Integrative and quantitative analysis of disease mutations in protein interaction networks and implications for personalized medicine

Christina Kiel, Staff scientist Department of Systems Biology, Luis Serrano group CRG Barcelona

CRG Barcelona: http://crg.eu

Quantitative information in protein-protein interaction (PPI) networks

Qualitative PPI networks

Quantitative PPI networks

Considering protein abundances and affinities/ kinetic constants

Outline

I. The effect of affinities, kinetic constants and network topology in PPI networks

II. The effect of protein abundance perturbations and interaction competition in PPI networks

III. Methods to quantify protein abundances, affinities, and kinetic constants

IV. Disease mutations and their principle effect on PPI networks

V. Examples for quantitative effects in disease networks

- 1. RASopathy vs cancer mutations: a matter of quantity
- 2. BRAF mutation frequency: prediction of oncogenic drivers
- VI. Summary tools & websites
- **VII.** Wrap up/ discussion/ conclusions

Epidermal growth factor (EGF) activates the RAS-RAF-MEK-ERK pathway

Cell type-specific ERK activation in HEK293 and RK13 cells

Different signaling response (ERK-p) with similar ligand (EGF)

Different network 'wiring' /feedbacks causes the different behaviour

Kiel & Serrano, Sci Signal, 2009

A simple computer model of ERK activation in HEK293 and RK13 cells

Good agreement of experiment and model predictions

Model predictions: different cell type-specific wiring results in different responses to affinity perturbations

Experimental validation of the role of kinetic parameters in MCF7 cells (weak feedback)

Experimental design of mutants that introduce kinetic perturbations

E.g.:

↑ Increase k_{on}: improve electrostatic surface complementarity; 'electrostatic steering'

Kiel et al., PNAS, 2004

 \uparrow Increase k_{off}: mutate hot-spot residues in the interface

FoldX-based energy calculations of proteins

3D Structural information

Summary of the protein mutant design

Fold

Kiel & Serrano, Sci Signal, 2009

Analysis of all mutants in RK13 cells (luciferase activity assay)

Correlation between predicted changes in k_{on} is very high, while correlation with affinity (ΔG) is poorer

Kiel & Serrano, Sci Signal, 2009

Results from the network model for designed mutants

Confirms experimental findings:

Mutant with 4 time lower k_{on} and 4 times lower k_{off} (same K_D) has less predicted luciferase activity (and opposite for mutant with 4 times higher k_{on}/k_{off})

Experiments and simulations suggest that association rate constants of Ras-Raf complex formation are important for signaling

How could interaction competition and protein concentration affect downstream signaling?

Signaling complexes: > 300 partners for one protein??

Some proteins will use similar binding surfaces for interaction with other molecules: 'mutually exclusive interactions'/ 'XOR'

How could interaction competition and protein concentration affect downstream signaling?

Signaling complexes: > 300 partners for one protein??

The effect of abundance variation at XOR network motifs

> The output/ function depends on both, network structure and abundance

Competition at the Ras XOR node

Mathematical network modeling: increasing RIN1 to 10-fold higher of CRAF expression should decrease CRAF activation

Kiel et al, Sci Signal, 2013

Experimental testing of competition at the Ras node

Expression of RIN1 in MCF-7 and HEK293 cells decreases CRAF, MEK, and ERK activation

Alterations in the abundance of one of two hub-binding partners affected downstream signaling

Kiel et al, Sci Signal, 2013

The effect of abundance variation at XOR network motifs

The output/ function depends on both, network structure and abundance: we need to know the network very well to understand

Kiel et al, Sci Signal, 2013

A bioinformatics tool to distinguish mutually exclusive from compatible interactions in large-scale PPI

Compatible ('AND')

http://sapin.crg.es/

Exclusive ('XOR')

B2

Why proteomics in times of deep RNA sequencing?

mRNA does not translate1:1 into protein; keywords:

(i) translation efficiency,(ii) mRNA stability,(iii) protein stability,

□ Posttranslational modification (PTMs) of proteins, e.g. phosphorylation

Two main aims: IDENTIFICATION and QUANTIFICATION

Two main techniques: MASS SPECTROMETRY and ANTIBODY-BASED

High <u>complexity</u> of the proteome

30,000 coding genes per cell

Alt.splicing: 2-3 x 30,000 = 90,000 proteins

Post-translational modifications > 10 x 90,000

= 900,000 proteins

High dynamic range of the proteome

Protein identification by mass spectrometry

Address problem of cellular <u>complexity</u> by fractionation, e.g. liquid chtromatography

□ Address problem of cellular <u>dynamic range</u> by better and better (and better...) mass spectrometers...

