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Part I

Testability and correction for multiple hypothesis testing

By Damian Roqueiro



Significant pattern mining

Definition F. Llinares-López et al. KDD 2015

The goal of significant pattern mining is to identify sets of items that occur
statistically significantly more often in one class than in the other.
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Significant pattern mining

Two other motivating examples

To be discussed in Part II by Laetitia To be discussed in Part III by Anja
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Significant pattern mining

Key aspects

Pattern P Pattern P
is present is not present

C = 1 a n1 � a n1

C = 0 x � a (n � n1)� (x � a) n � n1

x n � x n

Where

n : total number of transactions
n1 : number of transactions with class label C = 1
x : support of the pattern P, i.e. number of transactions where P is present
a : support of the pattern P in transactions of class C = 1
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What is not significant pattern mining

Frequent itemset mining

Goal: Identify sets of products that are jointly bought by most customers
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Significant pattern mining

Statistical association

Pattern P Pattern P
is present is not present

C = 1 a n1 � a n1
C = 0 x � a (n � n1)� (x � a) n � n1

x n � x n

Compute p-value based on a, x , n1 and n

Use Fisher’s Exact Test R.A. Fisher, 1922

2⇥ 2 contingency table
Marginals are assumed to be fixed (row and column totals)

Must guarantee Family-wise Error Rate (FWER) < ↵
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Family-wise Error Rate (FWER)

Definition Y. Benjamini and Y. Hochberg, 1995

Is the probability that at least one false discovery (type I error) occurs in multiple tests

Number Number
not rejected rejected

True null hypothesis U V m0

Non-true null hypothesis T S m1

m � R R m

V is the number of false positives

FWER = Pr(V � 1)

Increases at most linearly as the number of tests increases

Motivates the use of the Bonferroni correction
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Multiple hypothesis testing

Adjustement of p-values

Exponential growth in the number of patterns analyzed

In our first example, all possible patterns of any size s in N genes,
NP

s=1

✓
N

s

◆
= 2N

Therefore, we must correct for multiple hypothesis testing

Bonferroni correction

For each H
i

, with i = 1 . . .m we obtain a p-value p
i

Corrected significance level � = ↵
m

Reject H
i

if p
i

 �

If m is large, we incur in loss of statistical power ! nothing is significant
Question: Can we correct using k ⌧ m?
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Testability

Deconstructing Fisher’s Exact Test

a A Total
Controls 4 6 10
Cases 1 6 7
Total 5 12 17

Example: Association test in GWAS
p-value (two-sided) = 0.338235
Null hypothesis: no association of alleles in cases/controls

Enumeration of all matrices

5 5

0 7

�
 

4 6

1 6

�
!


3 7

2 5

�
!


2 8

3 4

�
!


1 9

4 3

�
!


0 10

5 2

�

p = 0.040724 p = 0.237557 p = 0.407240 p = 0.254525 p = 0.056561 p = 0.003394

Where each p is obtained from the hyper-geometric distribution

 �
x11 x12 r1

x21 x22 r2

c1 c2 n

! p =

 
r1

x11

! 
r2

x21

!

 
n

c1

! Fisher’s p-value
p = 0.338235 = 0.040724 + 0.237557 + 0.056561 + 0.003394

Using “biased matrices”
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Testability

Minimum attainable p-value


5 5

0 7

� 
4 6

1 6

� 
3 7

2 5

� 
2 8

3 4

� 
1 9

4 3

� 
0 10

5 2

�

p = 0.040724 p = 0.237557 p = 0.407240 p = 0.254525 p = 0.056561 p = 0.003394

1 2 3 4 5 6

Key elements

Distribution of p is discrete

p
min

in most biased matrix

Statistical test on original matrix
cannot give a p-value < p

min
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Testability

Minimum attainable p-value


5 5

0 7

�
 

4 6

1 6

�
!


3 7

2 5

�
!


2 8

3 4

�
!


1 9

4 3

�
!


0 10

5 2

�

p = 0.040724 p = 0.237557 p = 0.407240 p = 0.254525 p = 0.056561 p = 0.003394

Most biased matrices (when r1  r2)

if r1 � c1, then

 �
c1 x12 � x21 r1

0 x22 + x21 r2

c1 c2 n

with p

min

=
⇣
r1

c1

⌘.⇣
n

c1

⌘

otherwise

 �
0 x12 + x11 r1

c1 x22 � x11 r2

c1 c2 n

with p

min

=
⇣
r2

c1

⌘.⇣
n

c1

⌘
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Reducing the Bonferroni correction factor

An illustrative example

Perform association tests on m = 5 SNPs

Significance level ↵ = 0.05

With Bonferroni correction

! � = ↵
m

= 0.01

a A Total
Controls x11 x12 r1

Cases x21 x22 r2

Total c1 c2 n

Id Observed Fisher’s p-value

SNP1


2 6
1 6

�
0.2

SNP2


2 8
2 7

�
1.0

SNP3


2 8
7 1

�
0.015220

SNP4


3 11
2 7

�
1.0

SNP5


1 9
3 5

�
0.274510

After correction for multiple hypothesis, there are no statistically significant associations
How can we improve on these results using the p

min

of each SNP?
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Reducing the Bonferroni correction factor

