate the transpose of this matrix,
BT = D�1/2ST.X, using the special function snp.pre.multiply which pre-multiplies a
SnpMatrix object by a matrix after first standardizing it to zero mean and unit standard
deviation.

> btr <- snp.pre.multiply(ctl.10, diag(1/sqrt(evals)) %*% t(pcs))

We can now apply these loadings back to the entire dataset (cases as well as controls) to

4



PCA	for	SNPs	

•  X	is	the	M	x	N	matrix,	where	M	is	a	number	of	
individuals	and	N	is	a	number	of	SNPs.	

XXT	=	UDVT	

U	is	the	matrix	of	eigenvectors	or	PC	scores.	
BT	=	D-1/2UTX	

B	is	the	factor	loadings		
PCs	=	X.B	
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Normaliza/on	

•  Zero	means	
If	X	is	a	vector		

M	=	X	–	mean(X)	
•  Unit	variance	

Y	=	M	/	sd(X)	
•  In	R,	it	is	more	efficient	to	use	apply()	with	
mean()	and	sd()	
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Quality	Control	

•  Missing	data	
•  Linkage	Disequilibrium	(LD)	pruning	
•  Hardy-Weinberg	Equilibrium	(HWE)	

Sugges/on:	use	PLINK	
hsp://pngu.mgh.harvard.edu/~purcell/plink/	
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Exercise	-	PCA	

•  Calculate	PCs	for	the	example	data	-	
simSNP_rep1,	more	informa/on:	
– Non-redundant	SNPs,	no	LD	
– No	missing	data	
– Follow	HWE	

•  Plot	the	first	two	eigenvectors	
•  Plot	the	first	two	PCs	
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Fixa/on	index	(FST)	

•  FST	can	be	used	to	describe	a	distance	among	
popula/on.	

•  FST	can	be	biased	due	to	the	allele	frequencies	
and	the	number	of	independent	SNPs.	

05/10/16	 KC	-	ULg	 44	

Pop1	=	2,000	individuals	 Pop2	=	500	individuals	



FST	among	European	popula/ons	

05/10/16	 KC	-	ULg	 45	

Simon	et	al.	2008	
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Package ‘StAMPP’

July 6, 2015
Type Package

Title Statistical Analysis of Mixed Ploidy Populations

Depends R (>= 2.14.0), pegas

Imports parallel, doParallel, foreach, adegenet, methods, utils

Version 1.4

Date 2015-06-30

Author LW Pembleton

Maintainer LW Pembleton <luke.pembleton@ecodev.vic.gov.au>

Description Allows users to calculate pairwise Nei's Genetic Distances (Nei 1972), pairwise Fixation
Indexes (Fst) (Weir & Cockerham 1984) and also Genomic Relationship matrixes follow-
ing Yang et al. (2010) in mixed and single
ploidy populations. Bootstrapping across loci is implemented during Fst calculation to gener-
ate confidence intervals and p-values
around pairwise Fst values. StAMPP utilises SNP geno-
type data of any ploidy level (with the ability to handle missing data) and is coded to
utilise multithreading where available to allow efficient analy-
sis of large datasets. StAMPP is able to handle genotype data from genlight objects
allowing integration with other packages such adegenet.
Please refer to LW Pembleton, NOI Cogan & JW Forster, 2013, Molecular Ecology Re-
sources, 13(5), 946-952. doi:10.1111/1755-0998.12129 for the appropriate cita-
tion and user manual. Thank you in advance.