'Shotgun' compared to 'targeted' approach

Targeted proteomics is the method of choice for studying (a limited number of) signaling proteins

Human deep proteome mapping

Molecular Systems Biology 7; Article number 549; doi:10.1038/msb.2011.82 Citation: *Molecular Systems Biology* 7: 549 © 2011 EMBO and Macmillan Publishers Limited All rights reserved 1744-4292/11 www.molecularsystemsbiology.com

REPORT

The quantitative proteome of a human cell line

Martin Beck^{1,9}, Alexander Schmidt^{2,9}, Johan Malmstroem^{3,4}, Manfred Claassen⁵, Alessandro Ori¹, Anna Szymborska¹, Franz Herzog⁶, Oliver Rinner⁴, Jan Ellenberg¹ and Ruedi Aebersold^{6,7,8,*}

¹ European Molecular Biology Laboratory, Heidelberg, Germany, ² Biozentrum, University of Basel, Basel, Switzerland, ³ Department of Immunotechnology, BMC, Lund, Sweden, ⁴ Biognosys AG, Schlieren, Switzerland, ⁵ Department of Computer Science, ETH Zurich, Zurich, Switzerland, ⁶ Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland; ⁷ Competence Center for Systems Physiology and Metabolic Diseases, Zurich, Switzerland and ⁸ Department of Science, University of Zurich, Switzerland

⁹ These authors contributed equally to this work

* Corresponding author. Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Wolfgang-Pauli-Strasse 16, Zurich 8093, Switzerland. Tel.: +41 44 633 1071; Fax: +41 44 633 1051; E-mail: aebersold@imsb.biol.ethz.ch

Received 15.8.11; accepted 29.9.11

Molecular Systems Biology 7; Article number 548; doi:10.1038/msb.2011.81 Citation: *Molecular Systems Biology* 7: 548 © 2011 EMBO and Macmillan Publishers Limited All rights reserved 1744-4292/11 www.molecularsystemsbiology.com

REPORT

Deep proteome and transcriptome mapping of a human cancer cell line

Nagarjuna Nagaraj¹, Jacek R Wisniewski¹, Tamar Geiger¹, Juergen Cox¹, Martin Kircher², Janet Kelso², Svante Pääbo² and Matthias Mann^{1,*}

¹ Department for Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany and ² Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany

* Corresponding author. Department for Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany. Tel.: + 49 89 8578 2557; Fax: + 49 89 8578 2219; E-mail: mmann@biochem.mpg.de

Received 15.7.11; accepted 29.10.11

- R. Aebersold lab
- ~10,000 proteins quantified

Beck et al, MSB, 2011

• M Mann lab

10,255 proteins quantified

Nagaraj et al, MSB, 2011

Human deep proteome mapping: where are we now? Complete?

ARTICI F

2014 Pandey lab

doi:10.1038/nature13302

A draft map of the human proteome

Min-Sik Kim^{1,2}, Sneha M. Pinto³, Derese Getnel^{1,4}, Raja Sekhar Nirujogi³, Srikanth S. Manda³, Raghothama Chaerkady^{1,2}, Anil K. Madugundu³, Dhanashree S. Kelkar³, Ruth Isserlin⁵, Shobhit Jain⁵, Joji K. Thomas³, Babylakshmi Muthusamy⁴, Pamela Leal-Rojas^{1,6}, Praveen Kumar³, Nandini A. Sahasrabudhe³, Lavanya Balakrishnan³, Jayshree Advani³, Bijes George³, Santosh Renuse³, Lakshmi Dhevi N. Selvan³, Arun H. Patil³, Vishalakshi Nanjappa³, Aneesha Radhakrishnan³, Samarjeet Prasad¹, Tejaswini Subbannayya³, Rajesh Raju³, Manish Kumar³, Sreelakshmi K. Sreenivasamurthy³, Arivusudar Marimuthu³, Gajanan J. Sathe⁸, Sandip Chavan³, Keshava K. Dutta⁴, Yashwanth Subbannayya³, Apeksha Sahu³, Soujanya D. Velamanchi³, Savita Jayaram³, Pavithra Rajagopalan⁴, Jyoti Sharma³, Krishna R. Murthy³, Nazia Syed³, Renu Goel³, Aafaque A. Khan³, Sartaj Ahmad³, Gourav Dey³, Keshava K. Dutta⁴, Yashwanth Subbannayya¹, Jun Zhong⁴, Xinyan Wu^{1,2}, Patrick G. Shaw¹, Donald Freed⁴, Muhammad S. Zahar¹⁷, Kanchan K. Mukherje^e, Subramanian Shankar⁹, Anita Mahadevan^{10,11}, Henry Lam¹², Christopher J. Mitchell¹, Susarla Krishna Bankar^{10,11}, Parthasarathy Satishchandra¹³, John T. Schroeder¹⁴, Ravi Sirdeshmukh³, Anirban Maitra^{15,16}, Steven D. Laech^{1,7}, Charles G. Drake^{16,18}, Marc K. Halushka¹⁵, T. S. Keshava Prasad³, Ralph H. Hruban^{15,16}, Candace L. Kerr¹⁹, Gary D. Bader⁶, Christine A. Lacobuzio-Donahus^{15,16,17}, Harsha Gowda³ & Akhiles Pandey^{12,2,4,15,16,20}

