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The effect of affinities, kinetic constants and 

network topology in PPI networks 

Feedbacks 

I. Kinetic perturbations and network topology 
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Kinetic 
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Ras CRaf 

Epidermal growth factor (EGF) activates the RAS-RAF-MEK-

ERK pathway 
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Cell type-specific ERK activation in HEK293 and RK13 cells 

REDUNDANT PATHWAYS 

Bow-tie 

Responses 

Signals EGF EGF 

Sustained 

response 

HEK293 cells RK13 cells 

Transient 

response 

Different signaling response (ERK-p) with similar ligand (EGF) 

I. Kinetic perturbations and network topology 

Kiel & Serrano, Sci Signal, 2009 
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Different network ‘wiring’ /feedbacks causes the different 

behaviour 

I. Kinetic perturbations and network topology 

Sustained 

response 

HEK293 cells RK13 cells 

Transient 

response 

Kiel & Serrano, Sci Signal, 2009 
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A simple computer model of ERK activation in HEK293 and 

RK13 cells 
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“HEK293 like model” “RK13 like model” 

I. Kinetic perturbations and network topology 

No negative feedback 

from ERK-P to Sos1 in 

the RK13-like model 

 Good agreement of experiment and model predictions 

Kiel & Serrano, Sci Signal, 2009 
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Model predictions: different cell type-specific wiring results in 

different responses to affinity perturbations 

Weak feedback Strong 

feedback 

Ras 

Raf 

No significant changes  Significant differences  

Subtle affinity changes 

kD=  
kon 

koff __ kon 
koff 

I. Kinetic perturbations and network topology 

Kinetic 

perturbations 

 Mutations can have 

different cell type 

(patient!)-specific 

effects 

Kiel & Serrano, Sci Signal, 2009 
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Experimental design of mutants that introduce kinetic perturbations 

Experimental validation of the role of kinetic parameters in MCF7 

cells (weak feedback)  

I. Kinetic perturbations and network topology 

Kd = 
koff 

kon 

Affinity 

(Dissociation constant) 

Dissociation rate constant 

Association rate constant 

E.g.:  

↑ Increase kon: improve electrostatic surface complementarity; ‘electrostatic steering’ 

Kiel et al., PNAS, 2004 

↑ Increase koff: mutate hot-spot residues in the interface 

RalGDS-wt 
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FoldX-based energy calculations of proteins 

3D Structural information 

Protein design 

Schymkowitz et et al, Nucleic Acids Res, 2005 

 Total free energy  Interaction energy  Mutagenesis 

+ = DG 
Relation to affinity: DG = RT ln Kd 

A rotamer library to replace the 
20 amino acids 
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Summary of the protein mutant design 

- 

- 
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A85K: koff 

- 

R89L: koff 

- 

+ + 

+ 

+ 

Ras surface negative Raf surface positive 

I. Kinetic perturbations and network topology 
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Analysis of all mutants in RK13 cells (luciferase activity assay) 

Correlation between predicted changes in kon is very high, while 

correlation with affinity (DG) is poorer 

I. Kinetic perturbations and network topology 
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Results from the network model for designed mutants 

Confirms experimental findings: 

Mutant with 4 time lower kon and 4 times lower koff (same KD) has less predicted 

luciferase activity (and opposite for mutant with 4 times higher kon/koff) 

 Experiments and simulations suggest that association rate constants of Ras-Raf complex 

formation are important for signaling 

I. Kinetic perturbations and network topology 

Kiel & Serrano, Sci Signal, 2009 
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The effect of protein abundance 

perturbations and interaction competition in 

PPI networks 

Mutually exclusive interface 

interaction, XOR 
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How could interaction competition and protein concentration 

affect downstream signaling? 

Some proteins will use similar binding 

surfaces for interaction with other 

molecules: ‘mutually exclusive 

interactions’/ ‘XOR’ 

Signaling complexes: > 300 partners 

for one protein?? 
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RAS 

kD~1 mM kD~100 nM 

Pathway 1 

Pathway 2 

Pathway 3 

Pathway 4 

Pathway 5 

kD~3 mM 

kD~20 nM 

kD~1 mM 

In a simple world: 

concentration and 

kD will determine the 

signaling output 

II. Protein abundances and competition 

How could interaction competition and protein concentration 

affect downstream signaling? 