License GPL-3

NeedsCompilation no

Repository CRAN

Date/Publication 2015-07-06 06:31:23

R topics documented:

StAMPP-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
potato . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
potato.mini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
stampp2genlight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1

Package ‘PopGenome’
May 4, 2015

Type Package

Title An Efficient Swiss Army Knife for Population Genomic Analyses

Version 2.1.6

Date 2015-05-1

Author Bastian Pfeifer [aut, cre], Ulrich Wittelsbuerger [ctb], Heng Li [ctb], Bob Handsaker [ctb]

Maintainer Bastian Pfeifer <Bastian.Pfeifer@uni-duesseldorf.de>

Depends R (>= 2.14.2),ff

Imports methods

Suggests parallel, bigmemory, BASIX, WhopGenome

Description Provides efficient tools for population genomics data analysis,
able to process individual loci, large sets of loci, or whole genomes. PopGenome not only
implements a wide range of population genetics statistics, but also facilitates the easy
implementation of new algorithms by other researchers. PopGenome is optimized for speed via
the seamless integration of C code.

License GPL-3

URL http://popgenome.weebly.com

LazyLoad yes

Copyright inst/COPYRIGHTS

SystemRequirements zlib headers and library.

Repository CRAN

NeedsCompilation yes

Date/Publication 2015-05-04 23:40:49

R topics documented:
Achaz.stats-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
BayeScanR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
calc.R2-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
codontable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
concatenate.classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1

Package ‘hierfstat’
December 4, 2015

Version 0.04-22

Date 2015-11-24

Title Estimation and Tests of Hierarchical F-Statistics

Author Jerome Goudet [aut, cre],
Thibaut Jombart [aut]

Maintainer Jerome Goudet <jerome.goudet@unil.ch>

Imports gtools,ade4,adegenet

Suggests ape,pegas, knitr

Description Allows the estimation of hierarchical F-statistics from haploid or diploid genetic data
with any numbers of levels in the hierarchy, following the algorithm of Yang (Evolu-
tion, 1998, 52(4):950-956;
<DOI:10.2307/2411227>. Functions are also given to test via randomisations the signifi-
cance of each F and variance components,
using the likelihood-ratio statistics G.

Depends R (>= 2.10)

License GPL (>= 2)

URL http://www.r-project.org, http://github.com/jgx65/hierfstat

BugReports https://github.com/jgx65/hierfstat/issues

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2015-12-04 15:57:50

R topics documented:
AIc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
allele.count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
allelic.richness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
basic.stats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
betas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1
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Method

Estimating and interpreting FST: The impact
of rare variants
Gaurav Bhatia,1,2,6,7 Nick Patterson,2,6,7 Sriram Sankararaman,2,3 and Alkes L. Price2,4,5,7

1Harvard–Massachusetts Institute of Technology (MIT), Division of Health, Science, and Technology, Cambridge,

Massachusetts 02139, USA; 2Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA; 3Department of Genetics,

Harvard Medical School, Boston, Massachusetts 02115, USA; 4Department of Epidemiology, Harvard School of Public Health, Boston,

Massachusetts 02115, USA; 5Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts 02115, USA

In a pair of seminal papers, Sewall Wright and Gustave Malécot introduced FST as a measure of structure in natural
populations. In the decades that followed, a number of papers provided differing definitions, estimation methods, and
interpretations beyond Wright’s. While this diversity in methods has enabled many studies in genetics, it has also in-
troduced confusion regarding how to estimate FST from available data. Considering this confusion, wide variation in
published estimates of FST for pairs of HapMap populations is a cause for concern. These estimates changed—in some cases
more than twofold—when comparing estimates from genotyping arrays to those from sequence data. Indeed, changes in
FST from sequencing data might be expected due to population genetic factors affecting rare variants. While rare variants
do influence the result, we show that this is largely through differences in estimation methods. Correcting for this yields
estimates of FST that are much more concordant between sequence and genotype data. These differences relate to three
specific issues: (1) estimating FST for a single SNP, (2) combining estimates of FST across multiple SNPs, and (3) selecting the
set of SNPs used in the computation. Changes in each of these aspects of estimation may result in FST estimates that are
highly divergent from one another. Here, we clarify these issues and propose solutions.

[Supplemental material is available for this article.]