Eliminate tests where p
min

< ↵ N. Manthel, 1980

Id Observed Fisher’s p-value Most biased p

min

SNP1


2 6
1 6

�
0.2


0 8
3 4

�
0.076923

SNP2


2 8
2 7

�
1.0


0 10
4 5

�
0.032508

SNP3


2 8
7 1

�
0.015220


1 9
8 0

�
0.000206

SNP4


3 11
2 7

�
1.0


0 14
5 4

�
0.003745

SNP5


1 9
3 5

�
0.274510


0 10
4 4

�
0.022876

SNP1 is eliminated from the analysis, its p
min

> ↵. It is untestable

Then, k = 4 and � = ↵
k

= 0.0125. Yet, no statistically association after correction
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Reducing the Bonferroni correction factor

Tarone’s method R.E. Tarone, 1990

procedure main(H, ↵)
. H: Set of all hypotheses

. ↵: Nominal significance level

k  0

repeat

k  k + 1

T  get testable set(H, ↵
k

)

until k � |T |
. Ready to perform Fisher’s Exact Tests

�  ↵
k

perform fisher exact tests(HT , �)

function get testable set(H, �)
. Determine all testable hypotheses

m |H|
T  ;
for i  1,m do

if is testable(H
i

, �) then
T  {T } [ i

return T

function is testable(h, �)
. Check if hypothesis h is testable

p

min

 compute min pvalue(h)

if p

min

> � then

return False

return True
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Reducing the Bonferroni correction factor

Tarone’s method R.E. Tarone, 1990

Intuition

At the end of the loop we have k � |T |
This implies:

|T |  k

↵|T |  ↵k
↵

k
|T |  ↵

Therefore FWER  �|T |  ↵

procedure main(H, ↵)
. H: Set of all hypotheses

. ↵: Nominal significance level

k  0

repeat

k  k + 1

T  get testable set(H, ↵
k

)

until k � |T |
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Reducing the Bonferroni correction factor

Tarone’s method R.E. Tarone, 1990

repeat

k  k + 1

T  get testable set(H, ↵
k

)

until k � |T |
Id Observed Most biased Min. p-value

SNP1


2 6
1 6

� 
0 8
3 4

�
0.076923

SNP2


2 8
2 7

� 
0 10
4 5

�
0.032508

SNP3


2 8
7 1

� 
1 9
8 0

�
0.000206

SNP4


3 11
2 7

� 
0 14
5 4

�
0.003745

SNP5


1 9
3 5

� 
0 10
4 4

�
0.022876
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Reducing the Bonferroni correction factor

Tarone’s method R.E. Tarone, 1990

repeat

k  k + 1

T  get testable set(H, ↵
k

)

until k � |T |
With k = 1, � = 0.05, T = {2, 3, 4, 5}

Condition k � |T | is False ! next iteration
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Reducing the Bonferroni correction factor
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Reducing the Bonferroni correction factor

Tarone’s method R.E. Tarone, 1990

Contrast to Bonferroni correction with m = 5
� = ↵

5 = 0.01
No significant association would have been found

Id Observed Fisher’s p-value
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Final thoughts

Pre-computing minimum attainable p-values

Pattern P Pattern P
is present is not present

C = 1 a n1 � a n1

C = 0 x � a (n � n1)� (x � a) n � n1

x n � x n

Margins are assumed to be equal for all
H
i

, e.g. imputed data in GWAS
association test

Therefore, p
min

can be computed as a
function of x
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Conclusions of Part I

Key points

Introduced key aspects of significant pattern mining

Discussed the concept of minimum attainable p-value

Applied the Tarone method to obtain a corrected significance level �
k

Found k ⌧ m to correct for multiple hypothesis
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Conclusions of Part I

Key points

Introduced key aspects of significant pattern mining

Discussed the concept of minimum attainable p-value

Applied the Tarone method to obtain a corrected significance level �
k

Found k ⌧ m to correct for multiple hypothesis

In Parts II and III

How are the patterns defined?

What test statistic is used?

How is the search space pruned?

Are the final results correlated in any way? Post-processing?
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Part II
Genome-wide genetic heterogeneity detection with categorical

covariates

By Laetitia Papaxanthos



Outline

1 Genomic interactions problem statement

2 Statistical testing and correction for confounders

3 Methods: Fast Automatic Interval Search (FAIS) and FastCMH algorithms

4 Results on plant and human datasets

5 Summary and outlook
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Motivation
Genetic heterogeneity: the phenomenon under which several variants have a common
e↵ect on a phenotype.
High-order interactions discovery methods for complex traits, an attempt to explain the
missing heritability.
Detection of contiguous interactions between SNPs can reveal local Gene-Gene,
cis-regulatory elements (CRE)-Gene or CRE-CRE interactions, ⇡10bp to 100kb away.

Source: A systems biology approach to understanding cis-regulatory module function Cell and Developmental
Biology, Jeziorska 2009
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Propositions: Fast Automatic Interval Search (FAIS) and
FastCMH

Baseline

105 SNPs lead to ⇡ 109 pairs of SNPs, ⇡ 1014 triplets...

Test high-order interactions: all genomic contiguous intervals, without prior
discrimination of region function or length.

