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Abstract

Genome-wide analyses and high-throughput screening was long reserved for biomedical applications and genetic

model organisms. With the rapid development of massively parallel sequencing nanotechnology (or next-generation

sequencing) and simultaneous maturation of bioinformatic tools, this situation has dramatically changed. Genome-

wide thinking is forging its way into disciplines like evolutionary biology or molecular ecology that were histori-

cally confined to small-scale genetic approaches. Accessibility to genome-scale information is transforming these

fields, as it allows us to answer long-standing questions like the genetic basis of local adaptation and speciation or

the evolution of gene expression profiles that until recently were out of reach. Many in the eco-evolutionary sciences

will be working with large-scale genomic data sets, and a basic understanding of the concepts and underlying meth-

ods is necessary to judge the work of others. Here, I briefly introduce next-generation sequencing and then focus on

transcriptome shotgun sequencing (RNA-seq). This article gives a broad overview and provides practical guidance

for the many steps involved in a typical RNA-seq work flow from sampling, to RNA extraction, library preparation

and data analysis. I focus on principles, present useful tools where appropriate and point out where caution is

needed or progress to be expected. This tutorial is mostly targeted at beginners, but also contains potentially useful

reflections for the more experienced.
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Introduction

Only a decade ago, the study of gene expression was

reserved to the realm of human medical genetics or

genetic model systems like the mouse, fruit fly and

nematodes. For these systems, microarrays and serial

analyses of gene expression were the only tools available

for examining features of the transcriptome and global

patterns of gene expression. For eco-evolutionary model

species, this important layer of biological information

between genotype and phenotype was simply not acces-

sible. Gene expression studies were restricted to small-

scale quantitative PCR analyses of candidate genes or

relied on cross-species hybridization on microarrays

(Naurin et al. 2008). With the rapid development of

massively parallel sequencing (or next-generation

sequencing) (Margulies et al. 2005) and the maturation of

analytical tools during the last few years, the situation

has changed dramatically. Whole-genome or whole-

transcriptome analyses have become a realistic option

for genetic nonmodel organisms, even for individual

laboratories (Ellegren et al. 2012; Lamichhaney et al.

2012), and will soon be standard practice in molecular

ecological studies.

This article is not meant to be an exhaustive review of

the latest developments in sequencing technology,

specific downstream analyses or available software pack-

ages, nor a comprehensive summary of past applications

in the ecological sciences. Up-to-date reviews exist for

most of these aspects (Quick links in Box 1). Rather, I

intend to give a broad overview and provide practical

guidance for the many steps involved during a typical

RNA-seq work flow (Fig. 1).

RNA-seq: applications

Before going into technical detail, I will briefly highlight

the potential of RNA-seq within the ecological and

evolutionary sciences. One of the most basic and still

common applications of the method is the mere

characterization of a species’ transcriptome. While this is

descriptive and generates little biological insight, it is

often an important first step and constitutes a valuable
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resource for further analyses. An advantage over other

next-generation approaches that reduce the genome to a

more manageable size like restriction-site-associated

DNA tags (RAD: Baird et al. 2008), multiplexed-shotgun

genotyping (MSG: Andolfatto et al. 2011) or genotyping-

by-sequencing (GBS: Elshire et al. 2011) is that RNA-seq

data are directly derived from functional genomic

elements, mostly protein-coding genes. Transcriptome

sequence thus constitutes a meaningful resource to

develop a large number of popular molecular markers

such as single-nucleotide polymorphisms and microsat-

ellites. In situations where full sequencing cannot be

afforded, but the application requires the use of many

markers (e.g. genome scans), the transcriptome provides

a useful functionally relevant subset of the genome. For

example, Lamichhaney et al. (2012) recently suggested a

cost-efficient method to infer population allele

frequencies by mapping genome-wide sequencing data

of pooled individuals onto a de novo assembled transcrip-

tome backbone.

Sequence-based polymorphisms is not the only

biologically relevant layer of segregating variation.

Box 1 Quick links to useful entry points to the field

Overview on high-throughput sequencing and RNA-seq

1 Principles of high throughput sequencing technology: (Metzker 2010)

2 Principles of RNA-seq: (Wang et al. 2009; Oshlack et al. 2010; Ozsolak & Milos 2011)

3 Principles of transcriptome assembly (Martin & Wang 2011) with particular reference to plants (Jain 2012)

Applications in ecology and evolutionary biology

1 General next-generation sequencing applications including RNA-seq: (Ekblom & Galindo 2011)

2 Special issues on next-generation sequencing including RNA-seq: (Stapley et al. 2010; Tautz et al. 2010; Orsini et al. 2013)

Practical guidance and examples for useful tools

1 Review on computational methods and tools: (Pepke et al. 2009; Magi et al. 2010; Bao et al. 2011; Garber et al. 2011; Lee

et al. 2012)

2 Guidance in the design and analysis of RNA-seq experiments: (De Wit et al. 2012; Vijay et al. 2013)

3 Statistical consideration for RNA-seq data: (Bullard et al. 2010; Kvam et al. 2012)

4 Preprocessing and quality control tools: NGSQCtoolkit (Patel & Jain 2012), fastQCtoolkit (http://www.bioinformatics.

babraham.ac.uk/projects/fastqc/),

5 Mapping tools: (Trapnell & Salzberg 2009; Bao et al. 2011)

6 Gene name assignment: e.g. BLAST2GO, SATSUMA, SPINES (for details and references see Vijay et al. 2013)

7 Data visualization tools: e.g. MapView (Bao et al. 2009), IGV (Thorvaldsd�ottir et al. 2013), Tablet (Milne et al. 2010)

