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In a pair of seminal papers, Sewall Wright and Gustave Malécot introduced FST as a measure of structure in natural
populations. In the decades that followed, a number of papers provided differing definitions, estimation methods, and
interpretations beyond Wright’s. While this diversity in methods has enabled many studies in genetics, it has also in-
troduced confusion regarding how to estimate FST from available data. Considering this confusion, wide variation in
published estimates of FST for pairs of HapMap populations is a cause for concern. These estimates changed—in some cases
more than twofold—when comparing estimates from genotyping arrays to those from sequence data. Indeed, changes in
FST from sequencing data might be expected due to population genetic factors affecting rare variants. While rare variants
do influence the result, we show that this is largely through differences in estimation methods. Correcting for this yields
estimates of FST that are much more concordant between sequence and genotype data. These differences relate to three
specific issues: (1) estimating FST for a single SNP, (2) combining estimates of FST across multiple SNPs, and (3) selecting the
set of SNPs used in the computation. Changes in each of these aspects of estimation may result in FST estimates that are
highly divergent from one another. Here, we clarify these issues and propose solutions.

[Supplemental material is available for this article.]

Since its introduction by Sewall Wright (1949) and Gustave Malécot
(1948), FST estimation (Weir and Cockerham 1984; Holsinger and
Weir 2009) has become a key component of studies of population
structure in humans (International HapMap Consortium 2007; Li
et al. 2008; The 1000 Genomes Project Consortium 2010; Inter-
national HapMap 3 Consortium 2010) and other species (Malécot
1948; Wright 1949; Selander and Hudson 1976; Guries and Ledig
1982; Ellstrand and Elam 1993; Palumbi and Baker 1994). Though
the utility of FST and related measures has been subject to recent
debate ( Jost 2008; Ryman and Leimar 2009), FST continues to be
widely used by population geneticists (Xu et al. 2009; Edelaar et al.
2012; Hangartner et al. 2012).

Despite this widespread use in genetic studies, confusion re-
mains about what FST is and how to estimate it. Beyond Wright’s
original description of FST as a ratio of variances, FST has been con-
ceptually defined in many ways (Wright 1949; Cockerham 1969;
Cavalli-Sforza and Bodmer 1971; Nei 1973; Slatkin 1991; Hudson
et al. 1992). Additionally, multiple estimators for FST have been
described in the literature (Nei 1973, 1986; Weir and Cockerham
1984; Hudson et al. 1992; Holsinger 1999; Weir and Hill 2002),
often making the correct choice of estimator unclear.

With this diversity of definition and estimation in mind, we
consider estimates of FST published by The 1000 Genomes Project
Consortium (2010) of 0.052 for European and East Asian pop-
ulations and 0.071 for European and West African populations.
These are less than half of the published estimates, 0.111 and

0.156, from HapMap3 data (International HapMap 3 Consortium
2010) and may be the result of demography that differentially
impacts FST at rare variants. These estimates have subsequently
been used to simulate properties of recent rare variants (Mathieson
and McVean 2012), making it imperative to know whether this
reduction in FST is a meaningful result of the inclusion of rare
variants or merely an artifact of estimation.

To answer these questions, we examine the issues surround-
ing FST estimated on data containing rare variants. We focus our
attention on FST estimation in the context of comparing two
populations—potentially with differing amounts of drift since the
populations split—using a series of bi-allelic SNPs. We use the
definition of Weir and Hill (2002), which allows for population-
specific FST. Using this definition, we divide the issues surrounding
estimation into three categories and examine them using both
simulated and 1000 Genomes data:

1. Choice of FST estimator.
2. Combining estimates of FST across multiple SNPs.
3. Dependence of FST on the set of SNPs analyzed.

We conclude that the lower FST estimates reported by The 1000
Genomes Project Consortium (2010) are a consequence of the es-
timation method that was applied and are not informative for hu-
man demographic history. Correcting for differences in estimation
method yields FST estimates of 0.106 for Europeans and East Asians
and 0.139 for Europeans and West Africans—much closer to
HapMap3 estimates. Overall, our results contradict a recent state-
ment ‘‘among human populations, FST is typically estimated to be
<0.1’’ by Mathieson and McVean (2012), which was based on re-
sults from The 1000 Genomes Project Consortium (2010).

Altogether, in the setting of rare variants, a careful protocol
for producing FST estimates is warranted. We provide such a
protocol.
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Results

Theory

Defining FST

We use the definition of Weir and Hill (2002) (WH) throughout
our manuscript to analyze estimators in the context of comparing
two populations at a series of bi-allelic SNPs. In this context, WH
define FST as the correlation between randomly drawn alleles from
a single population relative to the most recent common ancestral
population:
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Although we use the WH definition of FST to compare esti-
mation methods, numerous alternate definitions exist in the lit-
erature (see Supplemental Material), in part because of confusion
regarding Wright’s original description of FST.