2014 Kuster lab

doi:10.1038/nature13319

Mass-spectrometry-based draft of the human proteome

Mathias Wilhelm^{1,2}*, Judith Schlegl²*, Hannes Hahne¹*, Amin Moghaddas Gholami¹*, Marcus Lieberenz², Mikhail M. Savitski³, Emanuel Ziegler², Lars Butzmann⁴, Siegfried Gessulat², Harald Marx¹, Toby Mathieson³, Simone Lemeer⁴, Karsten Schnatbaum⁴, Ulf Reimer⁴, Holger Wenschuh⁴, Martin Mollenhauer⁵, Julia Slotta-Huspenina⁵, Joos-Hendrik Boese², Marcus Bantscheff³, Anja Gerstmair², Franz Faerber² & Bernhard Kuster^{1,6}

Many proteins are identified with peptides belonging to more than one protein (e.g. isoforms)

ARTICLE

Antibody-based proteomics: only semi-quantitative abundances

SEAR

e.g.

- Tissue-based map of the human proteome
- 44 major tissues and organs in the human body
- 24,028 antibodies corresponding to 16,975 protein-encoding genes

А Cerebral cortex Lateral ventricle Cerebellum Hippocampus Nasopharynx Oral mucosa Salivary gland Tonsil Soft tissue Thyroid gland Parathyroid gland Bronchus Esophagus Luna Lymph node Heart muscle Liver Breast Adrenal gland Stomach Gallbladder Spleen Duodenum Kidney Small intestine Pancreas Colon Placenta Appendix Fallopian tube Smooth muscle Ovary Rectum Endometrium Seminal vesicle Cervix, uterine Prostate Vagina Epididymis Urinary bladder Testis Bone marrow Skeletal muscle Skin RNA and protein data Only protein data

THE HUMAN PROTEIN ATLAS

A Tissue-Based Map of the Human Proteome

Here, we summarize our current knowledge regarding the human proteome mainly achieved through antibody-based methods combined with transcriptomics analysis across all major tissues and organs of the human body. A large number of lists can be accessed with direct links to gene-specific images of the corresponding proteins in the different tissues and organs.

Read more

Н ?»		
	Search	Fields »
nsulin, PGR, CD36		-

....

Uhlen et al, Science, 2015

Quantitative Western blotting

Protein standards: expression, purification and quantification

G001_ABI1 (51.8 kDa)	G002_AKT1 (55.7 kDa)	G004_APPL1 (79.7 kDa)	G009_BCAR1 (93.4 kDa)
С Н Р	С Н Р	С Н Р	С Н Р
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
G012_CAV1 (20.5 kDa)	G013_CAV2 (18.3 kDa)	G014_CBL (99.6 kDa)	G017_CDC42 (21.3 kDa)
С Н Р	С Н Р	С Н Р	С Н Р
10 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10	100 10 - 100	175- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
G021_CREB1 (36.7 kDa)	G022_CRK (33.8 kDa)	G038_EPS15 (83.7 kDa)	G044_GAB1 (80 kDa)
СНР	С Н Р	СНР	СНР
	100 100 100 100 100 100 100 100	$\begin{array}{c} 200 \\ - \\ 101 \\ 0 \\ 0 \\ 0 \\ - \\$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Summary statistic for quantitative Western blotting of 198 ErbB-related proteins

Combining different quantitative approaches to quantify 198 proteins in the ErbB signaling pathway