8 Utility suites saving own effort: BEDtools (Quinlan & Hall 2010), SAMtools (Li et al. 2009)

9 Variant calling and genotyping: review (Nielsen et al. 2011), GATK (DePristo et al. 2011), freebayes (http://bioinfor-

matics.bc.edu/marthlab/FreeBayes);

10 Gene function: Gene ontology (Gene Ontology Consortium 2004), gene ontology tools http://neurolex.org/wiki/Cat-

egory:Resource:Gene_Ontology_Tools

11 Gene interaction pathways: e.g. KeGG pathway (Ogata et al. 1999; http://www.genome.jp/kegg/pathway.html),

STRING database (Szklarczyk et al. 2011; http://string-db.org/) (http://string-db.org/)

12 Galaxy: a useful online platform to analyse RNA-seq data: (Goecks et al. 2010)

13 The Bioconductor package: (Gentleman et al. 2004) www.bioconductor.org

14 Differential expression software: e.g. DESeq (Anders & Huber 2010), edgeR (Robinson et al. 2010), baySeq (Hardcastle

& Kelly 2010), NOIseq (Tarazona et al. 2011)

15 Alternative splicing software: e.g. Cufflinks (Trapnell et al. 2012), DEXSeq (Anders et al. 2012), EBSeq (Leng N et al.

2013), MISO (Katz et al. 2010)

Where to find help?

When help is needed one can often build on the experience of an online community. Current examples of active fora

are: www.seqanswers.org; http://www.molecularecologist.com/next-gen-fieldguide-2013/; http://www.rna-seqb-

log.com/; http://www.biostars.org/. Stanford’s SimpleFool’s Guide to RNAseq specifically targets an organismal

biologist audience (http://sfg.stanford.edu/).

© 2013 John Wiley & Sons Ltd

560 PRIMER



The great advantage of RNA-seq data over other next-

generation-sequencing applications is that it allows users

to investigate differences in gene expression patterns

between populations, for example in the context of speci-

ation (Wolf et al. 2010) or eco-type-specific adaptation

(Lenz et al. 2013). Gene regulatory variation need not be

confined to gene expression levels. Pending further

methodological development, we will see more studies

quantifying segregation between transcript isoforms and

quantification of their relative expression levels (Harr &

Turner 2010). Simultaneous information on sequence

variation at individuals’ genomes and transcriptomes

allows inferring patterns of allele-specific expression that

can be relevant to environmental response and adapta-

tion (Guo et al. 2004; Tirosh et al. 2009) and has yet to be

examined in the wild. With the increasing ease of large-

scale sequencing, the field of molecular ecology will

expand its boundaries and merge with other disciplines

such as phylogenetics, comparative genomics or systems

biology, to their mutual benefit.

RNA-seq: the principle

RNA-seq, also called whole-transcriptome shotgun

sequencing, refers to the use of high-throughput

sequencing technologies (see below) for characterizing

the RNA content and composition of a given sample.

Due to technological limitations at present, sequence

information from transcripts cannot be retrieved as a

whole, but is randomly decomposed into short reads of

up to several hundred base pairs (Fig. 2). In the absence

of genome or transcriptome information, transcripts first

need to be reconstructed from these reads (or read pairs),

which is referred to as de novo assembly. In the case

where transcript or genome information is readily

available, reads can be directly aligned onto the refer-

ence. Further, counting the reads that fall onto a given

transcript provides a digital measurement of transcript

abundance, which serves as the starting point for biologi-

cal inference (Fig. 1).

RNA-seq and microarrays

Until the advent of RNA-seq, microarrays were the stan-

dard tool for gene expression quantification. It is thus not

surprising that the first RNA-seq studies in nonmodel

organisms used transcriptome information obtained by

sequencing from a single individual or a pool of individu-

als to construct microarrays for quantifying individual

gene expression (Vera et al. 2008). Decreasing costs,

increasing yields and improving bioinformatic data pro-

cessing now make it possible to obtain both sequence

information and a measure of gene expression for several

individuals directly by sequencing (Wolf et al. 2010).

Although both RNA-seq and microarrays are generally in

good agreement when it comes to relative gene expression

quantification (Nookaew et al. 2012), RNA-seq has clear

advantages and will soon be the standard even for large

Fig. 1 Flow chart of a typical RNA-seq

experiment.
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experiments. Compared with microarrays, RNA-seq at

sufficient coverage captures a wider range of expression

values. As a digital measure (count data), it scales linearly

even at extreme values, whereas microarrays show satu-

ration of analog-type fluorescent signals (Marioni et al.

2008). RNA-seq further provides information on RNA

splice events; these are not readily detected by standard

microarrays (Mortazavi et al. 2008). While still in its

infancy in genetic nonmodel organisms, the segregation

of alternative isoforms between populations or incipient

species is an exciting area to explore with RNA-seq data.

Another disadvantage of microarrays is its propensity for

cross-hybridization to introduce biases in gene expression

measurements. A comparable problem also exists for

RNA-seq when reads align ambiguously, and I will dis-

cuss this inmore detail in the next section.

While RNA-seq will most likely take the lead role in

transcriptome analysis in the near future, one should not

forget that RNA-seq data collection and statistical

analysis are still under development. Before starting an

RNA-seq experiment, one should thus bear in mind that

RNA-seq data collection and analysis is more involved,

and does not benefit from the decades of experience

available for microarray analysis. Thus, microarrays

should not be dismissed by default, and it is worth con-

sidering which application is best suited for addressing

the question at hand before engaging in a large RNA-seq

experiment.

RNA-seq: limitations

Before going through the individual steps of an RNA-seq

experiment as outlined in Fig. 1, I would like to raise

awareness of what can and cannot be accomplished in a

typical RNA-seq experiment. A general consideration

relates to the biological reality that will be captured.