Wright (1949) defined FST as the correlation of randomly
drawn gametes from the same population, relative to the total
population. However, he did not clearly specify the ‘‘total pop-
ulation,’’ leaving subsequent investigators to interpret its meaning.
For Nei (1973) the ‘‘total population’’ is the combination of the two
population samples. This means that FST quantifies drift relative
to an average of the two population samples. For Cockerham (1969)
and WH, the ‘‘total’’ population is the most recent common an-
cestral population to the two populations being considered.
Consistent with those investigators, we view FST as a parameter of
the evolutionary process and not a statistic from observed samples
as Nei has described.

To view FST as a parameter of the evolutionary process, the
Cockerham and WH definitions assume that studied SNPs were
polymorphic in the ancestral population. This is clear from
Equation 1 as E ps

i

!!ps
anc

" #
6¼ ps

anc for SNPs arising from recent muta-
tions. While this assumption does not always hold, we believe that
the WH definition provides a valid basis for comparing estimation
methods, and also assesses the performance of estimators when
this assumption is violated.

By defining only one FST for both populations in a comparison,
Cockerham (1969) and Weir and Cockerham (1984) also assumed
that the two populations have experienced identical amounts of
drift since splitting. This assumption, which may be unrealistic in
many real data sets, was generalized by WH, and motivates our use
of the WH definition. In this study, we focus on cases without
migration and admixture, though these cases were considered in
WH and are the subject of future work (B Weir, pers. comm.).

In addition to the definitions described above, FST has been
related to divergence time, coalescent times, and migration rates.
Additionally, likelihood-based definitions view FST as a parameter
of the distribution of allele frequencies in current populations
(Balding and Nichols 1995; Nicholson et al. 2002; Balding 2003).
Further details are provided in the Supplemental Material.

Choice of FST estimator

While estimators of FST handle issues related to finite sample size,
we are interested in their behavior in the limit of large sample sizes,
or the ‘‘quantity being estimated.’’ Most published estimates of FST

are produced using the Weir and Cockerham (WC) (Weir and
Cockerham 1984) (>8000 citations) or Nei (Nei 1973) (>5500 ci-
tations) estimators. However, we recommend a different estimator
motivated by Hudson et al. (1992).

The WC estimator was developed for the case of populations
with identical FST, and if it is used when FST is not identical for both
populations, we demonstrate that the WC quantity being esti-
mated becomes dependent on the ratio of sample sizes M accord-
ing to (see Methods):
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We note that this variation with sample size is not due to any
flaw in the WC estimator, but rather due to the use of the WC
estimator for a purpose different from what was intended. We also
note that the WC estimator is often used to produce single SNP
estimates of FST to detect selection. We caution that when sample
sizes are very different, the WC estimator can give inflated single
SNP estimates of FST, resulting in false-positive signals of selection
(see Supplemental Material).

In the context of the WH definition, the Nei estimator will
consistently overestimate FST, and the degree of overestimation
will depend upon the magnitude of FST values (see Methods):
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We note that this result, with a maximum value of 2, makes it
impossible to view FST as a correlation.

The Hudson estimator (Hudson et al. 1992; Keinan et al. 2007)
produces estimates that are the simple average of FST according to
the WH definition. These estimates are independent of sample
sizes even when FST is not identical across populations. We note
that while Hudson did not explicitly provide an estimator of FST, he
did describe a method of estimation that corresponds to the esti-
mator that we explicitly provide here (see Supplemental Material).
Thus, we refer to this estimator as the Hudson estimator. Hudson
estimates correspond to a simple average of the population specific
FST estimates as given by (see Methods):
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We note that the Hudson estimator is a simple average of the
population-specific estimators proposed by Weir and Hill (2002).
We provide comparisons of this estimator to the WC and Nei esti-
mators when applied to simulated data (see Supplemental Material)
and empirical data (see below).

Combining estimates of FST across multiple SNPs

We investigate two approaches for combining estimates of FST across
multiple SNPs. In the first approach, variance components—the
numerator and denominator—are averaged separately and the
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genome-wide estimate of FST is a ‘‘ratio of averages’’ (Weir and
Cockerham 1984; International HapMap 3 Consortium 2010). In
the second approach, single SNP estimates of FST are averaged across
SNPs. The resulting ‘‘average of ratios’’ is reported as the genome-
wide estimate (The 1000 Genomes Project Consortium 2010) (see
Methods).

In the context of the WH definition, the numerator of the
Hudson FST estimator (see Methods) is an unbiased estimator of
the variance between populations. The denominator is an unbiased
estimator of the total variance in the ancestral population. However,
this does not mean that the ratio of the estimators is itself an un-
biased estimator of FST. We are not aware of any unbiased estimator.