- SRM has a higher sensitivity compared to quantitative western blotting (but some proteins are only detected by Western blotting)
- Problem with isoforms and protein families: as a consequence of frequent gene duplication events in mammals, often similar proteins (e.g. AKT1 and AKT2) cannot be distinguished using the peptides detected by MS. > they can only be assigned to a protein group/ family

Kiel et al, J Prot Res, 2014

Measuring protein interactions in vivo and in vitro

The challenge:

- most *in viv*o techniques are high-throughput, but do not provide affinities (only qualitative binding detection)
- in vitro techniques can provide affinities and kinetic constants, but are not highthroughput methods

Current Opinion in Structural Biology

Measuring protein affinities in vitro requires the expression and purification of proteins (e.g. using bacteria)

Example: Bacterial expressed and purified Ras protein mutants and interactors

Raf

PI3K

Large proteins are often not soluble: expression and purification of protein domains

Two main methods to measure affinities and kinetic constants

Kiel & Serrano, Mol Sys Biol, 2014

Kiel & Serrano, Mol Sys Biol, 2014

Example 1: RASopathy and cancer disease mutations

What are the differences in mutations of the same protein causing different disease (e.g. RASopathies or cancer)?

- Ras/MAPK syndromes ('RASopathies') are a class of developmental disorders caused by germline mutations
- Proteins in Ras/MAPK syndromes ('RASopathies') are also found in cancer

Location of mutations in different domains does not explain the difference between RASopathy and cancer mutations

Distribution of somatic and germline mutations in 98 different structural domains and inter-structural regions

'Edgetics' does not explain it

Domain localization of mutation does not explain why a particular mutation will cause RASopathy or cancer

Analysis of 956 missense mutations in RASopathies and cancer based on structural information and FoldX energies

Pipeline:

FoldX-based energy calculations of proteins

3D Structural information

V. Examples: 1. RASopathy vs cancer

Analysis of 956 missense mutations in RASopathies and cancer based on structural information and FoldX energies

Analysis of 956 missense mutations in RASopathies and cancer: high structural coverage

Multiple effects of a mutation even for the same protein/ protein class

Cancer mutations tend to have higher destabilization values (on average)

Compensatory effects of mutations on different interaction partners

Quantitative effects on protein stability, or activity could explain in some cases the different phenotype: cancer or RASopathy

Simulation of Ras activation

'Enedgetics': quantitative edge effects

'Edgetics' + energies = 'enedgetics'

<u>Quantitative effects</u> on protein stability, activity, or folding explains in some cases the different phenotype

Conclusions example 1: RASopathy vs cancer

- A systematic analysis of 956 RASopathy and cancer mutations based on structures and energy predictions is presented.
- Even for the same gene, different disease-causing mechanisms exist depending on the type of mutation.
- Energy changes are higher for cancer compared to RASopathy mutations.
- In some cases, RASopathy mutations show compensatory changes that, as predicted by network modelling, result only in minor pathway deregulation.

Combined network-based and structural analyses show that quantitative changes rather than all-or-none rewiring underlie the difference between RASopathy and Cancer mutations.

Example 2: BRAF mutations in cancer. Why V600E?

Shall we only treat patients which harbour V600E mutations or also patients with non-V600E mutations?

Kinases are activated through mutations in the activation loop (activation segment)

 phosphorylation in the activation segment causes structural rearrangements of the activation segment and the aC helix. This reorients the DFG loop resulting in activation of the kinase

Focus on the position Val600 in the kinase BRAF

V600 is buried in a hydrophobic pocket formed by the activation segment (AS) and the aC helix

The V600E mutation causes a high destabilization of the inactive state (aC helix/AS hydrophobic pocket)

Distinguishing driver from passenger mutations

V600G behaves more like a RASopathy mutation

Google search for "V600G BRAF CFC syndrome": V600G found as a RASopathy mutation

Germline mutation in *BRAF* codon 600 is compatible with human development: *de novo* p.V600G mutation identified in a patient with CFC syndrome

Champion, KJ¹; Bunag, C²; Estep, AL²; Jones, JR¹; Bolt, CH¹; Rogers, RC¹; Rauen, KA³; Everman, DB¹

Clinical Genetics, Volume 79, issue 5 (May 2011), p. 468-474. ISSN: 0009-9163 DOI: 10.1111/j.1399-0004.2010.01495.x Blackwell Publishing Ltd

Why different cancer frequencies for V600E, V600D and V600K?