Signaling complexes: > 300 partners 

for one protein?? 
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The effect of abundance variation at XOR network motifs 

Competition No competition 

Kiel et al, Sci Signal, 2013 

II. Protein abundances and competition 

 The output/ function depends on both, network structure and abundance 
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Competition at the Ras XOR node  
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II. Protein abundances and competition 
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Experimental testing of competition at the Ras node 
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 Alterations in the abundance of one of two hub-binding partners 

affected downstream signaling 

II. Protein abundances and competition 

Kiel et al, Sci Signal, 2013 

Expression of RIN1 in MCF-7 and HEK293 cells 

decreases CRAF, MEK, and ERK activation 

Christina Kiel (CRG) 



The effect of abundance variation at XOR network motifs 

II. Protein abundances and competition 

 The output/ function depends on both, network structure and abundance: we need to 

know the network very well to understand 

Kiel et al, Sci Signal, 2013 
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A bioinformatics tool to distinguish mutually exclusive from 

compatible interactions in large-scale PPI 

II. Protein abundances and competition 

Yang et al, Bioinformatics, 2012 

SAPIN (structural analysis of 

protein interaction networks) 

webserver 

http://sapin.crg.es/ 
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Kd 

kon 

koff 

[cellular 

abundance] 

Experimental methods to quantify protein 

abundances, affinities, and kinetic constants 
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Why proteomics in times of deep RNA sequencing? 

Two main aims: IDENTIFICATION and QUANTIFICATION 

 mRNA does not translate1:1 into protein; keywords:  

                                                                   (i) translation efficiency,  

                                                                   (ii) mRNA stability,  

                                                                   (iii) protein stability,  

 

 Posttranslational modification (PTMs) of proteins, e.g. phosphorylation 

Two main techniques: MASS SPECTROMETRY and ANTIBODY-BASED 
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30,000 coding genes per cell 

 

Alt.splicing: 2-3 x 30,000 

= 90,000 proteins 

 

Post-translational modifications 

> 10 x 90,000 

= 900,000 proteins 

 

Peng and Gygi, JMS, 2001 

High complexity of the proteome  
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Anderson and Anderson, MCP, 2002 

High dynamic range of the proteome  
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 Address problem of cellular complexity by fractionation, e.g. liquid chtromatography 

 Address problem of cellular dynamic range by better and better (and better…) mass 

spectrometers… 

Ahrens et al, 2010 

Enzymatic 

cleavage 

Peptide 

separation 

MS1 

MS2 

Ionization 

Dissociation 

into 

fragments 

Peptide 

matching 

Protein 

matching 

Protein identification by mass spectrometry 
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Targeted proteomics is the method of choice for studying (a limited number of) signaling proteins 

Ahrens et al, 2010 

‘Shotgun’ compared to ‘targeted’ approach 
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•  R. Aebersold lab 

•  M Mann lab 

Beck et al, MSB, 2011 

~10,000 proteins quantified 

Nagaraj et al, MSB, 2011 

10,255 proteins quantified 

Human deep proteome mapping 
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Many proteins are identified with peptides belonging to more than one protein (e.g. isoforms) 

2014 Kuster lab 2014 Pandey lab 

Human deep proteome mapping: where are we now? Complete? 