Implicitly, the quantity of interest is often not the inter-

mediate mRNA, but the final protein products of the

functional cell machinery. Methods are available for

direct protein abundance estimation (Leskinen et al.

2012), and mRNA levels are mostly used as a proxy.

However, when measuring steady-state mRNA levels,

we are largely ignorant of mRNA stability or turnover

rates; these rates eventually determine protein abun-

dance. It is thus important to keep in mind that a gene’s

expression level alone can be a poor predictor of protein

abundance (Vogel et al. 2010). Second, gene expression is

highly tissue specific (Brawand et al. 2011), and even

within tissues, we may only be interested in expression

patterns of single-cell types generating a phenotype of

Fig. 2 Measuring gene expression using RNA-seq. (A) Processed mRNA transcripts can be inferred de novo without an existing genome

by assembling short reads (grey bars) into contigs (long grey bars). In the best case, the longest contig represents one full-length tran-

script. Alternatively spliced isoforms (as shown in B) are difficult to infer and are either represented by the most common variant,

merged or partially distributed into different contigs. (B) When a (distant) reference genome exists, reads can be directly mapped. Reads

(or read pairs) that fall on splice junctions (dotted lines) are informative about alternatively splicing and allow the reconstruction of

transcript isoforms. C) Basic expression measure. For both de novo and (spliced) mapping assemblies, gene expression levels can be

inferred as read counts that are generally normalized by initial sequencing depth and transcript length. For further normalization

options, see text. Black bars characterize coding sequence (CDS), and white bars indicate untranslated regions.
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interest (e.g. melanocytes within hair follicles that are

measured from expression in skin). Thus, caution is

needed in the interpretation of gene expression patterns,

as they often reflect expression of a heterogeneous mix of

cell populations even in cases where tissues have been

carefully selected. Third, mRNA is transcribed only from

one template DNA strand. While protocols for strand-

specific RNA-sequencing exist (Levin et al. 2010),

standard RNA-seq experiments, at present, do not

incorporate strand specificity. As a consequence, tran-

scripts from overlapping genes encoded on different

strands are indistinguishable and will be incorrectly

lumped in the analysis. In particular, for the annotation

of novel genome assemblies, strand-specific protocols

should be considered, as they greatly improve gene

annotation.

The experimental set-up

Purpose of the study

A natural starting point of every experiment is to define

its specific goals and assess its feasibility with respect to

the budget and available methodology. For an RNA-seq

experiment, questions like the following should be con-

sidered as early as possible in the planning process, as

they will have direct consequences on the experimental

design and the analysis pipeline: Which aspects of the

transcriptome am I most interested in, protein-coding

mRNA or regulatory noncoding RNA? Are there other

sequencing resources publicly available? Do I care about

alternative splicing or is it enough to characterize broad

scale expression patterns? Which sequence coverage will

I need, and accordingly what sequencing technology

suits my purpose best? Do I want to characterize the

transcriptome (or compare expression) between treat-

ment groups or populations? What is the statistical

power for my sample to detect differential expression

between genes with an x-fold expression difference at a

given expression level?

Statistical design

Biological replication and statistical model selection is

necessary to make inferences with some generality (Auer

& Doerge 2010). While this is obvious and common prac-

tice in most fields of biological research, it is still worth

mentioning here, as the statistical treatment of RNA-seq

data has only recently shifted from single sample analy-

ses to incorporate biological replication and allow for

more complex statistical designs such as generalized

linear regressions models (Hardcastle & Kelly 2010;

Robinson et al. 2010). When designing the experimental

set-up (e.g. blocked designs, interactions, Bayesian

approaches), one should consider what the analysis tools

can currently handle and find a compromise between

experimental complexity and feasibility.

Common garden environment

Gene expression is notoriously plastic and highly sensi-

tive to environmental conditions. While uncontrolled

experiments from wild specimens can provide a valuable

first step in hypothesis building (Wolf et al. 2010), firm

conclusions on the underlying evolutionary dynamics of

expression divergence can only be drawn under con-

trolled experimental conditions.

The right choice of tissue, timing and study organism

Both transcript abundance and isoform identity are sub-

stantially different across tissues and change dramati-

cally not only during embryological development, but

throughout an individual’s life (e.g. with reproductive

status) and even the course of a day (circadian rhythms).

It is therefore essential to consider in which tissue and at

which physiological stage one is most likely to observe a

difference relevant to the question at hand (e.g.

ecological signal in juvenile, but not adult individuals:

Nolte et al. 2009). For comparisons between groups, it is

crucial to keep the variance within groups as low as

possible while making sure that between-group differ-

ences do not arise from systematic differences in the

sampling regime (e.g. different time of day, different

physiological status) that will obscure the differences of

interest (e.g. effect of population divergence on gene

expression).

It strongly depends on one’s organism what tissues

can be selected. For small organisms like insects, single

individuals may not yield sufficient RNA material for

analysis and several individuals may have to be pooled.

In these situations, building tissue-specific transcripto-

mes may be out of question. Likewise, when working

with large animals, blood or skin are often the only acces-

sible tissues. One should definitely premeditate which

tissues, at which developmental time point and under

which environmental condition need to be sampled

before engaging in an RNA-seq experiment. Considering

possible physiological pathways of the phenotype of

interest can be a good starting point. To give an example,

when targeting a coloration phenotype, one may first

want to sample adult skin tissue to monitor genes

involved in pigment production. Embryological stages

where pigment cell precursors mature and migrate out of

the neural crest may be likewise informative. Further,

brain tissue from the hypothalamus associated with hor-

monal control of pigmentation may contribute to the

understanding of trait evolution (Ducrest et al. 2008).
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Work in the wet laboratory

Laboratory work will be increasingly outsourced to com-

panies and genome centres; thus, most researchers do

not need to worry about the specifics of laboratory proto-

cols. Still, sample preparation, RNA extraction and

library preparation are important steps for a successful

RNA-seq experiment and predefine which information

will be retrieved from the transcriptome. Everyone work-

ing with RNA-seq data should thus be familiar with the

most common steps and their impact on the resulting

data.