While an unbiased estimator is not available, FST estimates
produced using a ratio of these two unbiased estimates will be as-
ymptotically consistent, in the sense that they will converge to the
correct underlying value as the number of independent SNPs in-
creases. This is the basis of our recommendation that FST be esti-
mated as a ratio of averages.

We analyze the effects of choosing an average of ratios in
coalescent simulations detailed in the Supplemental Material.

Dependence of FST on the set of SNPs analyzed

It is well known that population genetic factors can cause variation
in FST estimates, and that ascertainment schemes can alter the
properties of studied SNPs (Ramı́rez-Soriano and Calafell 2008;
Albrechtsen et al. 2010). For example, selection can result in dif-
ferences between FST estimated on genic and nongenic SNPs (Clark
et al. 2005; Barreiro et al. 2008; Hernandez et al. 2011); complex
demography can cause FST to vary with SNP allele frequency
(Schaffner et al. 2005) (see below). Indeed, variation in FST estimates
between ascertained classes of SNPs can be used to test a variety of
hypotheses about population history (Weir et al. 2005; McVicker
et al. 2009). This usage of FST demonstrates that there is no single
correct ascertainment scheme, as FST is a parameter of both the
populations and the set of SNPs that are used in the computation.

Though there is no single correct ascertainment scheme,
ascertainment in an outgroup may have desirable properties.
Outgroup ascertainment guarantees that studied SNPs were poly-
morphic in the most recent common ancestral population (ig-
noring recurrent mutation), satisfying an assumption made in
the Weir and Hill definition. This leads estimates of FST to be in-
dependent of allele frequency and depend upon time since di-
vergence according to a simple equation (see Supplemental Ma-
terial, Equation s1).

While we view these as desirable properties, if no reasonable
outgroup sample is available, it may become necessary to choose
SNPs that are polymorphic in one, both, or either of the pop-
ulations studied. These choices will affect the estimate of FST pro-
duced and may explain discrepancies in FST estimates across
studies of the same populations.

We explore the effects of various ascertainment schemes on
FST estimates across the allele frequency spectrum in a variety of
simulated demographic scenarios (see Supplemental Material).

Other FST estimators

In addition to the WC, Nei, and Hudson estimators that we ana-
lyzed above, we have also analyzed several additional estimators.
Our results on each of these estimators are described in detail in
the Supplemental Material.

The moment-based estimator of Weir and Hill (2002) (WH)
introduced population-specific estimates of FST. Weir and Hill

recommend a sample size weighted average of these estimates,
which may result in a wide variation with sample size. However, one
could also report these estimates independently or perform a simple
average of these estimates.

A separate maximum-likelihood estimator of Weir and Hill
(2002) (WH-ML) is based upon a normal approximation to genetic
drift. However, the equations provided for the WH-ML estimator
are not applicable to the general case of unequal sample size, and
the investigators recommend that estimates be ‘‘simply averaged
across loci,’’ causing WH-ML estimates to vary widely with the
inclusion of rare variants.

We evaluated two max-likelihood estimators based on the
beta-binomial likelihood using point estimates for the allele fre-
quency in the ancestral population (D Balding, pers. comm.).
These estimates perform well for small values of FST, but do poorly
as FST increases. It may be possible to improve on these methods by
integrating over the distribution of ancestral allele frequencies, an
interesting direction for future research.

We also considered the beta-binomial MCMC method of
Holsinger (1999). However, our simulations suggest that Holsinger
estimates increase dramatically if rare SNPs are analyzed. Addi-
tionally, the MCMC-based approach imposes a significant com-
putational burden, making the method difficult to apply to mod-
ern data sets.

Analysis of 1000 Genomes data

We analyzed data from 1000 Genomes populations (The 1000 Ge-
nomes Project Consortium 2010) to illustrate the effects of changes
in each of the aspects of estimation described above. We focus
largely on the comparison of Utah residents of European ancestry
(CEU) and Chinese individuals from Beijing (CHB), as the Yoruba
in Ibadan, Nigeria (YRI) sample functions as a natural outgroup for
ascertainment of SNPs. This ascertainment has desirable properties
(see above).

Choice of FST estimator

Estimates of FST for CEU and CHB are 0.106 (s.e. 0.0006), 0.112 (s.e.
0.0006), and 0.107 (s.e. 0.0006) for the WC, Nei, and Hudson
estimators, respectively. These estimates were produced over SNPs
ascertained as polymorphic in YRI. The higher Nei estimate is
expected. In addition, sample sizes for CEU (85 individuals) and
CHB (97 individuals) are similar, so we do not expect WC and
Hudson estimates to differ.