Ezkurdia et al, J Proteome Res,  2014 
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Uhlen et al, Science, 2015 

 Tissue-based map of the human 

proteome 

 44 major tissues and organs in the 

human body  

 24,028 antibodies corresponding to 

16,975 protein-encoding genes 

Antibody-based proteomics: only semi-quantitative abundances 
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Quantitative Western blotting  

Kiel et al, J Prot Res, 2014 

Protein standards: expression, purification 

and quantification 
Summary statistic for quantitative Western 

blotting of 198 ErbB-related proteins 
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Combining different quantitative approaches to quantify 198 

proteins in the ErbB signaling pathway 

Kiel et al, J Prot Res, 2014 

Protein standards

Quantitative Western blotting 

and quantitative FACS

Targeted mass spectrometry 

(MS)
Fractionation + shot-gun mass 

spectrometry (MS)

AQUA peptides 
AQUA peptides 

Cell lysate Cell lysate

MS

MS

Cell lysate

Western FACS

Beads with 

known surface 

binding capacity

Fractionation

 SRM has a higher sensitivity compared to quantitative western blotting (but some proteins are only detected by Western 

blotting) 

 Problem with isoforms and protein families: as a consequence of frequent gene duplication events in mammals, often similar 

proteins (e.g. AKT1 and AKT2) cannot be distinguished using the peptides detected by MS. > they can only be assigned to a 

protein group/ family 
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The challenge:  

 most in vivo techniques are high-throughput, but do not provide affinities (only 

qualitative binding detection) 

 in vitro techniques can provide affinities and kinetic constants, but are not high-

throughput methods  

Measuring protein interactions in vivo and in vitro 

Piehler, Curr Opin Struct Biol, 2005 
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Measuring protein affinities in vitro requires the expression and 

purification of proteins (e.g. using bacteria) 
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Large proteins are often not soluble: expression 

and purification of protein domains   

III. Quantitative experimental methods: protein abundances and interactions Christina Kiel (CRG) 



Two main methods to measure affinities and kinetic constants 

III. Quantitative experimental methods: protein abundances and interactions 

Microscale thermophoresis Surface plasmon resonance 

Jerabek-Willemsen et al, J Mol Struct, 2014 

H20

Reoriented H20Binding

Amine-covalent 

labelled RBDs 

(fluorophore)

+

Ras WT and Mut

(serial dilutions)

Fluorescence signal (depends on 

charge, size and hydration shell

 Provides only the affinity in 

equilibrium (Kd value), but not 

kinetic constants 

Kd =  
[A] x [B] 

[AB] 

Kastritis et al, 2012 

 Provides kinetic constants 

(kon and koff) 
Kd =  

koff 

kon 

Optical method to measure 

the refractive index near a 

sensor surface 
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Qualitative and quantitative effects of 

disease mutations 

Disease mutation 
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Examples how missense mutations can affect the network: a 3D 

structural perspective  

Gain in signaling through release of autoinhibition Class 1a 

PTPN11 (2SH2) 

Kiel & Serrano, Mol Sys Biol, 2014 
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Active 

site 

Active 

site 

Gain in signaling through destabilizing 

mutation in active site: release of 

autoinhibition in structural segments 

Class 1b 

BRAF 

(4EHE) 

IV. Rewiring through disease mutations 

Kiel & Serrano, Mol Sys Biol, 2014 

Examples how missense mutations can affect the network: a 3D 

structural perspective  

Christina Kiel (CRG) 



Inhibitor Inhibitor 

Gain in signaling through loss  of 

interaction with inhibitors/ 

deactivating proteins 

Class 2 

Complex of14-3-3 with 

peptide of Raf1 (3IQJ) 

IV. Rewiring through disease mutations 

Kiel & Serrano, Mol Sys Biol, 2014 

Examples how missense mutations can affect the network: a 3D 

structural perspective  
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Class 3 Folding affected (destabilization of 

protein) ; gain in signaling for NF1 and 

RASA1 

NF1 

(1NF1) 

IV. Rewiring through disease mutations 

Kiel & Serrano, Mol Sys Biol, 2014 

Examples how missense mutations can affect the network: a 3D 

structural perspective  
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Class 4 Gain in signaling through mutation of domains 

involved in membrane recruitment  

SOS1 

(1DBH) 

IV. Rewiring through disease mutations 

Kiel & Serrano, Mol Sys Biol, 2014 

Examples how missense mutations can affect the network: a 3D 

structural perspective  
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Class 5 No effect; location on surface 

SOS1 

(1DBH) 

IV. Rewiring through disease mutations 

Kiel & Serrano, Mol Sys Biol, 2014 

Examples how missense mutations can affect the network: a 3D 

structural perspective  
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Example 1: RASopathy and cancer disease mutations  
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What are the differences in mutations of the same protein 

causing different disease (e.g. RASopathies or cancer)? 