Sample collection

Immediate shock-freezing tissue in liquid nitrogen is

arguably still the most reliable method to prevent frag-

mentation and eventual loss of RNA due to RNase activ-

ity. Where field situations preclude its use, commercially

available buffers (e.g. RNAlater, Trizol) or more

economic home-made solutions (De Wit et al. 2012)

generally do a good job of protecting RNA at room

temperature for some time.

Contamination

In contrast to microarrays, every RNA molecule stands a

chance to appear in the final data. Special precaution

should thus be taken to avoid any form of contamination

(RNase-free pre-PCR area, separate ventilation system).

To exclude contamination with abundant mitochondrial

DNA (e.g. in muscle tissue) or DNA contamination from

microorganisms, treatment with high-quality DNase is

recommended.

RNA extraction and quality assessment

RNA extraction needs to be adjusted to the focal

RNA-species: small RNA molecules (<200 bp) will get

lost during standard mRNA extraction following typical

LiCl precipitation or commercially available kits.

Different extraction protocols will be needed for small

transcripts such as micro-RNAs. The assessment of RNA

integrity [e.g. by micro-capillary electrophoresis (Schroe-

der et al. 2006)] is a critical first step for obtaining

meaningful gene expression measurements and should

be reported in the final publication.

rRNA depletion or poly-A enrichment

Ribosomal RNA (rRNA) constitutes the predominant

fraction of the transcriptome. To avoid wasting sequenc-

ing effort on a few superabundant molecules, rRNA

needs to be removed prior to library preparation. Where

the sequence is known, rRNA can be directly subtracted

from the transcript pool. Alternatively, poly-adenylated

mRNA molecules can be enriched by capture on oligo-

dT-coated magnetic beads or membranes. As poly-ade-

nylation occurs at the 3′ UTR, the latter can introduce a

bias in sequencing coverage towards the 3′ end (see fig. 4

K€unstner et al. 2010).

cDNA synthesis

Most sequencing platforms typically require RNA to be

converted to cDNA prior to sequencing. The enzymatic

reaction of the reverse transcriptase can be primed either

by the hybridization of an oligo-dT primer onto the poly-

A tail of the mRNA template or by random hexamer

primers. The former can aggravate the 3′ UTR bias, while

the latter may introduce biases by sequence context. The

jury is still out on which is preferable, and it is some-

times recommended to use a combination.

Library preparation

Library preparation for sequencing is platform specific

and cannot be discussed within the scope of this manu-

script. Yet, some general issues deserve attention.

Single end vs. paired end—During library preparation,

cDNA is fragmented into smaller pieces, which then

serve as the template for sequencing. When a single-end

strategy is chosen, the fragments are partially sequenced

from one end, where paired-end sequencing of short

sequences is read from both ends. Paired-end sequencing

can be useful for initial transcriptome assembly and for

isoform detection, but one should be aware that the

insert size should not be too large (generally <300 bp), as

otherwise the small size fraction of transcripts will be

lost. On the other hand, too short insert sizes can result

in adapter contamination, which requires trimming or

read removal and complicates the analysis.

Polymerase chain reaction—Currently, most sequencing

platforms require appreciable amounts of starting mate-

rial, which is usually achieved by PCR-based transcrip-

tome amplification during the cDNA synthesis step (but

see Raz et al. 2011). The efficiency of the PCR naturally

depends on template length and sequence content,

which will result in a biased, nonlinear relationship

between the initial concentration of a gene before and

after the PCR. It is advisable to use as few amplification

cycles as possible and check the final data for obvious

PCR distortions. If present, PCR duplicates need to be

dealt with. For genome sequencing at moderate sequenc-

ing depth, the likelihood of duplicated reads, that is, two

reads being randomly drawn from exactly the same
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genomic location, is very low. The general recommenda-

tion would be to simply purge duplicated reads. For

RNA-seq, where the number of reads determines the

actual gene expression estimate, duplications are more

likely to occur by chance in highly expressed genes, and

the removal of duplicated reads would downward bias

the expression estimate. Mathematical prediction of the

expected number of duplicated reads is necessary to

adjust to PCR artefacts, but is complicated by the non-

random distribution of reads (due to, for example, 3′

UTR bias, edge effects, GC bias). This makes it less

straightforward to make a decision as to the proportion

of identical reads that shall be purged for a given expres-

sion level. Usage of paired-end reads helps to some

degree in this regard. Identical read pairs are more likely

to indicate PCR artefacts, as they have a much reduced

probability of random duplication due to insert size vari-

ation between read pairs. The best way forward, though,

may be the use of standardized spike-in controls that

naturally integrate many of the PCR-sensitive parame-

ters (Jiang et al. 2011).

Library normalization—For initial transcriptome character-

ization, it has been suggested one can homogenize gene

expression levels across genes by library normalization.

Sequencing effort will then be distributed more evenly

across transcripts and in theory should result in a more

complete description of the transcriptome. However,

library normalization is a costly and sensitive process

that does not necessarily yield a broader representation

of the transcriptome (K€unstner et al. 2010; Vijay et al.

2013) and cannot be directly used for gene expression

quantification. Given the high throughput of current

sequencing platforms, I generally advise against normal-

izing libraries.