In order to investigate the effects of sample size variation we
selected 14 individuals—the size of the smallest sample (Iberian
populations in Spain; IBS) in the 1000 Genomes Consortium
data—from both CEU and CHB to produce populations CEU14
and CHB14. Hudson FST estimates for CEU14 and CHB are sim-
ilar to those for CHB14 and CEU (see Table 1). However, WC
estimates are 0.114 (s.e. 0.0006) and 0.107 (s.e. 0.0006) for
CEU14 vs. CHB and CHB14 vs. CEU, respectively. The differ-
ence between these estimates is statistically significant (greater
than eight standard errors). To verify that this difference is not
due to different sets of polymorphic SNPs, we re-estimated FST

restricting to SNPs that were polymorphic in YRI and at least one
of CEU14 or CHB14. Re-estimated values of FST were similar to
those above and WC estimates remained discordant (data not
shown).

The effect of sample size variation is further exacerbated
when ascertainment is performed within the populations stud-
ied. For example, in comparing IBS—with a sample size of only 14
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individuals—to YRI, no reasonable outgroup population exists in
the 1000 Genomes data. If we ascertain within one of these pop-
ulations, WC estimates are 0.121 and 0.144 for ascertainment
in YRI and IBS, respectively. These estimates—computed using
identical populations and even identical individuals—are highly
divergent at >25 standard errors apart, whereas Hudson estimates
are much more stable (see Table 1). This underscores that FST esti-
mates can vary substantially based on the choice of estimator.

Regardless of choice of estimator, our estimates of FST from
1000 Genomes data are relatively close to previously reported
values of FST (see Supplemental Table S1 for all populations). This
suggests that while the choice of estimator can impact the resulting
value of FST, it does not explain the disparate results reported by the
1000 Genomes Consortium, and other aspects of estimation may
be involved. We consider these in the sections below.

Combining estimates of FST across multiple SNPs

From 1000 Genomes data, we estimated FST for CEU and CHB as
0.106 (s.e. 0.0006) and 0.072 (s.e. 0.0003) for the ratio of averages
and average of ratios, respectively. These estimates were produced
over SNPs ascertained as polymorphic in YRI. This suggests that the
result reported by the 1000 Genomes Consortium (0.052) may be
partially explained by the large reduction in FST obtained by use of
an average of ratios. These results are replicated for several com-
parisons of populations included in the 1000 Genomes data (see
Table 2).

To explore the effect of the rare variants included in sequence
data, we compared our results to those obtained using HapMap3
genotypes. We obtain FST estimates for CEU and CHB of 0.110 (s.e.
0.0010) and 0.089 (s.e. 0.0006) using the ratio of averages and
average of ratios, respectively. This suggests that the inclusion of
rare variants with low single-SNP FST estimates in the 1000 Genomes
data tends to exacerbate the discrepancy produced by the average of
ratios. We expect that this discrepancy will grow with sample sizes
and sequencing depth (see Supplemental Fig. S2). Ultimately, using
the average of ratios may make estimates incomparable across
studies and unrelated to population demographic history.

While the use of the average of ratios clearly results in lower
estimates of FST, these estimates are not as low as those published
by the 1000 Genomes Consortium. Below, we explore the possibility

that the remaining discrepancy can be accounted for by differences
in the set of SNPs analyzed.

Dependence of FST on the set of SNPs analyzed

When estimating FST for CEU and CHB, we compared the effects of
ascertaining in YRI (YRI ascertainment) versus ascertaining SNPs
that were polymorphic in CEU, CHB, both populations, or either
population (see Table 3). When using an average of ratios, our es-
timates of FST were ;0.103 for all of these modified ascertainment
schemes. These can be compared to an FST of 0.106 produced from