V. Examples: 1. RASopathy vs cancer 

 Ras/MAPK syndromes (‘RASopathies’) 

are a class of developmental disorders 

caused by germline mutations  

 Proteins in Ras/MAPK syndromes 

(‘RASopathies’) are also found in cancer 

Cancer RASopathy 

Kiel & Serrano, Mol Sys Biol, 2014 

Christina Kiel (CRG) 



Location of mutations in different domains does not explain the 

difference between RASopathy and cancer mutations 

V. Examples: 1. RASopathy vs cancer 

‘Edgetics’ does not explain it 

Domain localization of mutation 

does not explain why a particular 

mutation will cause RASopathy or 

cancer  

domains 

Disease 1 Disease 2 

Distribution of somatic and germline mutations in 98 

different structural domains and inter‐structural regions 

Kiel & Serrano, Mol Sys Biol, 2014 

Christina Kiel (CRG) 



Pipeline: 

Analysis of 956 missense mutations in RASopathies and cancer 

based on structural information and FoldX energies 

V. Examples: 1. RASopathy vs cancer 

Kiel & Serrano, Mol Sys Biol, 2014 
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FoldX-based energy calculations of proteins 

3D Structural information 

Protein design 

Schymkowitz et et al, Nucleic Acids Res, 2005 

 Total free energy  Interaction energy  Mutagenesis 

+ = DG 
Relation to affinity: DG = RT ln Kd 

A rotamer library to replace the 
20 amino acids 
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Analysis of 956 missense mutations in RASopathies and cancer 

based on structural information and FoldX energies 

V. Examples: 1. RASopathy vs cancer 

Kiel & Serrano, Mol Sys Biol, 2014 
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Analysis of 956 missense mutations in RASopathies and cancer: 

high structural coverage 

V. Examples: 1. RASopathy vs cancer 

Kiel & Serrano, Mol Sys Biol, 2014 
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Multiple effects of a mutation even for the same protein/ protein 

class 

V. Examples: 1. RASopathy vs cancer 

Kiel & Serrano, Mol Sys Biol, 2014 
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Cancer mutations tend to have higher destabilization values (on 

average)  

V. Examples: 1. RASopathy vs cancer 

Kiel & Serrano, Mol Sys Biol, 2014 
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Compensatory effects of mutations on different interaction 

partners  

V. Examples: 1. RASopathy vs cancer 
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Kiel & Serrano, Mol Sys Biol, 2014 
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Quantitative effects on protein stability, or activity could explain in 

some cases the different phenotype: cancer or RASopathy 

V. Examples: 1. RASopathy vs cancer 

Simulation of Ras activation  

‘Enedgetics’: quantitative 

edge effects 

‘Edgetics’ + energies = 

‘enedgetics’  

Quantitative effects on protein 

stability, activity, or folding 

explains in some cases the 

different phenotype 

Kiel & Serrano, Mol Sys Biol, 2014 
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Conclusions example 1: RASopathy vs cancer 

V. Examples: 1. RASopathy vs cancer 

 Combined network‐based and structural 

analyses show that quantitative changes 

rather than all‐or‐none rewiring underlie 

the difference between RASopathy and 

Cancer mutations. 

 A systematic analysis of 956 RASopathy and cancer mutations based on 

structures and energy predictions is presented. 

 Even for the same gene, different disease‐causing mechanisms exist 

depending on the type of mutation. 

 Energy changes are higher for cancer compared to RASopathy mutations. 

 In some cases, RASopathy mutations show compensatory changes that, as 

predicted by network modelling, result only in minor pathway deregulation. 
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Example 2: BRAF mutations in cancer. Why V600E? 
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The most common BRAF mutation is V600E and induces 

constitutive kinase activation 

V. Examples: 2. Why BRAF V600E? 

Patients are treated with a 

BRAF kinase inhibitor  

Shall we only treat patients which harbour V600E mutations or also patients with non-V600E 

mutations? 