V600K, D, and R have very similar destabilizing energies

Why is V600E the by far most frequent mutation?

aa	frequency
Glu	15474
Lys	164
Arg	36
Met	25
Ala	22
Asp	20
Gly	11
Leu	2

Why different cancer frequencies for V600E, V600D and V600K?

Why different cancer frequencies for V600E, V600D and V600K?

Second Letter							
		U	с	A	G		
1st letter	υ	UUU Phe UUC UUA Leu UUG	UCU UCC Ser UCA UCG	UAU Tyr UAC UAA Stop UAG Stop	UGU Cys UGC UGA Stop UGG Trp	U C A G	
	с	CUU CUC Leu CUA CUG	CCU CCC Pro CCA CCG	CAU His CAC CAA Gin CAG Gin	CGU CGC CGA CGG	U C A G	3rd
	A	AUU AUC AUA AUG Met	ACU ACC ACA ACG	AAU Asn AAC AAA Lys AAG	AGU Ser AGC AGA Arg AGG	U C A G	letter
	G	GUU GUC Val GUA GUG	GCU GCC Ala GCA GCG	GAU Asp GAC GAA GIU GAG	GGU GGC Gly GGA GGG	U C A G	

V600D: GAC/T

The higher mutation frequency of V600E compared to V600D can be explained based on the number of nucleotide substitutions needed: V600D requires 2 nucleotide substitutions

V600E: G<u>A</u>G

Experimentally validate the effect of BRAF mutations by monitoring downstream MEK activation (HEK293 cells)

Experimentally validate the effect of BRAF mutations by monitoring downstream MEK activation (HEK293 cells)

V600E (requires 3 nucleotide substitutions) is as active as V600E, but NOT found in cancer Why are no mutations at other positions in the hydrophobic pocket - in a different position to Val600 - found frequently mutated in cancer?

FoldX prediction: other mutations in the hydrophobic pocket destabilize the pocket and may thereby release the AS, would also affect the folding of the inactive and/or active kinase

 Experimentally: lower BRAF expression levels (and MEK phosphorylation)

Conclusions example 3: Why BRAF V600E?

 BRAF mutation frequencies depend on the equilibrium between the destabilization of the hydrophobic pocket, the overall folding energy, the activation of the kinase and the number of bases required to change the corresponding amino acid.

Why BRAF V600E?

- V600E is the only single nucleotide substitution (Asp, Lys, and Arg, require two bases substitutions) that opens the AS through destabilization of autoinhibitory interactions, without significantly impairing the folding of the inactive or active kinase domain.
- The results underscore the importance of considering changes at both the DNA and protein level when attempting to understand why certain cancer-causing mutations are more common than others.

Quantitative PPI networks

Protein abundances

(CO PaxDb: Protein Abundance Database			Downloads Help	Archives 👻
All Organisms 🗶	protein id/name		S	Search
Browse species				
All 🗠 all organisms (56)				
Data Overview	X. tropicalis G. gallus	P. troglodytes	H. sapiens	C. fa
Species 🗢	Predicted proteome size	Datasets 🔺	Proteine Covered	
			FIOLEIIIS COVERED +	
Homo sapiens	20457	170	98%	
Homo sapiens Mus musculus	20457 22868	170	98% 90%	
Homo sapiens Mus musculus Arabidopsis thaliana	20457 22668 27416	170 75 48	98% 90% 78%	
Homo sapiens Mus musculus Arabidopsis thaliana Danio rerio	20457 22668 27416 26163	170 75 48 20	98% 90% 76% 59%	
Homo sapiens Mus musculus Arabidopsis thaliana Danio rerio Escherichia coli str. K-12 substr. MG1655	20457 22668 27416 26183 4148	170 75 46 20 18	98% 90% 76% 59% 98%	
Homo sapiens Mus musculus Arabidopsis thaliana Danio rerio Escherichia coli str. K-12 substr. MG1855 Saccharomyces cerevisiae	20457 22668 27416 26163 4146 6692	170 75 46 20 18 17	98% 90% 78% 59% 98% 98%	
Homo sapiens Mus musculus Arabidopsis thaliana Danio rerio Escherichia coli str. K-12 substr. MG1655 Saccharomyces cerevisiae Caenorhabditis elegans	20457 22668 27416 26163 4146 6692 20517	170 75 48 20 18 17 10	98% 90% 76% 59% 98% 98% 98% 80%	
Homo sapiens Mus musculus Arabidopsis thaliana Danio rerio Escherichia coli str. K-12 substr. MG1655 Saccharomyces cerevisiae Caenorhabditis elegans Drosophila melanogaster	20457 22668 27416 26183 4148 6692 20517 13937	170 75 46 20 18 17 10 10	98% 90% 76% 59% 98% 98% 98% 90% 60%	
Homo sapiens Mus musculus Arabidopsis thaliana Danio rerio Escherichia coli str. K-12 substr. MG1655 Saccharomyces cerevisiae Caenorhabditis elegans Drosophila melanogaster Schizosaccharomyces pombe	20457 22668 27418 26163 4146 6692 20517 13937 5144 5144	170 75 46 20 18 17 10 10 8	98% 90% 78% 59% 98% 98% 98% 80% 80% 95% 90%	