Table 1. FST estimates for pairs of populations in 1000 Genomes

FST Estimator

WC Nei Hudson

Comparison Number of SNPs Est. Std. error Est. Std. error Est. Std. error

CEUvCHB 7,799,780 0.107 5.70 3 10"4 0.112 6.36 3 10"4 0.106 5.69 3 10"4

CEUvYRI 17,814,120 0.139 4.97 3 10"4 0.149 5.79 3 10"4 0.139 5.00 3 10"4

CHBvYRI 17,814,120 0.163 5.85 3 10"4 0.175 6.84 3 10"4 0.161 5.78 3 10"4

CEUvCHB14 7,215,431 0.107 6.10 3 10"4 0.113 7.16 3 10"4 0.106 6.36 3 10"4

CHBvCEU14 7,465,953 0.114 6.49 3 10"4 0.114 7.12 3 10"4 0.107 6.32 3 10"4

IBSvYRI 17,814,120 0.121 4.37 3 10"4 0.145 6.02 3 10"4 0.131 6.73 3 10"4

YRIvIBSa 7,709,984 0.144 8.06 3 10"4 0.141 7.77 3 10"4 0.134 8.43 3 10"4

Unless otherwise specified, SNPs were ascertained as polymorphic in YRI. These estimates are more concordant with results reported on common SNPs
(International HapMap 3 Consortium 2010) than with the results reported by the Genomes Consortium (The 1000 Genomes Project Consortium 2010).
Even so, we note that the choice of FST estimator impacts the resulting estimate. This is evident when comparing CEU14—14 individuals sampled from the
CEU population—to CHB and CHB to CEU14. Though these estimates are produced using overlapping sets of SNPs and individuals, the estimates are
statistically significantly different when produced using the WC estimator. This difference is underscored when comparing the YRI and IBS populations. The
small sample from the IBS population causes WC estimates to change significantly depending on ascertainment in IBS (line 4) or YRI (line 5). The number of
SNPs listed indicates the number of SNPs that were polymorphic in the ascertained population (usually YRI) and at least one of the populations studied.
aIn this case, ascertainment was performed in the IBS sample. In all other cases, ascertainment was performed in YRI.

Table 2. A comparison of the FST estimated using 1000 Genomes
and HapMap data by either using a ratio of averages or an average
of ratios

Comparison

Ratio of averages

1000 Genomes HapMap3

Est. Std. error Est. Std. error

CEU-YRI 0.139 5.00 3 10"4 0.156 9.73 3 10"4

CEU-CHB 0.106 5.69 3 10"4 0.110 9.61 3 10"4

CHB-YRI 0.161 5.78 3 10"4 0.183 1.13 3 10"4

Comparison

Average of ratios

1000 Genomes HapMap3

Est. Std. error Est. Std. error

CEU-YRI 0.063 1.53 3 10"4 0.124 6.23 3 10"4

CEU-CHB 0.072 3.04 3 10"4 0.089 6.35 3 10"4

CHB-YRI 0.070 1.70 3 10"4 0.141 6.93 3 10"4

It is clear that the average of ratios of FST results in a significant un-
derestimate of FST, and use of an average of ratios approach can explain
the bulk of the discrepancy between the FST reported by the 1000 Ge-
nomes Consortium and previously reported estimates. The ratio of aver-
ages estimates are much more concordant with estimates on HapMap
data. We believe that discrepancies between these different data sets are
due to the different set of SNPs used in the computation. Finally, use of the
average of ratios results in a smaller reduction when applied to HapMap3
data. This is consistent with an average of ratios being sensitive to rare
variants that are, in general, excluded from the HapMap set of SNPs.

Estimating and interpreting FST

Genome Research 1517
www.genome.org



YRI ascertainment in 1000 Genomes data or 0.110 in HapMap3
data. Though statistically significant, these results suggest that the
effects of modified ascertainment are not very large when analyz-
ing human populations using a ratio of averages. This indicates
that reasonable estimates of FST may be produced when comparing
populations without access to an outgroup.

However, when using an average of ratios and including all
SNPs polymorphic in either CEU or CHB, our estimate changed
from 0.072 to 0.047 (s.e. 0.0002), which is similar to the result
reported by the 1000 Genomes Consortium. This suggests that
much of the discrepancy between previously published estimates
of FST for CEU and CHB and the published 1000 Genomes estimate
is explained by using the average of ratios and an ascertainment
scheme that includes all SNPs that are polymorphic in either of the
two populations. These results are replicated for comparisons of
continental populations included in the 1000 Genomes data as we
obtained values of 0.056 and 0.063 for comparisons of CEU-YRI
and CHB-YRI, respectively.

Separately, we note that when comparing CEU to CHB on the
1000 Genomes data we observed larger FST estimates of 0.108 for the
lowest frequency SNPs (0.0 < MAF # 0.05) versus estimates of 0.103
for the most common SNPs (0.45 < MAF < 0.5) when ascertaining
in CEU. These estimates were 0.131 and
0.097 when ascertaining in CHB (see Fig.
1). Increased FST for rare variants suggests
that bottlenecks are likely to be a stronger
influence on FSTestimates for CEU and CHB
than recent expansions. Our results also
indicate that bottlenecks in the population
history of CHB are likely to be stronger than
those in the population history of CEU,
consistent with the findings of Keinan
et al. (2007). This is in contrast to the much
lower FST estimates reported on sequence
data by the 1000 Genomes Consortium,
which might suggest that expansions are
a stronger influence on FST at rare SNPs.

Under a simple demographic history
(i.e., without migration or admixture), this
dependence on minor allele frequency is
expected to disappear when ascertaining
SNPs in an outgroup. When ascertaining
in YRI we do not observe any significant
dependence on frequency, which suggests
that YRI is a reasonable outgroup for the
comparison for CEU and CHB.