Christina Kiel (CRG) 



Kinases are activated through mutations in the activation loop 

(activation segment) 

V. Examples: 2. Why BRAF V600E? 

Taylor & Kornev, TIBS, 2011 

• phosphorylation in the 

activation segment causes 

structural rearrangements of 

the activation segment and 

the aC helix. This reorients 

the DFG loop resulting in 

activation of the kinase 

Christina Kiel (CRG) 



Focus on the position Val600 in the kinase BRAF 

V. Examples: 2. Why BRAF V600E? 

b 

aC helix 

Activation  

segment 

(AS) 

DFG motif 

Catalytic  

cleft 

N-lobe 

C-lobe 

P-loop 

Catalytic loop 

c 

A497 

V600 F468 

A598 

W604 

L597 

F498 

L525 

V487 

L485 

Kiel et al, Elife, 2016 

V600 is buried in a hydrophobic pocket formed by the activation segment (AS) 

and the aC helix 

V600E: mutation hot spot in cancer 

Differences in mutation 

frequencies: a quantitative effect? 
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The V600E mutation causes a high destabilization of the inactive 

state (aC helix/AS hydrophobic pocket) 

V. Examples: 2. Why BRAF V600E? 

Kiel et al, Elife, 2016 

0

1

2

3

4

5

6

7

F
o
ld

X
 D
D

G
 (

B
R

A
F

_
T

) 
–
  

(k
c
a
l/
m

o
l)
 

<0.8 kcal/mol 

>0.8 < 1.6 kcal/mol 

>3.2 kcal/mol 

>1.6 < 3.2 kcal/mol 

Mutation at position V600 
E   W   K   R   D   P   H   Q   G   F    Y   S   N    M   T    I    A   C    L 

N-terminal subdomain 

C-terminal subdomain 

FoldX DDG (BRAF_T) 

Total destabilization: 

Hydrophobic pocket 

Number of mutation in cancer 

> 1 to 10 

> 10 to 100 

> 100 to 1000 

> 1000 (V600E) 

V600 

A 

C 

D 

E 

F 

G 

H 

I 

K 

L 

M 

N 

P 

Q 

R 

S 

T 

V 

W 

Y 

= DG 

Total destabilization 

Destabilization of 

inactive state 

No destabilization of active 

state (data not shown) 

Christina Kiel (CRG) 



Distinguishing driver from passenger mutations 

V. Examples: 2. Why BRAF V600E? 

Kiel et al, Elife, 2016 
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V600K, D, and R 

have very similar 

destabilizing energies 

> cancer driver 

V600A, M, and L are 

not very destabilizing 

> cancer passenger 
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Fitness?? 
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V600G behaves more like a RASopathy mutation 

V. Examples: 2. Why BRAF V600E? 

Google search for “V600G BRAF CFC syndrome”: V600G found 

as a RASopathy mutation  

“enedgetics” 
Cancer mutations tend to have higher 
destabilization values (on average)  
 
Kiel  & Serrano, 2014 

Christina Kiel (CRG) 



Why different cancer frequencies for V600E, V600D and V600K? 

V. Examples: 2. Why BRAF V600E? 

V600K, D, and R have very similar destabilizing energies 

Why is V600E the by far most frequent mutation? 

aa frequency

Glu 15474

Lys 164

Arg 36

Met 25

Ala 22

Asp 20

Gly 11

Leu 2
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V. Examples: 2. Why BRAF V600E? 
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V600E: 15474 frequency 

V600D: 20 frequency 

Distinguishing cancer driver from passenger mutations: 

Is V600E a driver mutation and V600D a passenger mutation? 

On the molecular level: Glu and Asp have similar biochemical 

properties 

Glu Asp 

Why different cancer frequencies for V600E, V600D and V600K? 
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V. Examples: 2. Why BRAF V600E? 

V600E: GAG 

V600K: AAG 

V600R: AGG 

V600D: GAC/T 

Why different cancer frequencies for V600E, V600D and V600K? 