Sequencing strategy

Sequencing platform

At present, the most commonly used sequencing plat-

forms are the pyrosequencing-based 454 system by

Roche, the sequencing-by-synthesis-based GA/HiSeq/

MiSeq machines from Illumina and the sequencing-

by-ligation SOLiD system (Mardis 2008). Others are

under development or emerging in the market, such

as the semiconductor chip-based IonTorrent system,

Helicos’ solid-phase-based Genetic Analysis Platform

and the single-molecule real-time sequencing-based

approach from Pacific Biosciences or Oxford Nanopore

(Eid et al. 2009; Raz et al. 2011; Merriman & Rothberg

2012). As any review will lag behind the fast develop-

ment in this area, information can be best retrieved on

the manufacturers’ homepages and through online

forums (Box 1). To choose an adequate technology, the

important parameters to consider are price per base

pair, error rate and error profiles, total output and

read length. Where there is a trade-off between read

length and total output, the latter seems more

important for RNA-seq. While longer reads help in de

novo transcriptome assembly, paired-end reads

perform similarly well. What counts in the end is the

number of correctly aligned reads per gene, which

determines the accuracy of gene expression measure-

ment and inferential power.

Error profiles

Each technology has its own errors. Attempts are being

made to provide standardized error probabilities for

each base in the unit of phred quality cores that were orig-

inally developed for Sanger sequencing (Ewing & Green

1998). Still, error profiles differ between technology and

need to be considered when interpreting data. For exam-

ple, incorrect homopolymer runs, which are common

artefacts for the 454 and Ion Torrent technologies, will be

more prone to mis-alignment and can thereby influence

regional read coverage. Illumina sequencing is sensitive

to the GC content of the template, which can affect infer-

ences of gene expression patterns (Wolf & Bryk 2011).

Sequence coverage

What amount of sequence coverage should be targeted

in an RNA-seq experiment? Naturally, this depends on

the question that shall be addressed. If the entire tran-

scriptome shall be characterized with all lowly expressed

genes and most alternatively spliced isoforms, sequenc-

ing effort needs to be considerably higher than if a broad

inventory of expressed genes is the primary goal. Fortu-

nately, technology has already developed to a point

where hundreds of millions of reads are generated per

run at moderate costs and barcoding of multiple samples

allows adjusting individual coverage. As a rule of

thumb, 100 million reads (>100 bp) should provide a

decent basis for transcriptome characterization and cap-

ture most of the genes present in an RNA sample (Wang

et al. 2011; Vijay et al. 2013). A fraction of this (~10 mil-

lion reads) will be sufficient to accurately quantify gene

expression for individual samples across a broad range

of expression levels (Vijay et al. 2013). Ultimately, the

required coverage depends on the application and

expected effect sizes, and the numbers given above can

only been seen as rough guidelines. Simulation is a

useful tool to assess the coverage necessary for transcrip-

tome inventory or differential expression analysis (Vijay

et al. 2013), and it may even be warranted to run a subset

of the samples to get a feeling for the organism and
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genes in question. As the output of the sequencing

machines increases and prices drop, the problem of trad-

ing-off financial resources vs. analytical power will

largely disappear.

Bioinformatic processing

A single run of any sequencing platform generates an

appreciable amount of sequencing data, quickly reaching

hundreds of gigabytes. Before engaging into RNA-seq,

one should thus make sure that the necessary comput-

ing, data storage resources and basic bioinformatic

expertise are in place. In this section, I will touch upon

the routines for processing the raw read data. Most are

relevant not only for RNA-seq, but for other high-

throughput sequencing applications and have been

reviewed in more detail elsewhere (Garber et al. 2011;

De Wit et al. 2012; Lee et al. 2012). Finally, I will shortly

introduce the statistical methods used to treat this type

of gene expression data.

Computing resources

De novo transcriptome assembly consumes more

resources than genome-guided approaches. To facilitate

the assembly in a reasonable time frame, a computer

should contain at least 8 cores and 256 GB of RAM, with

a fast storage system in the former case and an 8-core

machine with 32 GB of RAM in the latter. Downstream

analyses like inference of differential expression can be

performed on a desktop computer. For a moderately

sized RNA-seq experiment, at least one terabyte of stor-

age space should be set aside. Where sufficient resources

are not in place, commercially available cloud computing

services may be an attractive alternative (Schatz et al.

2010).

Programming skills

Although easy-to-use online tools like the Galaxy

platform (Goecks et al. 2010) are publicly available,

basic knowledge in UNIX shell programming and Perl/

Python scripting for data modification come as a great

advantage. Moreover, some familiarity with the R

programming environment is useful, as softwares for

many of the downstream analyses are collected in the

Bioconductor suite of R packages (www.bioconductor.

org).

File formats

Apart from programming, it is advisable to get familiar

with a number of cross-platform file formats including

.fasta, .fastq, .sam, .bam, .vcf, .gtf or .gff files.

Quality control

Raw data come with errors and should be preprocessed

before being fed into downstream analyses like mapping

or assembly. Basic tasks such as adapter removal, dupli-

cate quantification and summary statistics on quality

score can be performed by standard tools like the fastQC

toolkit (Box 1). The large amount of data precludes com-

prehensive visual inspection, but spot tests are still

important to get a feeling about important aspects of the

data like assembly quality, coverage distribution, GC

biases and coverage edge effects. Several visualization

tools are available for this purpose and some are listed in

Box 1. Otherwise, quality control is not yet formally

established for RNA-seq data, and it is largely unclear

how raw data trimming and quality filtering affect the

end results (see also PCR). Importantly, one should

always make sure to use a blocked statistical design in

setting up the sequencing reaction, as error profiles can

differ considerably across sequencing runs and across

subsections (e.g. lanes for Illumina) within one sequenc-

ing run. If all libraries from one treatment were run on

one lane, and all libraries from the other treatment group

on another lane, there is no way of knowing whether dif-

ferences in expression were due to treatment effect or

simply reflect differences in sequencing quality.