We note that when ascertaining in YRI, our genome-wide
estimate of FST (0.106) is lower than estimated from HapMap3
(0.110). To investigate whether this difference is due to non-random
ascertainment of HapMap3 SNPs, we sampled 10 subsets of SNPs
from the 1000 Genomes data that matched the allele frequency
spectrum of HapMap3 SNPs (see Supplemental Material). We esti-
mated FST for CEU and CHB in each of these subsets ranging from
0.106 to 0.107 (s.e. 0.0010). This suggests that HapMap3 SNPs are
more highly differentiated than random SNPs, consistent with
previous findings on the effects of ascertainment on genotyping
arrays (Clark et al. 2005; Albrechtsen et al. 2010).

Recommendations

Choice of FST estimator

Because the Hudson estimator is not sensitive to the ratio of sample
sizes and does not systematically overestimate FST, we recommend
that it be used to estimate FST for pairs of populations. The Hudson
estimator for FST and a corresponding block-jackknife estimator for
the standard error of FST are implemented in the EIGENSOFT
software package (EIGENSOFT 4.2 http://www.hsph.harvard.edu/
faculty/alkes-price/software/).

Combining estimates of FST across multiple SNPs

Using an average of ratios will result in large reductions in FST

estimates. This effect will be exacerbated when estimating FST

from sequence data. Therefore, we recommend using a ratio of
averages.

Dependence of FST on the set of SNPs analyzed

Estimating FST from SNPs ascertained in an outgroup has the fol-
lowing valuable properties: (1) FST estimates are expected to be
independent of allele frequency in the outgroup, and (2) FST es-
timates will relate to divergence time according to Supplemental
Equation s1 if there has been no migration or admixture. However,
data from a reasonable outgroup is not always available. Addition-
ally, comparison of FST between ascertained classes of SNPs (e.g.,

Table 3. Assessing the effect of ascertainment schemes and
combination methods on the resulting FST estimate for CEU and CHB

Polymorphic in Ratio of averages Average of ratios

CEU 0.104 6.19 3 10"4 0.056 2.55 3 10"4

CHB 0.104 6.40 3 10"4 0.057 2.74 3 10"4

CEU AND CHB 0.104 7.25 3 10"4 0.078 4.49 3 10"4

CEU OR CHB 0.103 5.64 3 10"4 0.047 1.87 3 10"4

When using a ratio of averages, modified ascertainment results in a small,
though statistically significant difference from a value of 0.106 obtained
using YRI ascertainment. The effect is much larger when using an average
of ratios, and the bolded cell indicates that a permissive ascertainment
scheme coupled with an average of ratios can produce a value similar to
the estimate of FST for CEU and CHB published by the 1000 Genomes
Consortium.

Figure 1. Allele frequency dependence of FST under different ascertainment schemes. This shows FST

for CEU and CHB as a function of allele frequency when ascertaining in either CEU, CHB, or YRI. The
increased FST for rare variants is consistent with bottlenecks being a stronger force on FST for CEU and
CHB than recent expansion. In fact, this is consistent with a stronger bottleneck in the population history
of CHB. We note that this frequency dependence disappears when ascertaining in YRI, suggesting that
YRI is a reasonable outgroup for the comparison of CEU and CHB.
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genic vs. nongenic) can be used to test a variety of hypotheses
regarding population history. Thus, we recommend that future
publications of FST estimates include details of the ascertainment
scheme used, including the proportion of SNPs that are polymorphic
in each sample.

Discussion
The use of FST to quantify the genetic distance between populations
and to assess differentiation at individual SNPs is widespread. Here,
we point out several challenges surrounding FST and provide a
protocol for its robust estimation in the case of two populations
and bi-allelic SNPs. We show that the estimator of FST, the method
of combining estimates across SNPs, and the scheme for SNP ascer-
tainment can impact the resulting estimate of FST. An inappropriate
choice for any of these aspects of estimation can lead to widely
disparate estimates of FST, especially in a setting of large numbers of
rare variants.

Indeed, the FST estimate 0.052 for CEU and CHB reported by
The 1000 Genomes Project Consortium (2010) underscores the
need for a careful analysis. Utilizing the careful protocol set out
here, we provide an estimate of 0.106 for CEU and CHB on 1000
Genomes data, which is close to our estimate of 0.110 on HapMap3
(International HapMap 3 Consortium 2010) data. Additionally, we
show that when ascertaining for SNPs in one of the two pop-
ulations studied, rare variants have higher FST estimates than
common variants. This is the exact opposite of the results sug-
gested by the 1000 Genomes data. The difference between these two
results changes the conclusions that are drawn about the role of
demography in shaping the patterns of differentiation between
human populations. In addition to altering genome-wide estimates
of FST, the choice of estimator can introduce inflation at the level of
single SNP estimates, potentially making it difficult to interpret high
FST estimates as signals of selection (see Supplemental Material).