 The higher mutation frequency of V600E 

compared to V600D can be explained 

based on the number of nucleotide 

substitutions needed: V600D requires 2 

nucleotide substitutions 

Christina Kiel (CRG) 



Experimentally validate the effect of BRAF mutations by 

monitoring downstream MEK activation (HEK293 cells) 

V. Examples: 2. Why BRAF V600E? 

Kiel et al, Elife, 2016 

Day1:  

Seed HEK293 

cells 

Day2:  

Transfect flag-

BRAF WT and 

mutants 

Day3:  

Lyse cells and 

Western blot 

Christina Kiel (CRG) 



V. Examples: 2. Why BRAF V600E? 

Experimentally validate the effect of BRAF mutations by 

monitoring downstream MEK activation (HEK293 cells) 

 V600E (requires 3 nucleotide substitutions) is as active as 

V600E, but NOT found in cancer  

Christina Kiel (CRG) 



Why are no mutations at other positions in the hydrophobic pocket - in a 

different position to Val600 - found frequently mutated in cancer? 

V. Examples: 2. Why BRAF V600E? 

Kiel et al, Elife, 2016 

FoldX prediction: other mutations in the hydrophobic pocket destabilize the 

pocket and may thereby release the AS, would also affect the folding of the 

inactive and/or active kinase 

 Experimentally: lower BRAF expression levels (and 

MEK phosphorylation)  

Day1: 

Seed HEK293 

cells

Day2: 

Transfect flag-

BRAF WT and 

mutants

Day3: 

Lyse cells, 

fractionate and 

Western blot

Supernatant 

= soluble 

fraction

Pellet = 

insoluble 

fraction

Christina Kiel (CRG) 



Conclusions example 3: Why BRAF V600E? 

 The results underscore the 

importance of considering changes at 

both the DNA and protein level when 

attempting to understand why certain 

cancer-causing mutations are more 

common than others. 

 BRAF mutation frequencies depend on the equilibrium between the 

destabilization of the hydrophobic pocket, the overall folding energy, the 

activation of the kinase and the number of bases required to change the 

corresponding amino acid. 

 

Why BRAF V600E? 

 V600E is the only single nucleotide substitution (Asp, Lys, and Arg, require two 

bases substitutions) that opens the AS through destabilization of autoinhibitory 

interactions, without significantly impairing the folding of the inactive or active 

kinase domain.  

V. Examples: 2. Why BRAF V600E? Christina Kiel (CRG) 



VI. Summary tools & websites 

Quantitative PPI networks

Christina Kiel (CRG) 



Protein abundances 

VI. Summary tools & websites 

http://pax-db.org/ 

Christina Kiel (CRG) 



Affinities and kinetic constants  

VI. Summary tools & websites 

https://www.bindingdb.org/bind/index.jsp 

Christina Kiel (CRG) 



General ‘numbers’ in biology 

VI. Summary tools & websites 

http://bionumbers.hms.harvard.edu/ 

Christina Kiel (CRG) 



Protein structures 

VI. Summary tools & websites 

http://www.rcsb.org/pdb/home/home.do 

Christina Kiel (CRG) 



3D structures of protein interactions 

VI. Summary tools & websites 

http://interactome3d.irbbarcelona.org/ 

Christina Kiel (CRG) 



3D structures of protein interactions/ mapping of disease 

mutations 

VI. Summary tools & websites 

http://dsysmap.irbbarcelona.org/ 

Christina Kiel (CRG) 



Protein design 

VI. Summary tools & websites 

http://foldxsuite.crg.eu/products#foldx 

Christina Kiel (CRG) 



Conclusions/ Wrap up 

• Quantitative information is important to consider in PPI networks; however, it 

is often difficult to address these quantities experimentally.  

• Protein quantification is not a solved problem; especially in mammalian cells, 

because of the problem of shared peptides for isoforms and splice variants 

• It is impossible to measure binding affinities and kinetic constants in a high-

throughput manner (protein expression and purification needed) 

• The effect of mutations can be assessed in a quantitative manner using 

protein design tools, provided 3D structural information is available 

VII. Discussion Christina Kiel (CRG) 