Correct the multiple hypothesis testing problem by controlling FWER using Tarone.

Scalable to > 500000 SNPs and > 5000 samples.
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Propositions: Fast Automatic Interval Search (FAIS) and
FastCMH

Categorical confounder correction with FastCMH

Corrects for multiple categorical confounders such as phenotypical traits (age, height...)
and population structure.

Enables to increase the number of samples by combining world-wide GWASs.

FAIS: Genome-wide detection of intervals of genetic heterogeneity associated with complex traits, Bioinformatics
(2015), F. Llinares-Lopez, D. Grimm, D. Bodenham, U. Gieraths, M. Sugiyama, B. Rowan, K. Borgwardt
FastCMH: Genome-wide genetic-heterogeneity discovery with categorical covariates, submitted to Bioinformatics
(2016), F. Llinares-Lopez*, L. Papaxanthos*, D. Bodenham, D. Roqueiro, COPDGene, K. Borgwardt
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Genomic intervals coded as meta-markers in GWAS datasets
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Association testing between meta-markers and phenotype

Variables Meta-marker = 1 Meta-marker = 0 Row totals
y = case a n1 � a n1 cases

y = control x � a n2 � (x � a) n2 controls

Col totals x n � x n
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Notation:
Genomic interval: Jte , tsK
Binary meta-marker: g(Jte , tsK) = (g1, ..., gn)

Corresponding p-value based on entries a, x , n1
and n2

Fisher’s Exact Test or Pearson’s �2 Test
How to correct for confounders?
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How to correct for confounders ?

Definition

In statistical genetics, a confounder c is an
extraneous variable that influences two
conditionally independent variables, for example a
phenotypic trait y and a marker g .

y 6?? g but y?? g |c

It leads to spurious associations between the
phenotypic trait y and the meta-marker g .

c

g y

    population 
structure

meta-markers phenotype

21
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Illustration

Examples of non-confounded and confounded genomic intervals
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Correcting for confounders with the Cochran-Mantel-Haenszel
(CMH) Test

g(Jte , tsK) 2 Rn is a meta-marker and k the number of classes of the confounder.
For each class h we define:
the contingency tables entries: n1,h, n2,h, xh and ah.

CMH Test

The CMH-test is based on the k-vectors a, x, n1 and n2.

T (a, x,n1,n2) =

⇣Pk
h=1 ah � E (ah)

⌘2

Pk
h=1 Var(ah)

=

⇣Pk
h=1 ah � xh

n1,h
nh

⌘2

Pk
h=1

n1,h
nh

⇣
1� n1,h

nh

⌘
xh

⇣
1� xh

nh

⌘
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Correcting for confounders with the CMH Test

Corresponding p-value  (a, x,n1,n2)

 (a, x,n1,n2) = 1� F�2(T (a, x,n1,n2))
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FAIS and FastCMH architecture in brief

g(Jte , tsK) represents a meta-marker n-vector.

Two steps:

Input: Dataset of meta-markers G = {ĝ, y, c}, desired FWER ↵.
Output: Set of non-overlapping (conditionally) associated genomic regions
Rsig ,filt = {Jts , teK | p(Jts , teK)  �tar} and Tarone significance threshold �tar .

1 (�tar ,RT (�tar )) get significant regions(G,↵)
2 Rsig ,filt  filter overlapping regions(RT (�tar ))

Return: Rsig ,filt
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1. Routine get significant regions: initialization
�  1, IT (�) {}

For all Jts , teK 2 Rcand , in increasing order of
starting position ts , and then length te � ts :
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1. Routine get sigificant regions: interval enumeration
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1. Routine get significant regions: interval processing
�  1, IT (�) {}

For all Jts , teK 2 Rcand , in increasing order of
starting position ts and then length te � ts :

Compute xJts ,teK

If �(xJts ,teK)  �: ! Tarone’s testability
criterion

As a reminder:
�(xJts ,teK) = min

a2J0,xJts ,teKK
 (a, xts ,te ) is the

minimum attainable p-value.
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1. Routine get significant regions: interval processing

�  1, IT (�) {}

For all Jts , teK 2 Rcand , in increasing order of
starting position ts and then length te � ts :

Compute xJts ,teK
If �(xJts ,teK)  �: ! Tarone’s testability
criterion

IT (�) IT (�) [ {Jts , teK}

While � |IT (�)| > ↵: ! check \FWER

Decrease �
Remove newly untestable intervals from IT (�)
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Pruning conditions for FAIS

FAIS: �2, Fisher exact test.

The minimum attainable p-value is
monotonically increasing as x
increases in Rcor = [max(n1, n2), n].

The pruning condition is straight
forward:
xJts ,teK � max(n1, n2) and
�(xJts ,teK) > �
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1. Routine get significant regions: interval pruning
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Pruning conditions for FastCMH

FastCMH: CMH-test.

The minimum attainable p-value �(xJts ,teK)
is not monotonic for
xJts ,teK 2 Rcor = Jmax(n1,h, n2,h), nKkh=1.