http://pax-db.org/

Affinities and kinetic constants

Binding DB	Home Inf	o Download About us Email us Contribute data Web Services	BindingDB Ne
myBDB logout • Search and Browse Target	BindingDB is a public, protein considered to be 6,265 protein targets an There are 2907 protein- sequence identity and	September 2015. W to post the latest BindingDB user survor about October 5. ' would greatly apprece your feedback and	
Sequence Name & Ki IC50 Kd EC50 Rate constants ΔG° ΔH° -ΤΔS°	Simple Search Article Titles, Authors, Assays, Compound Names, Target Names	Go Go Use ? for single-letter wild-card or * for general wild-card. For example, "adeny *" or "adeny ?". Query cannot start with wild card.	suggestions! Note, however, that you ar always free to click the survey to the rec home-page.
pH (Enzymatic Assay) pH (ITC) Substrate or Competitor	Advanced Search	Combine multiple search criteria, such as chemical structures, target names, and numerical affinities; restrict searches by data source, such as BindingDB, ChEMBL, PubChem, and Patents.	compounds in Bindir have now been assi BindingDB Molecule such as BDBM5018
Compound Mol. Wt. Chemical Structure Pathways Source Organism Number of Compounds Monomer List in csv Het List in SDF	Messages	BindingDB's Advanced Search now allows you to download your search results in Excel format. (March 2016) We are delighted to announce that Elsevier's Science Direct journals now include links from articles to BindingDB datasets, where available! For an example, go to this article, and see the "Data for this Article, BindingDB" link on the right. (December 2015)	(The numeric compc also known, internal Monomer ID.) September 2015. BindingDB should gi faster performance r we have upgraded th server. Please let us
Compound FDA Drugs Important Compounds Chemical Structure Name SMILES Number of Data / Targets Special tools 3D Structure Series Find My Compound's Targets Find Compounds for My	Journal Curation by BindingDB	BindingDB continually curates a set of journals not covered by other public databases. As of January 2016, the status of our current curation effort is as follows: PACS Chemical Biology 2006-2015 (vol 1-10) PACS BioChemistry 1962-1970 (vol 1-9), 1991-2015 (vol 30-54) PBioorganic Chemistry 1971-2015 (vol 1-62) PBMC Chemical Biology 2001-2012 (vol 1-12) PChemical Biology 2001-2012 (vol 1-12) PChemistry & Biology 1994-2014 (vol 1-20) PChemistry & Biology 1994-2014 (vol 1-20) Pournal of Biological Chemistry 1988-2013 (vol 264-288) PJournal of Enzyme Inhibition and Medicinal Chemistry 1997-2009 (vol 11-24) PNature Chemical Biology 2005-2014 (vol 1-10) PMedicinal Chemistry Research 2004-2013 (vol 13-22)	immediately if you n any problems. July 2015. Please tr new tool to map fror or more proteins of k sequence to known potential ligands: Fin Compounds for My Ta April 2015. Bindingt improved security. V use SSL to transmit passwords securely, forgotten passwords new handled with a
Targets Do Virtual Screening SCOP	myBDB	Username Password login logout Username is your registered email in BindingDB. register	Ink. March 2015. The BindingDB results ta
Citation Author Journal/Citation Institution PubMed PubChem BioAssay US Patent	Video Tutorials	Get all data from an article Download all data for a target of interest Find and view all data for a target of interest Find my compound's targets	For protein targets to an in Antibodypedia, an ligands to UniChem. February 2015. Full has been replaced b Simple Search, with greatly improved dis

https://www.bindingdb.org/bind/index.jsp
. .