Transcriptome characterization

RNA-seq data can be used for the identification of tran-

scripts either by mapping reads to an existing genome or

by assembling them de novo. As the production of a high-

quality genome is still an expensive and laborious

endeavour, the choice is typically between de novo assem-

bly and mapping reads to an existing genome assembly

of a distantly related species. Both have their merit. In a

simulation study, Vijay et al. (2013) showed that ‘map-

ping assemblies’ to genomes as distantly related at 15%

sequence divergence compared favourably with de novo

assemblies. Alternatively spliced isoforms, in particular,

seem to be better inferred by mapping than by de novo

tools. Mapping assemblies can, however, only retrieve

what has been annotated in the distant reference gen-

ome, and all artefacts of the reference will be carried

along.

Variant calling

One main application of RNA-seq is the development of

molecular markers within the putatively functional geno-

mic elements of transcribed DNA. Many tools like the

highly flexible GATK pipeline (DePristo et al. 2011) are

available for variant calling (reviewed in (Nielsen et al.

2011). Different tools, however, will call only partially
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overlapping sets of variants, as they take different

statistical approaches and differ in which aspects of the

data are used (e.g. base pair quality, population allele

frequency, substitution rates). As a general strategy, it is

advisable to use the intersect from several programs.

Moreover, note that variant sites discovered on the

basis of small population samples will show clear ascer-

tainment bias to high frequency variants, which signifi-

cantly biases downstream population genetic analyses

(Albrechtsen et al. 2010). A specific issue for transcrip-

tome data is allele-specific expression, which makes it

difficult (or even impossible) to confidently judge diploid

genotypes.

Gene expression quantification

The same consideration – de novo vs. using a distant ref-

erence – applies to the quantification of transcripts. Read

counts can likewise be based on the number of reads

mapping to a transcript reference that has been assem-

bled de novo (Fig. 2A) or to a distant genomic reference

(Fig. 2B). Simulations again suggest that the mapping

strategy better represents the initial transcript concentra-

tion and outperforms de novo-based inference in differen-

tial expression analyses (Vijay et al. 2013).

Mapping strategy

Aligning millions of short query sequences with sequenc-

ing errors onto a genome or transcriptome reference

(Fig. 2) is a complicated problem (Trapnell & Salzberg

2009), and accurate read quantification crucially depends

on choosing the right strategy. Several decisions need to

be taken. First, an appropriate mapping tool must be cho-

sen. Working with nonmodel species will often require

that reads be aligned to distant references for which not

all existing mapping tools are suitable. For example, the

hybrid mapping strategy of stampy (Lunter & Goodson

2011) seems to well equipped for handling distances of

sequence divergences up above 15% (Vijay et al. 2013).

Naturally, when mapping to divergent references, the

default options for the number of accepted mismatches

per read need to be adjusted accordingly.

A second, general challenge with short read align-

ment is how to deal with ambiguity in read mapping

(Treangen & Salzberg 2012). As the similarity between

regions of the reference increases (e.g. by copy number

variation, multigene families, repetitive domains), the

confidence in placing a read at a given location will

decrease. There are four basic options for dealing with

this issue. First, ambiguously mapped reads are

discarded and only uniquely mapped reads are kept.

Second, all matches – maybe within a general quality

cut-off – are retained, potentially increasing the amount

of mapped reads beyond the number of raw reads.

Third, the scoring function of the alignment algorithm

evaluates the best possible alignment and, in the case of

ties, distributes reads randomly across equally good loci.

Fourth, mapping algorithms implemented in software

packages like RSEM (Li & Dewey 2011) or TopHat (Trap-

nell et al. 2009) divide ambiguous reads in relative pro-

portion according to probabilistic inference. Simulations

suggest that the latter strategy best reflects underlying

transcript abundance and produces the least bias in

inferring (differential) gene expression (Vijay et al. 2013).

A last consideration relates to the special situation

when mapping transcriptome data to a genomic refer-

ence, which requires the use of mapping algorithms that

can handle spliced-read alignment (Fig. 2). Several pack-

ages such as ERANGE (Mortazavi et al. 2008) are avail-

able for this purpose and are instrumental for inference

of alternative splicing (see below, Box 1). The TopHat

spliced-read mapper is particularly attractive, as it does

not rely on a fully annotated genome and merely

requires a raw genome sequence as a backbone (Trapnell

et al. 2009).

Gene name assignment

Gene name assignment is a vital step for drawing biolog-

ically meaningful conclusions from RNA-seq experi-

ments and for comparing results among different studies

(see gene function and interaction below). In mapping

approaches to annotated reference genomes, gene names

come for free, but in the case of de novo assemblies, con-

tigs provide no information about the sequenced gene,

and their assignment to orthologous genes from

(distantly) related genomes is not always straightfor-

ward. Suffix-tree-based methods such as NUCmer and

PROmer seem to work well for closely related species,

whereas BLAST-based orthology detection seems to be a

better alternative for more distantly related species (Vijay

et al. 2013). In the latter case, conservative filtering and

reciprocal-assignment should be applied to guard

against false positives such as paralogues with high

sequence similarity.

Statistical treatment of RNA-seq data

After mapping, per transcript read counts can be used

as a relative measure of transcript abundance. In a

perfect world, transcript abundance of steady-state

mRNA should be directly proportional to the number

of reads: a transcript from gene A with twice the

cellular concentration of transcript B should have

twice as many reads. This relationship should hold

across a large range of expression levels spanning

several orders of magnitude.
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Normalization

Normalization is a crucial component for RNA-seq data.