We compute a monotonic lower bound to
the p-value surface in the prunable search
space Rcor .

Runtime scales as O(k log(k))
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2. Routine filter overlapping regions

Selection of the interval with the smallest p-value

p=1e-10
p=1e-4

p=1e-7

p=1e-6
Cluster of Overlapping Intervals

Most Significant Interval

Filtering

p=1e-10

Advantage: Corrects for redundancy, LD partly;

Limitation: Dependent statistical tests:
Solution: Permutation testing, implemented with FAIS-WY but not with FastCMH.
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FAIS: runtime simulation
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FAIS: runtime simulation
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FAIS: power simulation

Laetitia Papaxanthos Genetic heterogeneity detection with categorical covariates COST Antwerp 27 April 2016 24 / 39



FAIS: power simulation
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FAIS: power simulation
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FAIS: genetic heterogeneity detection in Arabidopsis thaliana

Dataset (Atwell 2010)

21 defense and development binary phenotypes

Sample sizes between 76 and 177

214, 051 homozygous SNPs (inbred)

Compare findings of FAIS-WY with univariate
methods: Fisher’s Exact Test (UFE), Linear Mixed
Model (LMM).

Sources for intervals found

True genetic heterogeneity

Linkage to causal SNPs

Structural variation in the region
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Linkage to causal SNPs

Structural variation in the region
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FastCMH: simulations show a high power, low false detection
proportion and high-speed detection
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Datasets

COPD case/control study

Binary phenotype: COPD cases vs.
controls.

8,011 samples, 3,633 are cases and 4,378
are controls.

Approximately 615,906 SNPs, binarized
using a dominant encoding, to study the
risk factor of any minor-allele

2,665 African-American and 5,346
non-Hispanic whites.

Arabidopsis thaliana dataset

5 binary phentoypes

2-5 geographical origins (Eigenstrat, Price
2006).
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FastCMH: correcting for confounders in COPD and
Arabidopsis thaliana case/control studies

QQplots for: (a) LES phenotype, (b) LY phenotype, (c) COPD study
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FastCMH reports novel genomic regions

COPD case/control study

Each of the 3 reported regions overlaps with a gene
in: CHRNA5-CHRNA3-CHRNB4, a nicotine
receptor (nAChR).

None of the SNPs alone shows an association with
COPD.

Separated studies (AA and NHW alone) do not find
those three significant hits.

A. thaliana studies

FastCMH reports 33 genomic
regions and FAIS-�2 reports 81

Decrease of the genomic inflation
factor.

45% of the total number of
reported SNPs are not into genes.
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Burden tests: a genome-scale approach to study high-order
interactions

Burden tests collapse SNPs into genes and test for the association of the entire region
with the phenotypic trait (Lee 2014).
We used:

a logistic regression model

two encodings: (1) OR combination of SNPs inside the genes and (2) minor-allele
counts.

three covariate corrections: (1) principal components of the kinship matrix (only for
Arabidopsis th.), (2) k � 1 dummy variables for k classes and (3) CMH-test.

Limitations:Test a small subset of all possible regions in a genome by discriminating them
on their function.
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FastCMH finds genomic regions that can not be found by
burden tests

COPD case/control study

None of the three genes in
CHRNA5-CHRNA3-CHRNB4 are reported
by the burden tests.

FastCMH’s advantage: significant regions
do not span the entire genes.

Arabidopsis thaliana studies

High variability among the hits

Low to medium confounder correction.

4

1

2

19 + 3

8

10

3

Enc. (I)

Enc. (II)

FastCMH
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Summary

FastCMH enables to discover all candidate genomic regions of genetic heterogeneity,
e�ciently, with high power and while correcting for confounders.

Principled approach for meta-analysis.

Code available:
https://www.bsse.ethz.ch/mlcb/research/bioinformatics-and-computational-biology.html
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Outlook

Implementing the permutation testing version to correct for dependency between the
tests.

Extending FastCMH to heterozygous genotypes and continuous phenotypes.

Including long-range interactions by enabling all combinations of SNPs (submitted work).

Adding biological prior:
Di↵erentiating between SNPs that prevent or cause a disease.
Detecting significant gene clusters in pathways (Part III).
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Significant Subgraph Search in Protein-Protein Interaction Networks
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Motivation

Paradigm

Univariate analysis of SNPs only account for small amount of total phenotypic variation
[Manolio et al., 2009]

Several variants, each with weak association to phenotype, orchestrate to manifest
phenotype

Idea

Genes do not interact randomly with each other, but are organized in pathways

Include biological prior knowledge into interaction search

Use protein-protein interaction (PPI) networks
KEGG pathways [Kanehisa and Goto, 2000]
PINA [Cowley et al., 2011]
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Problem statement

Initial setup:

Dataset of n individuals that can be classified into two phenotypic groups:
n1 cases
n2 controls

Protein-protein interaction network that will serve as biological prior knowledge

Problem statement: significant subgraph search

Find subgraphs of genes within the PPI, such that the genotypes of the genes in the
subgraphs are significantly associated with the phenotype