General 'numbers' in biology

Home \ Search Browse F		Resources Cell Biology by the Num		pers About Us		Login \ Subr
Key Nur	nbers for	Cell B	iologists			
Cell size 1. Bacteria (E. coi	i): =0.7-1.4 μm diameter h, ≈0.5-5 μm ³ in volume; for culture with OD ₆₀₀ ≈1 isiae): ≈3-6 μm diameter, n volume Il volume: 100-10000 μm 0 μm ³ (adherent on slide imeter)	Concentrati 13. Concent <i>E. coli</i> is Hela ≈1, 14. Characte a signalii 3; 15. Water co elementa <i>E. coli</i> : ≈ 16. Compos ≈55% or	on ration of 1 nM in: ≈1 molecule/cell; 000 molecules/cell ristic concentration for rig protein ≈10 nM-1µM ntent: ≈70% by mass; General I composition (dry weight) of C ₄ H ₇ O ₂ N ₁ ; Yeast ≈C ₆ H ₁₀ O ₃ N ₁ tion of <i>E. coli</i> (dry weight): otein, 20% RNA. 10% lipids.	 Diffusion and Catalysis Rate 21. Diffusion coefficient for an "average" protein: in cytoplasm D≈5-15 µm²/s → ≈10 millisec to traverse an <i>E. coli</i> →≈10 s to traverse a mamalian (Hela) cell; small metabolite in water D≈500 µm²/s 22. Diffusion limited on-rate for characteristic protein ≈10°-10° s·1M² → for a protein substrate of concentration ≈1µM the diffusion limited on-rate is ≈100-1000 s⁻¹ thus limiting the catalytic rate k_{cat} 		
Length Scales Ins 4. Nucleus volum 5. Cell membrane 6. "Average" prot 7. Base pair: 2 nn 8. Water molecule	ide Cells $e \approx 10\%$ of cell volume \Rightarrow thickness $\approx 4-10$ nm iein diameter $\approx 3-6$ nm n (D) x 0.34 nm (H) e diameter ≈ 0.3 nm	15% oth 17. Protein o per <i>E. co</i> Total me Energetics 18. Membrai 2-6 k _B T (ers onc. ≈100 mg/ml=3 mM. 10 ⁶ -10 ⁷ <i>li</i> (depending on growth rate); abolites (MW<1kD) ≈300mM ne potential ≈70-200 mV → per electron (k _B T=thermal energy)	Genome 23. Geno S. ce C. ele D. me A. the M. m	sizes & Error Rate me size: E. coli =5 revisiae (yeast) =12 agans (nematode) = slanogaster (fruit fty) aliana (arabidopsis) = usculus (mouse) =2	IS Mbp; Mbp; 100 Mbp; ≈120 Mbp; ≈120 Mbp; 5 Gbp; 5 Gbp;
Division, Replicati Translation & Deg at 37°C with a temper 9. Cell cycle time media): <i>E. coli</i> min; human ce 10. Rate of replicat <i>E. coli</i> =200-10 human ≈40 bas	ion, Transcription, rradation Rates ature dependence Q10 of ≈2 (exponential growth in ri ≈20-40 min; yeast 70-14 Ill line (Hela): 15-30 hours tion by DNA polymerase 300 bases/s; ses/s. Transcription by	19. Free ene physiolo ≈40-60 H E. coli cc 20. AG ^o resu ratio bet concentr ≈6 kJ/m	rgy (AG) of ATP hydrolysis under gical conditions J/mole → ≈20k _B T/molecule ATP; acules required to make an ll ≈10-50×10 ⁹ Iting in order of magnitude ween products and reactants ations: ol ≈60 meV ≈2 k _B T	7. sa 7. aes 24. Numi E. co S. ce C. ele H. sa ≈10 ⁻⁶ 26. Misin	perior (number) ≈2.9 stivum (wheat) ≈16 (ber of protein-codin li ≈4,000; revisiae ≈6,000; revisiae ≈6,000; piens ≈20,000 tion rate in DNA rep ~10 ⁻¹⁰ per bp corporation rate:	Gbp, Gbp g genes: A. musculus, llication
RNA polymera: 11. Translation rate 12. Degradation ra mRNA half life protein half life	se 10-100 bases/s by ribosome 10-20 aa/s ites (proliferating cells): < cell cycle time; cell cycle time	Useful biolog literature. Nun "rule of thumb annotated we Consult webs about the deta growth condit	ical numbers extracted from the bers and ranges should only serve as " values. References are in the online rsion at the BioNumbers website. ite and original references to learn ils of the system under study including ions, method of measurement, etc.	trans trans C	cription ≈10 ⁻⁴ per nu lation ≈10 ⁻³ -10 ⁻⁴ per lick on a number t description and re www.BioNumbe	acleotide; r amino-acid to see full oference ers.org

http://bionumbers.hms.harvard.edu/

Protein structures

A Structural View of Biology

This resource is powered by the Protein Data Bank archive-information about the 3D shapes of proteins, nucleic acids, and complex assemblies that helps students and researchers understand all aspects of biomedicine and agriculture, from protein synthesis to health and disease.