When comparing transcripts of different length, it is

intuitive to control for length, as a longer transcript will

be covered with more reads than an equally expressed

shorter transcript (Fig. 2). In genetic nonmodel organ-

isms, however, we are often ignorant about target tran-

script size, particularly for lowly expressed transcripts of

which only fragments are assembled. In such a situation,

transcript length of a related species can be used as a rea-

sonable proxy (Wolf et al. 2010). Transcript length is less

of a problem for comparisons of the same transcript

across treatments (differential expression) and is thus

often not incorporated in statistical methods used for

inferring differential expression.

When comparing gene expression profiles between

two samples, another important aspect of normalization

is to control for differences in sequencing effort and qual-

ity between two samples. Consider an RNA sample of

individual A that has been sequenced to twice the depth

of coverage as individual B. All genes from individual A

will appear to be expressed at a higher level, even if they

have the same relative concentration in the cell. A simple

way to handle this is to divide read counts by the total

number of mappable reads (or quantiles of mappable

reads) (Bullard et al. 2010). Such basic normalization con-

trolling for transcript length and sequencing effort is cap-

tured by the commonly used RPKM or FPKM measures

(reads or fragments per kilobase exon per million reads,

Fig. 2), but more refined normalization may be necessary

for firm inference. Standardized spike-in RNA controls

of known concentration, defined length and GC content

may be best suited to assure comparability across tran-

scripts, samples, protocols and platforms (Jiang et al.

2011).

An important aspect, which has only recently received

attention, is carry-over effects of gene expression from a

few genes to others. Imagine samples from two individu-

als, each containing 10 mRNA transcripts of equal length

(no length normalization necessary). The total sequencing

effort is the same in both samples, say 1000 reads (no nor-

malization for sequencing effort needed). In sample 1, all

genes are expressed at equal rates, so that 100 reads are

expected per transcript. In sample 2, genes 1 through 9 are

also expressed at equal rates and have exactly the same

concentration in the cell as in sample 1. The concentration

of gene 10, however, is 9 times higher than in sample 1. As

sequencing effort (total number of reads) is distributed

across all transcripts in a sample, genes 1 through 9 will

only receive 55.5 reads each, while gene 10 receives 500

reads. Now, when comparing sample 1 to sample 2, all

genes will appear to be differentially expressed, although

genes 1 through 9 had exactly the same concentration in

the cell in both samples. The expression difference in gene

10 influenced all other genes. Normalization methods,

such as trimmed mean normalization (e.g. edgeR, Robin-

son & Oshlack 2010), have been suggested to address this

carry-over effect. Another way that has received surpris-

ingly little attention is the use of invariant internal control

(housekeeping) genes for normalization (Brawand et al.

2011), as has long been the standard for quantitative PCR

analyses.

Differential gene expression

Apart from normalization, it is important to find a statis-

tical distribution approximating the nature of the data.

The statistical properties of count data are generally well

described by a Poisson process. However, many aspects

of RNA-seq such as library preparation and mapping

errors inflate the variance of read counts beyond that

expected for a Poisson distribution (overdispersion). It

has thus become common practice to model RNA-seq

read count data as an overdispersed Poisson process or

by a negative binomial distribution, which is routinely

used to accommodate an overdispersed Poisson process

(Kvam et al. 2012). With a statistical distribution at hand

that captures the essential information of the data, para-

metric statistical inference is possible. This opens the

door to differential expression analyses, that is, to for-

mally compare expression levels between transcripts and

samples across treatment groups. Several software

packages performing this task at different levels of

sophistication are currently available (e.g. DESeq, edgeR,

baySeq, NOIseq, see Box 1). Statistical method

development (e.g. how to best estimate overdispersion)

is an active area of research and novel or refined

methods are to be expected.

Alternative splicing

So far, I have conceptually simplified read quantification

to one transcript per gene irrespective of transcript iso-

form. While this is reminiscent of traditional microarray

profiling, it disregards the biological reality of alternative

splicing (Fig. 2). One of the great powers of RNA-seq is

uncovering this reality. Two basic approaches can be

taken. First, one can try to reconstruct the most likely set

of transcript isoforms de novo (transcriptome inventory).

Without any prior annotation information of the gene,

this is a difficult problem, and only few software

developers have taken on the challenge of de novo

isoform characterization (Grabherr et al. 2011). De novo

approaches are error prone, and whenever an annotated,

even distantly related, genome is available, one should

make use of it (Vijay et al. 2013). When having a genome

reference, it is easier (but still difficult) to infer full-length
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transcript isoforms from spliced-reads and coverage dif-

ferences between unique and shared parts of the iso-

forms. This is exploited by approaches such as MMSEQ

(Turro et al. 2011), Solas (Richard et al. 2010) and Cuff-

links (Trapnell et al. 2012), which at the same time can

conduct isoform-specific differential expression analyses.

Where a satisfactory transcript inventory has already

been made, alternative approaches are possible that

avoid isoform reconstruction altogether and directly look

at expression differences between exons (Anders et al.

2012).

Gene function and interaction

A successful RNA-seq experiment will yield a set of

candidate genes that differ between treatments or popu-

lations. The list itself is of limited interest and external

information in necessary to infer their biological func-

tion. Are these genes over-represented in a metabolic

pathway of interest? What potential role do they play in

the organisms that could be relevant to adaptation? Sev-

eral external sources of information and analytical pro-

cedures exist to address these and related questions

(Box 1). The gene ontology database is arguably the

most prominent initiative for comparing gene functions

across species using a controlled vocabulary (Ashburner

et al. 2000; Gene Ontology Consortium 2004). However,

it is important to keep in mind that detailed gene func-

tion is mostly based on inbred-strains of model organ-

isms and may have little to do with the function of the

orthologue in the study organism. One should also be

aware that gene ontology analyses invite to a posteriori

story telling. In many cases, it may be more rewarding

to map the genes of interest directly to candidate meta-

bolic pathways (e.g. KeGG Ogata et al. 1999) or protein

interaction networks (Szklarczyk et al. 2011; Leskinen

et al. 2012).