Rigorous correction for multiply hypothesis testing by controlling the family wise error
rate
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dmGWAS: dense module searching for genome-wide association
studies in protein–protein interaction networks
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ABSTRACT
Motivation: An important question that has emerged from the
recent success of genome-wide association studies (GWAS) is
how to detect genetic signals beyond single markers/genes in
order to explore their combined effects on mediating complex
diseases and traits. Integrative testing of GWAS association data
with that from prior-knowledge databases and proteome studies has
recently gained attention. These methodologies may hold promise
for comprehensively examining the interactions between genes
underlying the pathogenesis of complex diseases.
Methods: Here, we present a dense module searching (DMS)
method to identify candidate subnetworks or genes for complex
diseases by integrating the association signal from GWAS datasets
into the human protein–protein interaction (PPI) network. The DMS
method extensively searches for subnetworks enriched with low
P-value genes in GWAS datasets. Compared with pathway-based
approaches, this method introduces flexibility in defining a gene set
and can effectively utilize local PPI information.
Results: We implemented the DMS method in an R package,
which can also evaluate and graphically represent the results. We
demonstrated DMS in two GWAS datasets for complex diseases,
i.e. breast cancer and pancreatic cancer. For each disease, the
DMS method successfully identified a set of significant modules and
candidate genes, including some well-studied genes not detected
in the single-marker analysis of GWA studies. Functional enrichment
analysis and comparison with previously published methods showed
that the genes we identified by DMS have higher association signal.
Availability: dmGWAS package and documents are available at
http://bioinfo.mc.vanderbilt.edu/dmGWAS.html.
Contact: zhongming.zhao@vanderbilt.edu
Supplementary Information: Supplementary data are available at
Bioinformatics online.

Received on July 30, 2010; revised on October 19, 2010; accepted
on October 21, 2010

1 INTRODUCTION
Genome-wide association studies (GWAS) have revealed
hundreds of common variants conferring susceptibility to
common diseases. According to the National Human Genome

∗To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors
should be regarded as joint First Authors.

Research Institute (NHGRI) Catalog of Published Genome-Wide
Association Studies (Hindorff et al., 2009), there have been
2898 SNPs reported in 596 publications (as of July 1, 2010,
http://www.genome.gov/gwastudies/). Although the discovered
single nucleotide polymorphisms (SNPs) greatly expanded our
knowledge of the molecular mechanisms of common diseases, only
limited heritability has been explained, and it still remains unclear
how these markers/genes interact and confer a predisposition
to disease. Depending on the underlying genetic structure of
diseases, it is possible that many markers/genes, having low or
moderate risk in and of themselves, interact to confer a significant
combined effect. So far, GWAS data analysis has largely focused
on single marker discovery. However, at the stringent genome-wide
significance level of P < 5×10−8, many markers that are truly
but weakly associated with disease often fail to be detected. Novel
statistical or computational methods to detect the combined effect
of a set of genes may provide useful alternative approaches in
GWAS.

Recently, integrative analysis of GWAS data with other high-
throughput datasets has been shown to be effective in the
examination of multiple variants’ combined effect. One example is
the application of gene-set-based methods to systematically examine
gene sets, typically in the form of biological pathways or functional
groups, using GWAS datasets. Representative examples include
gene set enrichment analysis (GSEA) adapted from the original
microarray expression data analysis (Wang et al., 2007), the SNP
ratio test (O’Dushlaine et al., 2009) and the hypergeometric test.
These methods search for significantly enriched gene sets collected
from predefined canonical pathways or functional annotations
such as Gene Ontology (GO) terms. However, by sorting genes
into classical pathways or functional categories, the results of
these methods might be over-limited to a priori knowledge (e.g.
predefined gene sets) and, thus, make it difficult to identify a
meaningful combination of genes (Ruano et al., 2010). Realizing
this problem, Ruano et al. (2010) suggested that investigators
group genes by cellular functions instead of classical pathways,
assuming that genetic variation might converge on components
acting across pathways. However, this strategy requires strong
disease-specific background knowledge, and still uses predefined
gene sets. Another limitation is the incomplete annotation of
pathways or GO annotations in the current knowledgebase.

The protein–protein interaction (PPI) network-based approach
may largely overcome these limitations because it allows flexibility
in setting the components of a gene set. This approach has recently

© The Author 2010. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 95

Method [Jia et al., 2011] to identify subgraphs or genes for complex diseases

Achieved by integrating the association signal from GWAS datasets into human
protein-protein interaction networks
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dmGWAS - Implementation: Input/Output

R implementation of dmGWAS available.