Since its introduction by Sewall Wright (1949) and Gustave Malécot
(1948), FST estimation (Weir and Cockerham 1984; Holsinger and
Weir 2009) has become a key component of studies of population
structure in humans (International HapMap Consortium 2007; Li
et al. 2008; The 1000 Genomes Project Consortium 2010; Inter-
national HapMap 3 Consortium 2010) and other species (Malécot
1948; Wright 1949; Selander and Hudson 1976; Guries and Ledig
1982; Ellstrand and Elam 1993; Palumbi and Baker 1994). Though
the utility of FST and related measures has been subject to recent
debate ( Jost 2008; Ryman and Leimar 2009), FST continues to be
widely used by population geneticists (Xu et al. 2009; Edelaar et al.
2012; Hangartner et al. 2012).

Despite this widespread use in genetic studies, confusion re-
mains about what FST is and how to estimate it. Beyond Wright’s
original description of FST as a ratio of variances, FST has been con-
ceptually defined in many ways (Wright 1949; Cockerham 1969;
Cavalli-Sforza and Bodmer 1971; Nei 1973; Slatkin 1991; Hudson
et al. 1992). Additionally, multiple estimators for FST have been
described in the literature (Nei 1973, 1986; Weir and Cockerham
1984; Hudson et al. 1992; Holsinger 1999; Weir and Hill 2002),
often making the correct choice of estimator unclear.

With this diversity of definition and estimation in mind, we
consider estimates of FST published by The 1000 Genomes Project
Consortium (2010) of 0.052 for European and East Asian pop-
ulations and 0.071 for European and West African populations.
These are less than half of the published estimates, 0.111 and

0.156, from HapMap3 data (International HapMap 3 Consortium
2010) and may be the result of demography that differentially
impacts FST at rare variants. These estimates have subsequently
been used to simulate properties of recent rare variants (Mathieson
and McVean 2012), making it imperative to know whether this
reduction in FST is a meaningful result of the inclusion of rare
variants or merely an artifact of estimation.

To answer these questions, we examine the issues surround-
ing FST estimated on data containing rare variants. We focus our
attention on FST estimation in the context of comparing two
populations—potentially with differing amounts of drift since the
populations split—using a series of bi-allelic SNPs. We use the
definition of Weir and Hill (2002), which allows for population-
specific FST. Using this definition, we divide the issues surrounding
estimation into three categories and examine them using both
simulated and 1000 Genomes data:

1. Choice of FST estimator.
2. Combining estimates of FST across multiple SNPs.
3. Dependence of FST on the set of SNPs analyzed.

We conclude that the lower FST estimates reported by The 1000
Genomes Project Consortium (2010) are a consequence of the es-
timation method that was applied and are not informative for hu-
man demographic history. Correcting for differences in estimation
method yields FST estimates of 0.106 for Europeans and East Asians
and 0.139 for Europeans and West Africans—much closer to
HapMap3 estimates. Overall, our results contradict a recent state-
ment ‘‘among human populations, FST is typically estimated to be
<0.1’’ by Mathieson and McVean (2012), which was based on re-
sults from The 1000 Genomes Project Consortium (2010).

Altogether, in the setting of rare variants, a careful protocol
for producing FST estimates is warranted. We provide such a
protocol.
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where

~pavg¼
~p1þ~p2

2

and ~pi is the sample allele frequency in population i for i 2 {1, 2}.
We note that this is Nei’s updated estimator and, in the case of two
populations, differs from the estimator given in Nei (1973) and Nei
and Chesser (1983) by a factor of 2. We use the estimator given in
Nei (1986), as it is most closely related to the other estimators
considered.

Using the definition of Weir and Hill (2002) we show (see
Supplemental Material) that estimates made using Nei’s estimator
will tend toward Equation 2 (see Results), with a maximum value
of 2 as F1

ST ! 1; F1
ST ! 1. This overestimates the average of pop-

ulation-specific FST values and alters the relation from this average
of FST values to divergence time (see Supplemental Material). Es-
timates of FST given for the Nei estimator were generated using the
proposed estimator for the numerator (see Supplemental Material)
and a simple estimator for the denominator.