Another concern about FST was considered by Jost (2008),
who showed that as heterozygosity becomes large, FST will natu-
rally approach 0—indicating low differentiation—even if all alleles
at a locus are population private. In an effort to avoid this problem,
Jost introduced D as an alternate measure of differentiation.
However, it has been suggested that Jost’s D shares the same
problems as FST, and that these problems are sometimes even more
pronounced for Jost’s D (Ryman and Leimar 2009). In any case, FST

and related measures ‘‘unquestionably provide important insights
into population structure’’ ( Jost 2008), particularly for species such
as humans, in which heterozygosity is relatively low.

In conclusion, we recommend the use of the Hudson estimator
(Hudson et al. 1992; Keinan et al. 2007) of FST that is independent of
sample size. We demonstrate that a ratio of averages is an appro-
priate method for combining these estimates across multiple SNPs.
We also show the value of estimating FST from SNPs ascertained in
an outgroup, though we do not view this as a necessity. We do
recommend, however, that future publications of FST estimates in-
clude details of the ascertainment of SNPs.

Methods

Weir and Cockerham’s FST (WC)

Definition

Weir and Cockerham (1984) used the definition provided by
Cockerham (1969) of FST as a ratio of the variance between

populations to the total variance in the ancestral population. We
analyze this definition in the Supplemental Material.

Estimator

In the setting of population-specific FST, described by the WH
definition, the WC estimator will result in estimates that vary with
the ratio of sample sizes (see Supplemental Material for details). In
the case of two populations and biallelic SNPs, the WC estimator is

F̂WC
ST ¼ 1"

2
n1n2

n1 þn2

1

n1 þ n2 "2
n1~p1 1" ~p1ð Þþ n2~p2 1" ~p2ð Þ½ '

n1n2

n1þn2

~p1"~p2ð Þ2þ 2
n1n2

n1þn2
"1

& '
1

n1þn2"2
n1~p1 1" ~p1ð Þþn2~p2 1" ~p2ð Þ½ '

;

ð6Þ

where ni is the sample size and ~pi is the sample allele frequency
in population i for i 2 {1, 2}. Then, in the limit of large sample sizes
(ni " 1 » ni), we can assume that sample allele frequencies become
close to population allele frequencies ~pi ! pi

$ %
. We analyze the

estimator as the sample sizes increase, but their ratio goes to
a constant M (see Supplemental Material for a derivation). In this
case, we show (see Supplemental Material) that the estimate tends
toward Equation 1 (see Results).

If the sample sizes are equal, M = 1, then the estimate becomes

F̂WC
ST !

F1
ST þ F2

ST

$ %

2
:

Also, when FST is identical for both populations, i.e., F1
ST =

F2
ST = FST , it is straightforward to see that F̂ST ! FST , i.e., the esti-

mate will not depend upon the ratio of sample sizes (M ). We note
that if FST is identical across populations, weighting by sample sizes
will reduce the variance of the estimator. This was the intent of
Weir and Cockerham. If the sample sizes are unequal or this as-
sumption does not hold, however, the estimate will depend upon the
ratio of sample sizes underlying the limit. Given the complexity of
human population history, it is unlikely that this assumption will
hold in general. This means that even if large numbers of samples and
SNPs are used to estimate FST for a pair of populations, this estimate
may not be comparable across studies with different sample sizes.

We note that when FST is not identical for both populations, it is
possible to estimate FST separately for each population (i.e., F̂

1
ST ; F̂

2
ST )

(Weir and Hill 2002). Estimates for those produced according to the
method given in Weir and Hill (2002) will not depend on sample
size. We focus here on estimating FST for a pair of populations, as
this is a very common use when analyzing human genetic data.

Nei’s FST

Definition

Nei (1986) defined FST (he used the term GST) based upon the
sample gene diversity between and within populations as

FST ¼
D9

ST

HT
; ð7Þ

where D9
ST is the average gene diversity between populations and

HT is the diversity in the average of the two population samples.
We consider this definition in detail in the Supplemental Material.

Estimator

In the case of two populations and bi-allelic SNPs, Nei’s estimator is

F̂ Nei
ST ¼

~p1" ~p2ð Þ2

2~pavg 1" ~pavg

( ) ; ð8Þ
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where

~pavg¼
~p1þ~p2

2

and ~pi is the sample allele frequency in population i for i 2 {1, 2}.
We note that this is Nei’s updated estimator and, in the case of two
populations, differs from the estimator given in Nei (1973) and Nei
and Chesser (1983) by a factor of 2. We use the estimator given in
Nei (1986), as it is most closely related to the other estimators
considered.

Using the definition of Weir and Hill (2002) we show (see
Supplemental Material) that estimates made using Nei’s estimator
will tend toward Equation 2 (see Results), with a maximum value
of 2 as F1

ST ! 1; F1
ST ! 1. This overestimates the average of pop-

ulation-specific FST values and alters the relation from this average
of FST values to divergence time (see Supplemental Material). Es-
timates of FST given for the Nei estimator were generated using the
proposed estimator for the numerator (see Supplemental Material)
and a simple estimator for the denominator.