Input

Protein-protein interaction network

P-values pi for each gene in network

User-specified parameters

Output

List of subgraphs within the protein-protein interaction network, enriched with low
p-value genes

Subgraphs ranked by subgraph score
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dmGWAS - Greedy search for subgraphs

1 Transformation of p-values, zi = ��1(1� pi )

2 At each gene in the PPI network: start greedy search for subgraphs with high scores

(i) Compute subgraph score Zcurrent =
P

zip
k

(ii) Find neighbors with distance smaller or equal to
d (here d = 2)

(iii) For each neighbor: compute a tentative new
subgraph score Znew

(iv) Pick neighbor with maximal Znew : if
Znew � Zcurrent(1 + r): add node (plus nodes in
shortest path) to subgraph

(v) Repeat (i) - (iv), until Znew ⇤ Zcurrent(1 + r)
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dmGWAS - Characteristics

Greedy approach, based on computation of gene-wise p-values

No p-value, but ranking of subgraphs with high scores

Outcome (number of subgraphs, sizes of subgraphs) highly dependent on setting of
parameters d and r

Suggestions by authors:
d = 2: median distance between any two genes in PPI < 5 [Chuang et al., 2007]

r : test various values and take reasonable one

Postprocessing of output:
Upper bound on number of reported subgraphs: number of genes in PPI
Suggestion of authors: use top 10% ranked subgraphs
Analysis of induced sugraph of top-ranked subgraphs (consensus graph)
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State of the art: other methods

DAPPLE: Disease Association Protein-Protein Link Evaluator [Rossin et al., 2011]

Network of genes associated with phenotype are more densely connected than expected
by pure chance

To show this: random permutation of underlying network

SConES: Selecting CONnected Explanatory SNPs [Azencott et al., 2013]

Finding subgraphs in network with maximized association, connectivity and sparsity

Can be written as optimization problem

Code available at:
https://www.bsse.ethz.ch/mlcb/research/bioinformatics-and-computational-biology/scones.html
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Short Revision: Tarone Trick

Conducting high number of statistical significance test ! multiple hypothesis testing
problem

Control family-wise error rate (FWER)

FWER = Pr (FP � 1)  ↵ (1)

Need to find the maximum significance threshold � such that Eq. 1 holds

Bonferroni correction: � = ↵
number of tests

Minimum attainable p-value: subgraphs that are not testable at a significance threshold
� cannot become false positives, thus no correction is required for those

Tarone correction: � = ↵
number of testable subgraphs
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Tarone method for graphs: contingency tables

n 1
 ca

se
s

n 2
 co

nt
ro

ls

0 0 0 1 0 1 0 0 1 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0

0 0 0 1 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0

0 0 0 1 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0

0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0

0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0

0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0

L = number of genes

associated subgraph g

f(s6[g]) = 0

f(s5[g]) = 0

f(s4[g]) = 0

f(s3[g]) = 1

f(s2[g]) = 1

f(s1[g]) = 1

Random
variable

Anja Gumpinger Significant subgraph search in protein-protein interaction networks COST Antwerp 27 April 2016 15 / 38



Tarone method for graphs: contingency tables

n 1
 ca

se
s

n 2
 co

nt
ro

ls

0 0 0 1 0 1 0 0 1 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0

0 0 0 1 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0

0 0 0 1 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0

0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0

0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0

0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0

L = number of genes

associated subgraph g

f(s6[g]) = 0

f(s5[g]) = 0

f(s4[g]) = 0

f(s3[g]) = 1

f(s2[g]) = 1

f(s1[g]) = 1

Random
variable

Variables f(s[g]) = 1 f(s[g]) = 0 Row totals
y = case ↵g n1 � ↵g n1

y = control xg � ↵g n2 � (xg � ↵g ) n2

Col. totals xg N � x n
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Tarone method: intervals vs. subgraphs

Interval search:

Exploration of search space: subsequently combining
intervals

Pruning of search space: intervals containing
non-testable intervals are non-testable

Subgraph search:

Exploration of search space: growing subgraphs by
subsequently adding nodes

Pruning of search space: supergraphs of
non-testable subgraph is non-testable
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Network Tarone: growing and pruning graphs

Subgraph g with xg
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Network Tarone: growing and pruning graphs
n 1

 ca
se

s
n 2

 co
nt

ro
ls

0 0 0 0 

0 0 0 1 

0 1 0 1 

0 0 0 0

0 0 0 0

0 0 0 0

current 
subgraph

f(s6[g]) = 0

f(s5[g]) = 0

f(s4[g]) = 0

f(s3[g]) = 0

f(s2[g]) = 1

f(s1[g]) = 1

Random
variable

xg = 2

n 1
 ca

se
s

n 2
 co

nt
ro

ls

0 0 0 0  1

0 0 0 1  0

0 1 0 1  0

0 0 0 0  0

0 0 0 0  0

0 0 0 0  0

new
subgraph

f(s6[g]) = 0

f(s5[g]) = 0

f(s4[g]) = 0

f(s3[g]) = 1

f(s2[g]) = 1

f(s1[g]) = 1

xg = 3

Random
variable

Subgraph g with xg

Monotonicity: adding a new gene to a
subgraph can only increase xg
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subgraph

f(s6[g]) = 0

f(s5[g]) = 0

f(s4[g]) = 0

f(s3[g]) = 1

f(s2[g]) = 1

f(s1[g]) = 1

xg = 3

Random
variable

Subgraph g with xg

Monotonicity: adding a new gene to a
subgraph can only increase xg

Pruning: only subgraphs with n � �l < xg can
be pruned from search space

If subgraph is non-testable: adding genes will
always result in non-testable supergraph
Once subgraph is non-testable with n � �l < xg :
can stop growing graph
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Network Tarone: adjusting the significance threshold