Hudson’s FST

Definition

Hudson et al. (1992) defined FST in terms of heterozygosity. The
fundamental difference between these estimators is that for
Hudson, the total variance is based upon the ancestral population
and not the current sample.

Estimator

Hudson’s estimator for FST is given by

F̂ Hudson
ST ¼1#Hw

Hb
; ð9Þ

where Hw is the mean number of differences within populations,
and Hb is the mean number of differences between populations.
While Hudson did not give explicit equations for Hw and Hb, we
cast his description into an explicit estimator (see Supplemental
Material for a derivation). The estimator that we analyze is

F̂ Hudson
ST ¼

~p1# ~p2ð Þ2 #
~p1 1# ~p1ð Þ

n1#1
#

~p2 1# ~p2ð Þ
n2 #1

~p1 1# ~p2ð Þþ ~p2 1# ~p1ð Þ
; ð10Þ

where ni is the sample size and ~pi is the sample allele frequency in
population i for i 2 {1, 2}. Analyzing this estimator using the def-
inition of Weir and Hill (2002), we show (see Supplemental Ma-
terial) that FSTestimated using Hudson’s estimator will tend toward
Equation 3 (see Results), which is exactly the average of population-
specific FST values that we seek to estimate. This emerges naturally,
as the proposed estimator is the simple average of the population-
specific estimators given in Weir and Hill (2002). This estimator has
the desirable properties that it is (1) independent of sample com-
position, and (2) does not overestimate FST (it has a maximum value
of 1). We recommend its use to produce estimates of FST for two
populations.

Combining estimates of FST across multiple SNPs
The Hudson estimator is asymptotically consistent, as the esti-
mators of the variance components involved in the computation
of FST are unbiased in the context of the WH definition. However,
as their quotient is not an unbiased estimator of FST, use of an av-
erage of ratios will, in general, result in a biased estimate.

As many rare variants discovered by deep sequencing are
population specific, we analyze the effect of this approach in the
presence of many such variants. Consider a rare SNP with p1 = e,
p2 = 0. This yields a single SNP FST = e. An estimate produced using
an average of ratios will be highly sensitive to rare SNPs of this type
and is likely to exhibit dependence on both the sequencing depth
and sample size used in the analysis (see Supplemental Fig. S2).

Previous works have examined this choice and advocated
for the use of a ratio of averages (Reynolds et al. 1983; Weir and
Cockerham 1984). However, in describing the WH-ML method,
Weir and Hill recommend that estimates be ‘‘simply averaged over
loci.’’ We believe that use of an average of ratios can account for the
bulk of the discrepancy between the estimates of FST from The
1000 Genomes Project Consortium (2010) and previously pub-
lished estimates (International HapMap 3 Consortium 2010) (see
Results).

Dependence of FST on the set of SNPs analyzed
In relating quantities being estimated from current populations to
parameters of the evolutionary model, we have calculated ex-
pected values given the allele frequency in the ancestral pop-
ulation. This implicitly performs an ascertainment of SNPs that
are polymorphic in the ancestral population or, equivalently, in
an outgroup population. Provided there is no migration or ad-
mixture between populations, the relationship between FST and
divergence time is given in Supplemental Equation s12.

This relationship accounts for changes in effective population
size (i.e., bottlenecks or expansions) in the demographic history of
the populations being compared. Additionally, ascertainment in
an outgroup renders the estimate independent of the allele fre-
quency spectrum in the outgroup. Therefore, with this type of
ascertainment scheme, estimates should be concordant regardless
of whether they are produced from rare or common SNPs.

While ascertainment in an outgroup has several helpful
properties, in many practical circumstances no data from a rea-
sonable outgroup is available. In these instances, FST can be esti-
mated using SNPs ascertained in either one of the populations
under study. However, in these instances estimates are not ex-
pected to be independent of allele frequency spectrum or complex
demographic scenarios.
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Exercise	–	FST	es/ma/on	

•  Implement	Hudson’s	method	
•  Es/mate	the	average	pairwise	FST	values	for	
Pop1-6.	
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