Hudson’s FST

Definition

Hudson et al. (1992) defined FST in terms of heterozygosity. The
fundamental difference between these estimators is that for
Hudson, the total variance is based upon the ancestral population
and not the current sample.

Estimator

Hudson’s estimator for FST is given by

F̂ Hudson
ST ¼1"Hw

Hb
; ð9Þ

where Hw is the mean number of differences within populations,
and Hb is the mean number of differences between populations.
While Hudson did not give explicit equations for Hw and Hb, we
cast his description into an explicit estimator (see Supplemental
Material for a derivation). The estimator that we analyze is

F̂ Hudson
ST ¼

~p1" ~p2ð Þ2 "
~p1 1" ~p1ð Þ

n1"1
"

~p2 1" ~p2ð Þ
n2 "1

~p1 1" ~p2ð Þþ ~p2 1" ~p1ð Þ
; ð10Þ

where ni is the sample size and ~pi is the sample allele frequency in
population i for i 2 {1, 2}. Analyzing this estimator using the def-
inition of Weir and Hill (2002), we show (see Supplemental Ma-
terial) that FSTestimated using Hudson’s estimator will tend toward
Equation 3 (see Results), which is exactly the average of population-
specific FST values that we seek to estimate. This emerges naturally,
as the proposed estimator is the simple average of the population-
specific estimators given in Weir and Hill (2002). This estimator has
the desirable properties that it is (1) independent of sample com-
position, and (2) does not overestimate FST (it has a maximum value
of 1). We recommend its use to produce estimates of FST for two
populations.

Combining estimates of FST across multiple SNPs
The Hudson estimator is asymptotically consistent, as the esti-
mators of the variance components involved in the computation
of FST are unbiased in the context of the WH definition. However,
as their quotient is not an unbiased estimator of FST, use of an av-
erage of ratios will, in general, result in a biased estimate.

As many rare variants discovered by deep sequencing are
population specific, we analyze the effect of this approach in the
presence of many such variants. Consider a rare SNP with p1 = e,
p2 = 0. This yields a single SNP FST = e. An estimate produced using
an average of ratios will be highly sensitive to rare SNPs of this type
and is likely to exhibit dependence on both the sequencing depth
and sample size used in the analysis (see Supplemental Fig. S2).

Previous works have examined this choice and advocated
for the use of a ratio of averages (Reynolds et al. 1983; Weir and
Cockerham 1984). However, in describing the WH-ML method,
Weir and Hill recommend that estimates be ‘‘simply averaged over
loci.’’ We believe that use of an average of ratios can account for the
bulk of the discrepancy between the estimates of FST from The
1000 Genomes Project Consortium (2010) and previously pub-
lished estimates (International HapMap 3 Consortium 2010) (see
Results).

Dependence of FST on the set of SNPs analyzed
In relating quantities being estimated from current populations to
parameters of the evolutionary model, we have calculated ex-
pected values given the allele frequency in the ancestral pop-
ulation. This implicitly performs an ascertainment of SNPs that
are polymorphic in the ancestral population or, equivalently, in
an outgroup population. Provided there is no migration or ad-
mixture between populations, the relationship between FST and
divergence time is given in Supplemental Equation s12.

This relationship accounts for changes in effective population
size (i.e., bottlenecks or expansions) in the demographic history of
the populations being compared. Additionally, ascertainment in
an outgroup renders the estimate independent of the allele fre-
quency spectrum in the outgroup. Therefore, with this type of
ascertainment scheme, estimates should be concordant regardless
of whether they are produced from rare or common SNPs.

While ascertainment in an outgroup has several helpful
properties, in many practical circumstances no data from a rea-
sonable outgroup is available. In these instances, FST can be esti-
mated using SNPs ascertained in either one of the populations
under study. However, in these instances estimates are not ex-
pected to be independent of allele frequency spectrum or complex
demographic scenarios.
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Mathieson I, McVean G. 2012. Differential confounding of rare and common

variants in spatially structured populations. Nat Genet 44: 243–246.
McVicker G, Gordon D, Davis C, Green P. 2009. Widespread genomic signatures

of natural selection in hominid evolution. PLoS Genet 5: e1000471.

Nei M. 1973. Analysis of gene diversity in subdivided populations. Proc Natl
Acad Sci 70: 3321–3323.

Nei M. 1986. Definition and estimation of fixation indices. Evolution 40:
643–645.

Nei M, Chesser RK. 1983. Estimation of fixation indices and gene diversities.
Ann Hum Genet 47: 253–259.

Nicholson G, Smith AV, Jonsson F, Gústafsson Ó, Stefansson K, Donnelly P.
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