1 Compute minimum attainable p-value  (xg ) of current
subgraph g with xg

2 Subgraph is testable (i.e.  (xg )  �):
1 Number of subgraphs that have to be corrected for

increased
2 Lower significance threshold � s.t. FWER criterion is

fulfilled
� ⇤ |testable subgraphs|  ↵

3 Add next gene to subgraph and return to step 1

3 Subgraph is non-testable (i.e.  (xg ) > �):
1 xg < n� �l : Add next gene to subgraph an return to step 1
2 xg > n � �l : Stop growing subgraph
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Steps in Network Tarone

1 Binarization of input data
GWAS data
Gene expression data

2 Application of Network Tarone: finding significant subgraphs in PPI network
E�ciently enumerating subgraphs in network
Accounting for multiple hypothesis testing

3 Evaluation of output
Reducing high number of often very similar significant subgraphs (clustering)
Reporting of results and biological interpretation
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Binarization of data

Binarization depends on type of data used
Gene expression data: di↵erential expression
GWAS data:

Approach based on allele frequencies

Machine learning approaches

Idea: Risk gene encoding

For one sample, binary status of a gene reflects
whether sample can rather be assigned as case
or control, based on only that gene

Approaches require splitting of data into
training and test set
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Approaches require splitting of data into
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gene 

tra
in

in
g used to find rule for

binary encoding of 
genes

gene 

te
st

in
g application of binary 

encoding rule and 
running of NWT

gene 

sa
m

pl
es

controlscases
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Binarization of gene-expression data

1 For each gene, compute the mean of cases
meancases and controls meancontrols in training set

2 Use data in test set to run Network Tarone:

1 Binarize the data in test set by assigning the gene the
label of the group with the smaller distance to the
mean

2 Use binary data as input for NWT

gene 

tra
in

in
g }

}meancontrols

meancases

gene 

te
st

in
g

binary
gene 

controlscases
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Binarization of GWAS data using allele counts

Building a classification rule

1 Represent gene by all SNPs in or near gene

fgeneA 
(sample) = 1     if SNPA = 2

0                else{
0 2 0 1 0 1 1 0 1 1 0 0 0 0 2 0 0 1 0 0 1 0 1 0
0 2 0 1 0 1 2 0 1 1 0 0 0 0 2 0 0 2 0 0 1 0 1 0
0 2 0 1 0 1 2 0 1 1 0 0 0 0 2 0 0 2 0 0 1 0 1 0

0 2 0 1 0 1 0 0 1 1 0 0 0 0 2 0 0 2 0 0 1 0 1 0
0 2 0 1 0 1 0 0 1 1 0 0 0 0 1 0 0 2 0 0 1 0 1 0
0 2 0 1 0 1 0 0 1 1 0 0 0 0 2 0 0 2 0 0 1 0 1 0

SNP’s in geneA

SNPA with minimum p-value

tra
ini

ng

}
SNPs in geneA
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Binarization of GWAS data using allele counts

Classification of samples in
test set

1 Represent gene by SNP with
lowest p-value in training set

2 Apply classification rule found
on training set to get binary
representation of gene for
each sample in test set

fgeneA 
(sample) = 1     if SNPA = 2

0                else{
0 2 0 1 0 1 1 0 1 1 0 0 0 0 2 0 0 1 0 0 1 0 1 0
0 2 0 1 0 1 2 0 1 1 0 0 0 0 2 0 0 2 0 0 1 0 1 0
0 2 0 1 0 1 2 0 1 1 0 0 0 0 2 0 0 2 0 0 1 0 1 0

0 2 0 1 0 1 0 0 1 1 0 0 0 0 2 0 0 2 0 0 1 0 1 0
0 2 0 1 0 1 0 0 1 1 0 0 0 0 1 0 0 2 0 0 1 0 1 0
0 2 0 1 0 1 0 0 1 1 0 0 0 0 2 0 0 2 0 0 1 0 1 0

SNP’s in geneA

SNPA with minimum p-value

tra
in

in
g }

0 0 0 1 0 1 1 0 1 1 0 0 2 0 1 0 0 2 0 1 1 0 0 1
0 0 0 1 0 1 2 0 1 1 0 0 1 0 1 0 0 2 0 1 1 0 0 1

0 0 0 1 0 1 0 0 1 1 0 0 2 0 1 0 0 2 0 1 1 0 0 1
0 0 0 1 0 1 0 0 1 1 0 0 2 0 1 0 0 2 0 1 1 0 0 1

SNP’s in geneA

te
st

in
g 0 

1 

0 
0 

binary
geneA

fgeneA

SNPs in geneA

SNPs in geneA
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Binarization of GWAS data using machine learning (work in
progress)

Building classification rule

1 Represent gene by all SNPs in or near gene

2 Determine a classification rule for each
gene using all SNPs to predict risk encoding

Classification of samples in testing set

1 Represent gene by all SNPs in or near gene

2 Apply classification rule found on training
set to get binary representation of gene for
each sample in test set

fgeneA 
(sample) 