Future applications and outlook

Next-generation sequencing has democratized the field

of transcriptome analysis and brought it into the wild.

We will soon see a plenitude of studies from (formerly)

genetic nonmodel organisms attacking ecological and

evolutionary questions with the tools outlined above.

Whole-genome assembly and functional genome anno-

tation with RNA have become a realistic goal (Ellegren

et al. 2012), and a number of scientific questions such as

dosage compensation that have been reserved to genetic

models can now benefit from the contribution of a much

extended sample of species (Wolf & Bryk 2011).

Heralded by the human ENCODE project (The

ENCODE Project Consortium 2012), it is conceivable that

we will soon be able to harvest epigenetic information,

characterize regulatory elements and address areas like

isoform- or allele-specific expression and post-transcrip-

tional processes, such as RNA editing in an evolutionary

and population genetics context (Skelly et al. 2011). To

achieve this goal, methodological integration across sub-

disciplines will be crucial. A list of differentially

expressed genes, for example, makes much more sense

when placed in a physiologically relevant context.

Emerging tools from systems biology going beyond

simple GO-terms like causal network modelling linking

gene expression analysis to gene interaction information

are sorely needed (Chindelevitch et al. 2012). Also,

indirect experimental validation methods like cell-

specific mRNA quantification (Larsson et al. 2010) or in

situ hybridization will be instrumental in getting a grip

on the functional aspects of evolution in wild organisms

where transgenic constructs are generally not possible

to test for the effect of single genes. Another challenge

lies in methodological developments, both at the stage

of sequence generation (single-molecule sequencing,

direct RNA-sequencing, no PCR amplification) and

downstream analyses. To date there are a vast number

of different tools at different steps of the RNA-seq

work flow that will influence the outcome of the

experiment. As the field matures, we can hope to see

methodological standardization, which will be highly

welcomed by practitioners in the ecological and evolu-

tionary sciences. What we definitely will see is exciting

biology.
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Glossary of the main terms

alignment: Similarity-based arrangement of DNA, RNA

or protein sequences. In this context, subject and query

sequence should be orthologous and should reflect

evolutionary, not functional or structural relationships.

assembly: Computational reconstruction of a longer

sequence (e.g. a transcript) from smaller sequence reads.

De novo assembly refers to the reconstruction without

making use of any reference sequence.

barcode: Short sequence identifier for individual

labelling (barcoding) of sequencing libraries.

cDNA: Complementary DNA synthesized from a

mRNA template.
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contig: Contiguous RNA or DNA consensus sequence

from a set of overlapping shorter segments (here reads).

coverage: Sequence coverage refers to the average num-

ber of reads per locus and differs from physical coverage, a

term often used in genome assembly referring to the

cumulative length of reads or read pairs expressed as a

multiple of genome size.

DNase: Type of enzyme that catalyses the hydro-

lytic cleavage of phosphodiester linkages in the DNA

backbone. A means of removing DNA from an RNA

sample.

edge effects: As transcripts are of finite length, read

coverage towards the end of a transcript will be lower

than in the middle. rRNA depletion, cDNA preparation

and GC sensitivity during sequencing can introduce

additional nonrandom coverage variation along the tran-

script.

exon: Building block of pre-mRNA that is retained

during splicing. An exon can include protein-coding

sequence and untranslated regions.

GC content: The proportion of guanine and cytosine

bases in a DNA/RNA sequence.

gene expression: The process by which information

from a gene is used in the synthesis of a functional gene

product.

gene expression level: Abundance of a gene product

in a given reference set of cells.

gene expression profile: Composition of transcripts

and their relative expression levels in a given reference

set of cells.

gene ontology: Structured, controlled vocabularies

and classifications of gene function across species and

research areas.

GO-term: Gene ontology term.

insert size: Length of randomly sheared fragments

(from the genome or transcriptome) sequenced from

both ends.

library: Collection of RNA or DNA fragments modi-

fied in a way that is appropriate for downstream analy-

ses such as high-throughput sequencing in this case.

mapping: A term routinely used to describe align-

ment of short sequence reads.

mRNA: Messenger RNA mediating information from

the DNA molecule to the ribosome where it serves as a

template for the amino acid sequence of a protein. A sub-

set of the transcriptome.

noncoding RNA: Functional RNA molecule that is

transcribed, but not translated into a protein sequence,

for example micro-RNA, small-interfering RNA.

normalization: Mathematical procedure to ensure

comparability of a measure across different conditions.

microarray: A muliplex array of oligonucleotides

used for high-throughput screening of transcript abun-

dance.

next-generation (or massively parallel) sequencing:

Nano-technological application used to determine the

base pair sequence of a DNA/RNA molecule at

much larger quantities than previous end-termination

(e.g. Sanger sequencing)-based sequencing techniques.

oligo-dT: A short sequence of consisting of deoxy-

thymine nucleotides.

read: Short base pair sequence inferred from the

DNA/RNA template by sequencing.

RNA-seq: High-throughput shotgun transcriptome

sequencing.Here,notusedsynonymoustoRNA-sequencing

which implies direct sequencing of RNA molecules

skipping the cDNAgeneration step.

RNase: Type of nuclease enzyme catalysing the deg-

radation of RNA into smaller components.

splicing. Modification of pre-mRNA in which introns

are removed and exons are retained. Alternative splic-

ing refers to the retention of different combinations of

exons.

transcript: An RNA molecule copied (transcribed)

from a DNA template.

transcript isoform: Transcript with a unique combi-

nation of exons.

transcriptome: Set of all RNA molecules transcribed

from a DNA template.

variant calling: Computational identification of locus-

specific sequence polymorphism.
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