The RCSB PDB builds upon the data by creating tools and resources for research and education in molecular biology, structural biology, computational biology, and beyond.

Zika Virus Structure

April Molecule of the Month

3D structures of protein interactions

	ews Tutorials H	elp About
Interactome3D is a web service for the structural annotation of protein- protein interaction networks. Submit your interactions and the server will find all the available structural data for both the single interactors and the interactions themselves. Additionally you can also visualize and download structural information for interactions involving a set of proteins or interactomes for one of the precalculated organisms. If you have any doubts read our section of Frequently Asked Questions. The current version of Interactome3D is 2015 12 Release notes	2	e de la comparte de l
Submit your interactions	Enter a list of Uniprot	Ctions with proteins
For ex. test_dataset Enter a list of interactions (max. 10000). Every interaction has to be entered in a separate line as a pair of space-separated Unigont	For example A0A5B9 P01848 A0AQH0 O61443	
ACs (*): ?		
A0A5B9 A0A5B9 A0A5B9 P01848 A0AQH0 O61443	Only show the pro	teins in the list ⑦ Homo sapiens ▼ Query
	Browse for c	organism
or upload your interactions from a file: (?)	Select one of the pre-	calculated organisms:
	> A subject of a subject of	> Mus musculus
Choose file	thaliana	Muchasterium tuborculosis
Choose file Email (**): Your email address Submit	 > Arabidopsis thaliana > Bacillus subtilis 	 > Mycobacterium tuberculosis > Mycoplasma pneumoniae

http://interactome3d.irbbarcelona.org/

3D structures of protein interactions/ mapping of disease mutations

dSysMap (Mapping of Human disease-related mutations at the systemic level) displays Human disease-related mutations on the structural interactome. Mapping of mutations on protein structures and on interaction interfaces allows you to visualize the region of the interactome that they affect and helps in rationalizing their mechanism of action.

The current version of dSysMap is 2015_05

Is this you first time with dSysMap? Take a 5 minutes Tutorial!

Tutorial :: Learn how to use dSysMap

Browse diseases

Select a disease from the following list. Example: Loeys-Dietz syndrome

Type here the name of a disease or browse the list ...

- Bacterial infection or mycosis
- Blood disease
- Cancer
- Cardiovascular disease
- Congenital abnormality
- Connective tissue disease
- Digestive system disease
- Ear-nose-throat disease
- Endocrine system disease
- Eye disease
- Fetal disease
- Genetic disease
- Immune system disease
- Infant-newborn disease

Query with a list of proteins

Enter a list of proteins (Uniprot AC or gene name)

For example. ETFA, ETFB, ACADM, ACADS, ACADVL, SOCS3, IRF7, GPHN, RPSA

Submit

Example

Submit your mutations

Enter a list of mutations (which format?)

Example

Submit

For example. APC: p.Ala1582Lys, p.Thr506Trp AXIN1: p.Phe119Ala, p.GIn190Arg

http://dsysmap.irbbarcelona.org/

Protein design

The FoldX Suite builds on the strong fundament of advanced protein design features already implemented in the oldest FoldX versions and integrates new capabilities: loop reconstruction (LoopX) and peptide docking (PepX). The Suite also features an improved usability thanks to a new boost Command Line Interface.

Van Durme J, Delgado J, Stricher F, Serrano L, Schymkowitz J, Rousseau F. "A graphical interface for the FoldX forcefield." Bioinformatics. 2011;27(12):1711-2.

http://foldxsuite.crg.eu/products#foldx

Conclusions/Wrap up

- Quantitative information is important to consider in PPI networks; however, it is often difficult to address these quantities experimentally.
- Protein quantification is not a solved problem; especially in mammalian cells, because of the problem of shared peptides for isoforms and splice variants
- It is impossible to measure binding affinities and kinetic constants in a highthroughput manner (protein expression and purification needed)
- The effect of mutations can be assessed in a quantitative manner using protein design tools, provided 3D structural information is available