0 2 0 1 0 1 1 0 1 1 0 0 0 0 2 0 0 1 0 0 1 0 1 0

0 2 0 1 0 1 2 0 1 1 0 0 0 0 2 0 0 2 0 0 1 0 1 0

0 2 0 1 0 1 2 0 1 1 0 0 0 0 2 0 0 2 0 0 1 0 1 0

0 2 0 1 0 1 0 0 1 1 0 0 0 0 2 0 0 2 0 0 1 0 1 0

0 2 0 1 0 1 0 0 1 1 0 0 0 0 1 0 0 2 0 0 1 0 1 0

0 2 0 1 0 1 0 0 1 1 0 0 0 0 2 0 0 2 0 0 1 0 1 0

SNPs in geneA

tra
in

in
g

0 0 0 1 0 1 1 0 1 1 0 0 2 0 1 0 0 2 0 1 1 0 0 1

0 0 0 1 0 1 2 0 1 1 0 0 1 0 1 0 0 2 0 1 1 0 0 1

0 0 0 1 0 1 0 0 1 1 0 0 2 0 1 0 0 2 0 1 1 0 0 1

0 0 0 1 0 1 0 0 1 1 0 0 2 0 1 0 0 2 0 1 1 0 0 1

SNPs in geneA

te
st

in
g 1 

1 

0 

0 

binary
geneA

fgeneA

controlscases
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Exploring the network

Growing the subgraphs
Need computationally e�cient way to enumerate subgraphs in order to avoid visiting
same subgraphs multiple times. Approach based on [Wernicke, 2006].

B

A

D

E

C
G

I

H

J

F

1 Indexing of nodes

2 Add one node at a time as seed gene

3 Grow all possible subgraphs including
seed gene

4 For each newly grown subgraph check
testability and process accordingly
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Some results of NWT on artificial data

Artificial generation of binary data

Generation of binary data with known ground truth (true significant subgraph)

using R package ’bindata’

Parameters to set:
Size of data set
Sizes of associated subgraphs
Risk ratio (ratio of 1/0 in binarized data)
Strength of association between subgraph and phenotype

Size of underlying network: 68 nodes, 84 edges
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Some results of NWT on artificial data
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Postprocessing: clustering of significant subgraphs

Idea
Cluster all significant subgraphs, use subgraph with lowest p-value from each cluster as
final output

Structural clustering

Subgraphs that overlap belong to the same cluster

Functional clustering (work in progress)

Cluster significant subgraphs by their encoding

Subgraphs with similar e↵ects belong to the same cluster

DBSCAN clustering (work in progress)

Create graph of subgraphs, where each subgraph corresponds to node, edge weighted by
Jaccard-index, correlation, ...
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Application to breast cancer mRNA profiles

Dataset:
mRNA expression profiling obtained from a study of breast cancer patients
[Bu↵a et al., 2011]

Number of samples: 207

Number of mRNAs measured: 24.385

Patients in study are divided into two groups

Estrogen receptor positive (ER+)
Estrogen receptor negative (ER-)

Tumors from two groups show di↵erent molecular patterns in terms of cell
di↵erentiation, proliferation, survival, invasion, angiogenesis

In general: better prognosis and treatment of ER+ patients compared to ER- patients
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Application to breast cancer mRNA profiles

1 Binarization of data
107 samples in test set, 100 samples in training set
risk ratio: 0.27

2 Application of NWT approach to 11 KEGG pathways
7 signaling pathways
2 pathways linked to cell adhesion
2 pathways linked to cell cycle and apoptosis

3 Results: Found significant subgraphs in 9 KEGG pathways
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Application to breast cancer mRNA profiles

KEGG
pathway

Pathway
description

genes in
pathway

significant
subgraphs

average
size

runtime
(in sec)

04115 p53 signaling pathway 65 2049 6.83 10.35
04150 mTOR signaling pathway 48 0 0.49
04330 Notch signaling pathway 46 93 5.42 1.73
04064 NF-kappa B signaling pathway 70 1 5 3.50
04012 ErbB signaling pathway 83 12 4.75 4.72
04010 MAPK signaling pathway 240 29063 7.79 149.34
04310 Wnt signaling pathway 127 91 5.58 176.74
04510 Focal adhesion 195 670 8.10 2824.77
04520 Adherens junction 68 0 2.19
04110 Cell cycle 114 45 6.69 33.25
04210 Apoptosis 75 21 6.33 0.96
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Summary of Network Tarone approach

Network Tarone approach

Search for significant subgraphs in networks

Rigorous correction for multiple hypothesis testing by controlling the FWER

Exploit testability of subgraphs: only subgraphs that are testable have to be corrected for

Restriction of search space: non-testable subgraphs and their supergraphs can be pruned

E�cient network exploration allows for growing subgraphs without visiting same
subgraph multiple times

Less conservative significance threshold than classical approaches, such as Bonferroni
correction
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Future work

Application to more sophisticated PPI networks
Networks with directed edges (pathways are directed)
! reduces number of networks to test

Machine learning to binarize GWAS data

! Use information of all SNPs overlapping with gene

Improve runtime for datasets with large sample sizes

! GPU implementation

Include correction for covariates

! Analogously to CMH
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